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ORDERS OF NIKSHYCH’S HOPF ALGEBRA

JUAN CUADRA AND EHUD MEIR

ABSTRACT. Let p be an odd prime number and K a number field having a prim-
itive p-th root of unity (,. We prove that Nikshych’s non group-theoretical Hopf
algebra Hp, which is defined over Q(¢p), admits a Hopf order over the ring of
integers Ok if and only if there is an ideal I of O such that I>®~1 = (p). This
condition does not hold in a cyclotomic field. Hence this gives an example of a
semisimple Hopf algebra over a number field not admitting a Hopf order over any
cyclotomic ring of integers. Moreover, we show that, when a Hopf order over O
exists, it is unique and we describe it explicitly.

INTRODUCTION

Many results in the Representation Theory of Finite Groups exploit the fact that
the complex group algebra CG of a finite group G is defined over the integers or, more
generally, over the ring of integers Ok of a number field K. In other terms, O G is
an algebra order of CG; indeed a Hopf (algebra) order. A prominent role is played
by cyclotomic fields: for example, the celebrated Brauer’s splitting field theorem
states that any irreducible representation of KG can be realized in K(w), with w
a primitive root of unity of order equals exp G (see [3, Theorem 15.16, Corollary
15.18)).

Kaplansky’s sixth conjecture, still unsolved, is a generalization of Frobenius Theo-
rem for groups. It asserts that in a complex semisimple Hopf algebra H the dimension
of every irreducible representation of H divides the dimension of H. Larson gave a
positive answer in [6] if H admits a Hopf order over a number ring. Motivated by
this result, in [I] we addressed the question as to whether any complex semisimple
Hopf algebra admits a Hopf order over a number ring. In the dimensions less than 36
in which the classification is complete (24 and 32 are still open) it turns out that all
semisimple Hopf algebras are defined over cyclotomic rings of integers, see [I, Sub-
section 2.4] for an account. However, we exhibited in [I] an example in dimension
36 that does not admit a Hopf order over any number ring, although it satisfies the
conjecture.

As a continuation of our previous work we investigate in this paper the problem
of definability of semisimple Hopf algebras over cyclotomic ring of integers. Let H
be a semisimple Hopf algebra over a number field K and suppose that H has a
Hopf order over some number ring. Does H admit a Hopf order over a cyclotomic
ring of integers contained in K7 Our main result gives a negative answer for the
family of non group-theoretical semisimple Hopf algebras { H,}, with p an odd prime,
constructed by Nikshych (see [11]). The dimension of H, is 4p* (so in particular the
dimension of Hs is 36). These Hopf algebras were not constructed explicitly but
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through a tensor category and a fiber functor. The representation category Rep(H))
was obtained by equivariantization by Cs from Rep(A4,), with A, the Hopf algebra
studied by Masuoka in [7]. Using Tannaka reconstruction, in Section [B] we describe
H,, completely as follows:

Theorem 1. Let ¢, € C be a primitive p-th root of unity. The Hopf algebra H), is
generated, as an algebra over C, by the elements eq, e1,Uq, Up, Vg, Vp and g subject to
the following relations:

egt+e =1, epe1 = ejeg = 0,
uz = U%,) = €0, €oUqg = Uq, €oUp = Up, UgUp = UpUq,
vy = = ey, €1Vq = Va, €1Vp = Up, Vo Vs = (pUbVa,
9> =1, Ua = Upg, Jup = Uegy  GUa = Vol gup = Vbg-
e comultiplication, counit, and antipode o is given e following formulas:
Th Itiplicati it, and antipod Hy is gi by the following l
A(tg) = g @ Ug + Vg @ Vg, e(ug) = 1, S(ug) = bt
Alup) = up @ up +vp @00, e(up) =1, S(up) = ul ™",
A(vg) = Ug @ Vg + Vg ® Ug, e(vg) =0, S(vg) = vgfl,
Alvp) = up @ vy + vy @ ub 7, e(vp) = 0, S(vp) = vp.
The comultiplication of g is given by
- 1
A(g) _ k] zlguz ui ®gukué+ - C (k+D)k gu ulb ®gvk+l k+1

—1)(k+l
Z k(k-+1) {j“v,(,p )(k+1) ® gulul + ; ng vb @ gDk,
k,l

The counit and antipode of g are e(g) =1 and S(g) =

In Section 4 we delve into the structure of H,: we describe its irreducible (co)re-
presentations and attached (co)characters, its Hopf automorphisms, and we show

that H), is self-dual.

B = {ugup} U {vguy } U {guguy } U {gvgup}
is a basis of Hp. All structure constants of H,, in this basis belong to Q((,). Hence
H, is defined over Q((,). Our main result states:

Theorem 2. Let K be a number field containing a primitive p-th root of unity (.
Consider Hy, as defined over K. Then, Hy, admits a Hopf order over Ok, which
must be unique, if and only if there is an ideal I of O such that 12~V = (p). In
particular, K can not be a cyclotomic field (nor an abelian extension of Q) if a Hopf
order exists.

This theorem implies that Nikshych’s Hopf algebras behave rather differently than
group algebras. Firstly, all group algebras are already defined over Z. Secondly, the
number of Hopf orders of a group algebra over O depends on K, and in some cases
it is not bounded (see for example the classification of orders of the group algebras
of the cyclic groups of prime orders in Section [2]).
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The main result is contained in Section 5. We outline the strategy to prove it
and construct the Hopf order. The element h := wu, + v, is a group-like element
of Hy, and generate a Hopf subalgebra isomorphic to KCp. If X is a Hopf order
of H, over O, then X N KC) is a Hopf order of KC,. The Hopf orders of the
latter are known by the works of Greither, Larson, Tate and Oort (we review their
description in Section 2] after the preliminaries). They are given by ideals I of O
containing ¢, — 1, see Formula 21l Denoting by H(I) the corresponding Hopf order,
the Og-submodule of integrals of H(I) is %IP*I >, k. This determines uniquely
the Hopf orders of KC),. On the other hand, any Hopf order must contain certain
elements arising from characters and cocharacters. The proof of the main result
is based on the interaction between the order X of H, and the order X N KC,
of KC),. We exhibit certain elements which must be in X. We then conclude that
necessarily % > hte XNK C), and by the classification of orders mentioned above,
we conclude that some more elements must lie in X N KC), and therefore in X.
We then show that these elements generate an order of Hj,, which thus must be a
minimal order. We then use the self-duality of H), and conclude that there is also
a maximal order. A result of Larson (see Proposition [[4]) now implies that the
two orders must be equal, and therefore we only have one order. The necessity of
the existence of an ideal I of O such that I2P~Y = (p) arises from the following
consideration: We prove that the set of integrals of XNKC), is exactly O ( % > hi).

We write J = {z € K|z(h — 1) € X}. By the classification in Section [2] we find
out that I := J~! must satisfy 12?=1) = (p). The unique Hopf order of H, is the
Ox-subalgebra of H,, generated by eg,e1,g,J(uq — €o), J(up — €o), J(vg — €1), and
J(vp —e1).

In Section 6 we study the problem of definability over cyclotomic ring of integers
of H, but now considered as a complex Hopf algebra. Since H,, is already defined
over a number field K, the question reads now as follows. Let L/K be a Galois
extension. Could a L/K-form of H, admit an order over some cyclotomic ring
of integers? Namely, could there be another Hopf algebra H1/7 over K such that
Hz/> ®r L~ H,®k L and Hz/> admits an order over some cyclotomic ring of integers?
The following result gives a number theoretical condition under which the answer is
affirmative:

Theorem 3. Let (,, € C be a primitive n-th root of unity, with n divisible by p.
Consider H, as defined over Q((,). Let w € Z[(,] and t € C be such that w is
invertible and t* = w(¢, — 1). Assume that there is d € Z[(,] such that 5(d+t) €
Oq(cn,ty- Then, Hy admits a Q(Cn,t)/Q(Cn)-form H,, which in turn admits an order
over Z[(y].

For p = 7 and n = 28 we construct elements w,t and d satisfying this condition.
So, H7, as a complex Hopf algebra, admits an order over the cyclotomic ring of
integers Z[(as].

The following questions on the definability over cyclotomic ring of integers of
complex semisimple Hopf algebras remain open:

Questions. Does there exist a value of p for which Nikshych’s Hopf algebra Hy, as
defined over the complex numbers, does not admit an order over any cyclotomic ring
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of integers? More generally, does there exist a complex semisimple Hopf algebra which
admits an order over a number ring but not over any cyclotomic ring of integers?

1. PRELIMINARIES

Throughout H is a finite-dimensional Hopf algebra over a ground field K. Unless
otherwise stated, vector spaces, linear maps, and unadorned tensor products are over
K. The identity element of H is denoted by 1z and the comultiplication, counit, and
antipode by A, e, and S respectively. Our main references for Hopf algebra theory
are [9] and [12].

We next collect from [Il, Subsection 1.2] several notions and results on Hopf orders
that we will need later. We refer the reader to there for the proofs.

1.1. Hopf orders. Let R C K be a subring and V a finite-dimensional K-vector
space. Recall that an order of V over R is a finitely generated and projective R-
submodule X of V' such that the natural map X ® p K — V is an isomorphism. We
view X inside V as the image of X ® g R. A Hopf order of H over R is an order X of
H such that 1y € X, XX C X, A(X) C X®rX,e(X)CRand S(X) C X. (Note
that X ® g X can be identified naturally as an R-submodule of H® H.) Equivalently,
a Hopf order of H over R is a Hopf algebra X over R, which is finitely generated
and projective as an R-module, such that X ®p K ~ H as Hopf algebras over K.
We will assume throughout this subsection that K is a number field and R = Ok
A Hopf order without indication of the ground ring means a Hopf order over R.

Proposition 1.1. Let X be a Hopf order of H.
(i) The dual order X* := {p € H* : p(X) C R} is a Hopf order of H*.
(ii) The natural isomorphism H ~ H** induces an isomorphism of Hopf orders
X ~ X,
(iii) If A is a Hopf subalgebra of H, then X N A is a Hopf order of A.

(iv) If f : H — B is a surjective Hopf algebra map, then f(X) is a Hopf order of
B.

An important fact in our study of Hopf orders is that they contain certain elements
arising from the characters and cocharacters of the Hopf algebra.

Proposition 1.2. Let X be a Hopf order of H. Any character of H belongs to X*.
As a consequence, any character of H* belongs to X.

We will also need the following two results by Larson:

Proposition 1.3. [0, Proposition 2.2] Let H be a semisimple Hopf algebra over K
and X a Hopf order of H. Denote by Ax and Ax+ the R-submodule of left integrals
of X and X* respectively. Then e(Ax)e(Ax+) = (dim H) as ideals in R.

Proposition 1.4. [0, Corollary 3.2] With hypotheses as before, assume that X and
Y are Hopf orders of H such that X CY. Ife(Ax) =e(Ay), then X =Y.



ORDERS OF NIKSHYCH’S HOPF ALGEBRA 5

2. CLASSIFICATION OF HOPF ORDERS OF KC),

Let p be a prime number and ¢ a primitive p-th root of unity. Let K be a number
field containing ¢ and R := Og. Let o denote a generator of the cyclic group C,. We
will describe here all Hopf orders of KC),. Tate and Oort classified all group schemes
of order p over R in [14, Theorem 3|. Their result is more general than classifying
Hopf orders over R. However, we will combine it with Greither’s result [4, Lemma
1.2, page 40] to give a more explicit description of all Hopf orders of K C,,.

We begin with the following observation:

Lemma 2.1. Let X be a Hopf order of KC,. Consider the fractional ideal
J={aeK: alc—1) e X}.
Then R C J C Rgly.

Proof. By Proposition[I.2] ¢(X) C R for any character 1 of C,. Using the character
mapping o to ¢ we see that J(( —1) C R. Hence J C Rﬁ. For the other inclusion,
notice that o is a character of (KCp)*. Then o € X again by Proposition [L2] and
R(c —1) C X. O

The above lemma leads us to the following definition:

Definition 2.2. Let I be an ideal of R containing ¢ — 1. The global Larson order
associated to I is the R-submodule of KC),

p—1
(2.1) HI) =@ r¢-1"(c-1)7".
=0

The name global Larson order will make sense in a few paragraphs. Notice that if
((—1)CICUTI, then H(I) C H(I'). Even though the Larson orders are orders of
the cyclic group algebra, they will play a decisive role in the classification of orders
of Nikshych’s Hopf algebra in Section

Lemma 2.3. The global Larson orders are Hopf orders of KC),. The set of integrals
in H(I) is 5177137, 0.

Proof. We first show that H(I) is closed under multiplication. For this, it is enough
to prove that IP((—1)"P(oc—1)? C H(I). This follows from the fact that the element

T = ﬁ(g — 1) satisfies a monic polynomial over R of degree p. We have:

P P
l=0"=(((-Dz+1)" =) (i) C-DFar =)~ (i) (¢ -1k 1z =0,
k=0 k=1
The coefficient of 2? is (¢ — 1)P~! and this equals p¢ for some & € R invertible.
Multiplying by p~1¢~! we obtain the desired polynomial. On the other hand, it is
clear that 1 € H(I),e(H(I)) C R, and S(H(I)) € H(I). It remains to prove that
A(H(I)) ¢ H(I) ®r H(I). Since A is an algebra map and H(I) is closed under
multiplication, it suffices to check that A(rz) € H(I) ®g H(I) for every r € I. A
direct calculation reveals that

Alfrz)=re®@1+1@rz+ (( -1z @rz.
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The first two summands clearly belong to H(I)®p H(I) and the third summand too
because ( — 1 € I.

To prove the statement about the integrals, notice that the integral % > o' equals
an invertible element times a monic polynomial f of degree p — 1 in z. This can be
seen by the following calculation:

1 i (=D +1)" -1 &G\, ek
(2.2) I o _Zp<k>(C 11kt

% k=1

The fractional expression is just symbolic as ({ — 1)z is not necessarily invertible.
The powers of x in the right-hand side term have coefficients in R. Observe that p
divides (i) for k=1,...,p— 1. For k = p the coefficient of 2P~ is (¢ — 1)P~! = p¢&
with & € R invertible. If » € IP~!, then o2 o' is an integral in H(I) by 22,
since ( — 1 € I. For the reverse inclusion, observe that by construction we have
"' ={a € K:azP™t € H(I)}. Let [ be an integral in H(I). There is A € K such
that [ = %ZZ ol. Then \éxP~! € H(I) by 22) and thus A € IP~1, O

We will next prove that all Hopf orders of K'C), are global Larson orders. Over a
local ring, this is a theorem by Greither, see [4, Lemma 1.2, page 40]. We will use
the local to global result of Tate and Oort [14, Lemma 4] to pass to the number field
case.

Let p C R be a prime ideal such that p € p. Consider the corresponding valuation
v, scaled so that v(p) = 1 (we find more convenient to write here the valuation in
additive terms). Then it is easy to see that v(1—() = z% because (( —1)P~1 = (p).

Definition 2.4. [3, Section 3] Let b € R, be such that 0 < v(b) < ﬁ. Set s = v(b).
The Larson order H(s) is the Ry-subalgebra of K,C), generated by %(O’ —1).

One can see, exactly as in Lemma 23] that Larson orders are indeed Hopf orders,
and that H(s) does not depend on the choice of b. Notice that H(s) is defined only
if there is an element with valuation s in R,. We have the following classification
result by Greither, see [15, Theorem 3.0.0] and [4, Lemma 1.2, page 40].

Theorem 2.5 (Greither). All Hopf orders of K,C), over R, are Larson orders.
We recall the following result of Tate and Oort:

Proposition 2.6. [14, Lemma 4| For any commutative ring T, let E(T) denote the
set of isomorphism classes of group schemes of order p over T. Then, the square

E(R) - HPESpec(R) E(Rp)
E(K) — Hpespec(R) E(Ky)
where the maps are given by extension of scalars, is cartesian.

With this in hand we can establish:

Theorem 2.7. Every Hopf order of KC),, over R is a global Larson order.
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Proof. A Hopf order X of KC, over R can be viewed as a group scheme of order p.
Proposition tells us that giving X is the same as giving its extension of scalars
to K and R, for every p € Spec(R), in a compatible way. The extension of scalars
of X to K will be just KC), and thus we know the extension of scalars to all K.
Furthermore, if p € Spec(R) satisfies p ¢ p, then we only have one Hopf order over
R,,. This is because all primitive idempotents will be contained in any Hopf order.
The different orders will differ only by their extension of scalars to R, with p € p.
We know by Greither’'s Theorem that X ®gr R, is a Larson order over R,. Let
q* - q;" be the prime decomposition of (¢ — 1) in R. Assume that X ®@p Ry, is
isomorphic to H(s;) over Rg,. Consider the ideal I =[], qz(p ~Uri%i One can now see
that the Larson order H(I) will give rise to exactly the same localizations as X at
g;- Since the square in Proposition [2.6]is cartesian, this means that X = H(I). O

We know how the integrals inside Larson orders look like by Lemma 2.3l As a
consequence:

Corollary 2.8. A Hopf order H(J) of KC, over R which contains %Ip_l > o
contains the Hopf order H(I).

Proof. Using the prime decomposition of ideals, IP~1 C JP~! implies I C J. O

The computation of the submodule of integrals in Lemma 2.3 together with Theo-
rem [2.7] has the following outcome, from which we will derive the necessary condition
in our main theorem:

Corollary 2.9. Let X be a Hopf order of KC,.

(i) Suppose that the R-submodule of integrals of X is generated by %ZZ ot
Then there exists an ideal I of R such that I*P=1 = (p).

(i1) Suppose that % S>>0t € X and there is m € K such that 7 = ( — 1. Then
lo-1)eX.

Proof. (i) In view of Theorem 2.7, X is isomorphic to H(I) for some ideal I of R
containing ¢ — 1. By hypothesis and Lemma 2.3 the submodule of integrals is

1 , 1 ,

R(— J’) =11 ol

7)o

Then 1P~ = (\/p) and thus I?(P~1 = (p).

(ii) From the hypothesis and Lemma 23] we obtain (y/p) C IP~!. We know that
(¢ — 1)1 = (p). Using the prime factorization of ideals, we have (7)P~! = (,/p) C

IP=1. This implies that () C I. Then the element Zilo—1) = 10—1) € X by

the construction of H(I). O

3. AN EXPLICIT DESCRIPTION OF NIKSHYCH’S HOPF ALGEBRA

The goal of this section will be to write in an explicit way Nikshych’s Hopf algebra.
For an odd prime number p, Nikshych constructed in [11] a finite-dimensional,
semisimple, weakly group-theoretical and non group-theoretical Hopf algebra H,, of
dimension 4p?. It was defined in terms of a tensor category and a fiber functor. The
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representation category Rep(H)) is constructed from the representation category of
another Hopf algebra, A,, by means of equivariantization by C. As fusion categories,
Rep(H,) ~ Rep(A,)“2. The Hopf algebra A, first appeared in the work of Masuoka
[7]. The above equivalence implies that H, fits into the short exact sequence

K—A,— H,— KC, — K.
To describe explicitly the structure of H, we need to write the structure of A,,
the action of the generator g of Cs on A,, and the comultiplication of g.

From now on we abbreviate Ay, to A and H, to H. In this section we assume that
K is algebraically closed of characteristic zero.

The main result of this section is the following:
Theorem 3.1. Let ( € K be a primitive p-th root of unity. The Hopf algebra H is

generated, as an algebra over K, by the elements ey, €1, Uq, Up, Vg, Vp and g subject to
the following relations:

ep+e =1, epe; = ejeg = 0,
ug = ul =ep, €Uy = Uq, eoUp = Up,  UgUp = Uplg,
vh =0y =e€1, €1V, = U, €1Vp = Up, VaUp = (pUpa,
=1, guq = upg, gup = Uag,  GUa = Vag, gup = Upg.
The comultiplication, counit, and antipode of H is given by the following formulas:
A(ug) = g @ Ug + Vg @ Vg, e(ug) =1, S(ug) = ub ™,
—1 —1
(3.1) Alup) = up @ up +vp @ v, e(up) =1, S(up) = uy
A(vg) = Ug ® Vg + Vg ® Uq, e(vq) =0, S(ve) = vgfl,
Avp) = up @ vp + vp ® ugfl, e(vp) =0, S(vp) = vp.

The comultiplication of g is given by
1 -
Alg) = — Z CF gyt ul @ gubul + = ZC (DR gy bl @ gubtyht!
‘,j k,l

k+1 _
42 ng k+l k+l —1)(k+1) ®gu’;u§, + ijgvsvé ®gvép 1)17)5_
k.l

(3.2)

The counit and antz’pode of g are e(g) =1 and S(g) =
The rest of this section will be devoted to prove Theorem B.11

3.1. The algebra A. As an algebra, A is the direct sum
K(Cp x Cp) & K(Cp x Cp),
where ¢ : (C, x Cp) x (C, x C) = K* is the 2-cocycle given by
c(aibj,akbl) = ¢k, 0<i,75,k1l<p.

Here a,b are generators of Cp, x C,. We present the group algebra K(C, x Cp) by

generators ug,u; and defining relations uf, = ug = 1,uqup = upu,. The twisted

group algebra K¢(C), x C,,) is presented by generators v,, v, and relations vh = vl’: =

1,vqvp = Cupv,. Notice that K¢(C), x Cp) is isomorphic to the matrix algebra M, (K).
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To shorten, we set Ay = K(Cp x Cp) and Ay = K¢(C, x Cp). We denote the units
of Ag and Ay by eq and ey respectively. So 14 = eg+e1 and ege; = ejeg = 0. Unless
otherwise specified, the inverses are taking inside either Ay or A;. For example, u !

p—1
means u .

The comultiplication, counit, and antipode of A are described in (B0l above.

3.2. The algebra H. As an algebra, H is the crossed product A x KCs, where g
acts as an algebra automorphism on A by:

g(ua) = Up, g(Ub) = Uq, g(va) = Va, g(Ub) = Up.

In H we have the relations:

gugq = Upg, GUp = Uag, GUa = Vag, GUp = Ubg.
The hard part in the description of H is the formula for A(g). Recall from [11] that
H is constructed as follows: the automorphism ¢ induces an autoequivalence

F :Rep(A) — Rep(4), V — V.

Here 4V =V as a vector space, with new action z - v = g(x)v for all z € A,v € V.
The functor F is a tensor equivalence. Moreover, F~! = F. To compute A(g) we
will need to describe the tensor structure of F'. For this, we first need to consider
the irreducible representations of A.

3.3. Irreducible representations of A. Every irreducible representation of A is
an irreducible representation of either Ag or A;.

The algebra Ag has p? one-dimensional irreducible representations, which we de-
note by K7 with 0 < 4,5 < p. As a K-vector space, K/ = K. The action of u, and
up on K% is given by:

Ug-1=¢"1 1= ¢01.

The algebra A; has only one irreducible representation, of dimension p, which we

denote by M. Let {m; : 0 < i < p} be a basis for M. The action of A; on M is

Vg - M = ('my, vy - m; = m;it1 (indices are taken mod. p).

3.4. Tensor structure on F. For any V,W € Rep(A) irreducible we must estab-
lish an isomorphism Oy : F(V @ W) — F(V) @ F(W) satisfying the unit and
associativity constraints. We do need to calculate these isomorphisms explicitly, as
we will use them later to compute A(g). Observe that at the level of representations

F(K%) = K/ and F(M) = M.

3.4.1. Isomorphisms between certain representations of A. Given x € A invertible,
+M stands for the following representation of Ay: as a vector space, ,M = M, and
the action is given by

y-m=(z lyz)m Vy e Ay,m € M.
We have an isomorphism
+M — M, m— xm.

This will be used in this subsection to define isomorphisms between certain tensor
products of representation. Consider the representation K/ @ M. Identify it with
M, as a vector space, via 1 ® m — m. Under this identification, v, and v, act via
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C'v, and (Jvy respectively. Since vavy = Cvpv,, we see that this is the same as , M
for # = va’v}. Then we have an isomorphism of representations

(3.3) Lij: K@M — M, 1@mw— (v, 7v)m.

In a similar fashion, M ® K*J is isomorphic to ;M for z = vévg via

(3.4) rij M@K — M, m®1— (viv))m.

We discuss separately the four different cases that occur in the description of 0y, y:

3.4.2. Two representations of Ag. We begin by considering the case V = K%/ and
W = K*. We have V@ W ~ K'*Jitl We must give an isomorphism between
F(V@W) ~ F(KHkith o Kithitk and F(V) @ F(W) ~ K7 @ Kbk ~ githitk,
It will be determined by a nonzero scalar u((i,75), (k,1)). Then:

Oyw : F(VOW) = F(V)® FW), 101 u((i,7), (k1)1 ® 1.

The associativity constraints yield that p : (C)p x Cp)2 — K* is a 2-cocycle. We
shall compute p explicitly in the sequel. We will see that:

(35)  Ogis et F(KY @ KM = F(KY) @ F(K*), 11— (" o1

3.4.3. One representation of Ay and one representation of Ay. We next consider the
case V.= K" and W = M (and V = M and W = K*7). We first deal with the
values (7,7) = (0,1),(1,0) and then we will deduce a formula for an arbitrary pair

(i, )-

We need to find an isomorphism between F(K1°® M) and F(K'%)® F(M). Both
representations are isomorphic to M. Thus, up to a nonzero scalar, there is only one
possible choice. Using (B.3]), we see that such an isomorphism must be given by

Okrop : F(KYY @ M) — F(K'Y0) @ F(M), 1@ m — a1, ® (va0p)m,
for some a1 € K (that will be determined later). In a similar fashion:

O F(KO' @ M) — F(K%Y) @ F(M), 1®@mw— ap1 @ (v, vy t)m,
Orr xcr0 s F(M @ KM°) — F(M) @ F(K'), m®1w Bo(vgloy)m @1,
Oprion : F(M @ KOY) — F(M) @ F(K%Y), m® 1w Boi(v; 'va)m® 1,

for a1, 81,0, o1 € K.

The tensor structure on F' will depend on a1, 0,1, 51,0, 80,1, and p. The com-
patibility of F' with associativity constraints will impose some restrictions on the
possible values of them.

We show by induction that the following formula holds for (4,0) with i > 2:

Orcio st F(KYY @ M) = F(K™) @ F(M), 1@m— of o @ (vivh)m.
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Using naturality and compatibility of F' with the associativity constraint we have
the following commutative diagram:

F(K" @ M) F(K=Y e K19 M) fdehy) F(K=10 @ M)
OKi’O’Ml lGKFLO’M
F(K"%) @ F(M) F(KT19 o F(M)
T lid@F(l;é)
FK™YeKY)y®F(M) F(K™Y)@F(KYY®M)

eKilvoyKl,OM WO’NI

F(K=19)® F(K10)® F(M)
One can check that 1 ® m is mapped to
ail,(] Iu’((?/ - 15 0)5 (15 0))71 ® (vcitvli))m'

Without loss of generality, we can assume that p((,0),(4,0)) = p((0,7),(0,7)) =1,
and then we arrive at the desired formula.

By a similar calculation we also obtain:
Oxos s F(K™ @ M) — F(K™) @ F(M), 1®@m — of, ® (v, /v, )m.

We can combine these two isomorphisms with the associativity constraint to get
the following general formula:

(3.6) Oisa: F(KY@M)—F(K")®@F(M), 1om — o} gad 1D @y vl Im.

This is done as follows. Using naturality and compatibility of F' with the associativity
constraint we can construct the following commutative diagram:

FK @ M) FEY @ K% @ M) -0 pogio g ar)
9Kz‘,j,Ml l‘)xivO,M
F(K%)® F(M) F(K"%) ® F(M)

T lid@F(l&})
F(KY® K%)® F(M) F(K"Y) @ F(K% @ M)

9;(1,0 I:m M&j M

F(K") @ F(K%) @ F(M)
Following the longest path, we obtain:

af g 1 ¢ i i
(3.7) Opii yy(1®@m) = —————— v, ‘v Im.
e p((3,0),(0,7)) ~°

a
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We can write a similar diagram with K%/ @ K*%® M in the upper central term and
proceeding accordingly we get:

i J ri2—2i5
o 00,16 i—j i—j

— e @ v, ", Tm.
p((0,4), (6, 0)) — " e
These two equalities yield the following formula for p:

M = (7%,

O m(1®@m) =

Since C), x C), is abelian and K is assumed to be algebraically closed of characteristic
zero, this completely determines the cohomology class of u. We choose the following
representative from this cohomology class:

:u'((iuj)v (k7 l)) = Cil_jk-

Substituting this in ([3.7) we arrive at the desired formula for 6, 5. By making
this choice we also assure that F? = Id on the subcategory of representations of Ag.

By a similar calculation, we obtain:
(3.8) Oprgii  FIMR®K™) = F(M)QF(K™),m®1 — 8} 8] 179 v) v} I m@1.

We have described so the tensor structure on F' for the tensor product of represen-
tations of Ay with representations of A;. One can verify that this structure is indeed
compatible with all the associativity constraints involving two irreducible representa-
tions of Ao if and only if o0, 0.1, B1,0, and Bo1 are p-th roots of unity. Moreover,
F?2=1d on K" ® M and M ® K% if and only if

(3.9) ai,0a0,1 = P1,060,1 = 1.

We shall assume that this holds henceforth.

3.4.4. Two representations of Ai. Lastly, we compute the isomorphism between
F(M ® M) and F(M) ® F(M). We know that M ® M =~ EB?;;OKM. One can

easily check that the element ¢; ; € M ® M spanning the 1-dimensional representa-
tion isomorphic to K*J must be of the form

Qij = >\i,j Z Citjmt ® mi_¢, with )\i,j e K.
t

(Unless otherwise specified, throughout the limits in the sums are understood to run
from 0 to p — 1.) We take \; ; =1 for every 7, j. The isomorphism is given by:

(3.10) 9M7M:F(M@M)—)F(M)@F(M),qid'—)"}/Z‘7jq]'7i,
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for some 7; ; € K. Using naturality and compatibility of F' with the associativity
constraint at K7 ® M ® M we obtain the following commutative diagram:

@ F(KY © K) ——= F(KY © M @ M) @) b @ M)
s,
g’?am,j,Ks,tl Ons, 01
S]? F(K™)® F(K) F(M)® F(M)
i F(l; ) ®id
F(K")® F(M ® M) F(K" @ M) ® F(M)

F(K¥)® F(M) ® F(M)

Through the isomorphism on the upper right side, 1 ® 1 € K% @ K is mapped
to %H,Hjail’oaé,lgit_js ® qt,s. Through the isomorphism on the left side, 1 ® 1 is
mapped to %,tg“—js ® @t,s- From here,

(3.11) Yij = a1 970,0-

By considering the associativity constraint for M @ M @ K J and writing the anal-
ogous diagram we get y; ; = ﬁ{folv(),o. This implies

(312) 04170 = 51,0.

The tensor structure of F' on M ® M depends therefore on oy o (which is a p-th root
of unity) and 7o (which equals +1 since F2 = Id on M @ M).

By checking compatibility with all associativity constraints we see that the iso-
morphism we have constructed does furnish a tensor structure on F'. It can be shown
directly that no matter what choice we make for 79 and a1, we will always end
up with an isomorphic functor. We can thus assume, without loss of generality, that

Yo,0 = a0 = 1.

Then, the scalars g1, 51,0, 00,1, and 7;; equal 1 by equations (33), (B.II), and
(B12). This finishes the description of the tensor structure on F.

We summarize our discussion in the following result.

Proposition 3.2. Let A be the Hopf algebra defined in Subsection [Tl Consider its
irreducible representations K%, with 0 < i,7 < p, and M defined in Subsection [T_3.
There exists (up to isomorphism) only one tensor functor F : Rep(A) — Rep(A)
such that F(K%) ~ K7 and F(M) ~ M. It is given by the equations ([3.5)), (3.6),
B38), and BI0), where the scalars ai,0, 0,1, 51,0, 0,1, and v; ; equal 1.

3.5. The comultiplication of g. The category Rep(H) can be identified with that
of F-equivariant representations of A as follows: if V' € Rep(H), then V' € Rep(A)

by restriction, and g : V — V,v — gv establishes an isomorphism between V and
FV).
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We now consider the regular representation of H. The following diagram should
be commutative:

HeoH -2 pa e )
(9®9)- J/Q
F(H)® F(H)

1

where §2 comes from the tensor structure of F'. Since g = ¢~ -, we have:

Ag) = (9 © g)S2

For V,W € Rep(A) the isomorphism 8y, : F(V @ W) — F(V)® F(W) is given by
multiplication by 2 € A ® A. The reason for this is the following: the isomorphism
0aa: AA~F(A® A) - F(A) ® F(A) ~ A® A is natural, and hence it must
commute with multiplication from the right by elements of A ® A. So, it must be
given by multiplication from the left by some element {2 € A® A. The same holds for
V,W € Rep(A) by the naturality of § again with respect to any morphisms A — V
and A — W. Then, the computation of 2 can be derived from our knowledge of
these isomorphisms for any two irreducible representations of A. To do this, we
first need the decomposition of the regular representation of A as a direct sum of
irreducible representations. For 7,5 =0,...,p—1let f;; € Ag denote the idempotent
upon which u, acts by ¢¢ and wu by ¢ Tt is:

(313) fz] — 2 ZC ’Lk‘"rjl) k; l

Let Vi; = Ao fij. Then V;; ~ K J. Consider in A; the element
1 .
SN
Py

Let W; be the subspace spanned by véhi for ] =0,...,p— 1. Then W; ~ M by
mapping vb ~'h; to m;. Thus we have:

1= (V) D (@)

We claim that:
1

O = — Z ijfilulub@)ukué—i- ZC (k+1) kukul ®Uk+l l]f—H
i,7,k,l
(3.14) ’] e
4+ ZC (k+1) k+l (k+1) + Zv vb®v Ub

Using 3.3), B.8), B.6]), and (B10), this formula for € is proved by checking directly

the following equalities, which we leave to the reader:
v, v (fig @ fra) = CUI% iy @ fro = Qfij © fra),s
Oviy i (fig ® v~ 'he) = ¢ fi5 @ oy T 7y = Q(fyy @ of '),
Ontviy (vf "y @ fig) = OG0 h @ £y = Qo' © fiy),
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—jk, k=l i—k—1 —ik, k—I j—k—1
anM(ZC ]Ub hl®vz hl):ZC va hl®vi h;
k k

= Q( Z C_jkvfflhl ® Uéikilhl) .

k

A careful calculation reveals that S(g) = g. This finishes the description of the Hopf
algebra structure of H and hence the proof of Theorem [B.11

Remark 3.3. Although we used that K is algebraically closed to reconstruct H, a
posteriori we see from Theorem B.I] that H is defined over Q(().

4. DUALITY, (CO)CHARACTERS, AND HOPF AUTOMORPHISMS

In this section we study further the structure of H: we describe its irreducible
(co)representations and (co)characters, its Hopf automorphisms and we show that
it is self-dual. The description of the (co)characters is one of the essential points in
the proof of our main result since they provide elements in any Hopf order in view
of Proposition We keep the notation of the previous section.

4.1. Dual Hopf algebra. We present here the Hopf algebra structure of H*. As a
vector space, H = Ay ® A1 ® gAg ® gA1. We consider the following basis of H:

(4.1) B = {ujup} U {vho]} U {guinuf} U {gviu]}.
We denote the dual basis by:
(4.2) B = {sij} U{ti} U {ai;} U{Bi}-

From [BJ) and ([3.2), we easily see that H = A @ gA as a coalgebra. Then
(4.3) H* = A" & (gA)"

as an algebra. We denote by €4 and €44 the counit of H restricted to A and gA
respectively. Then, e4 and €44 are the central idempotents of H* giving the previous
decomposition. The following result provides the full description of H*.

Proposition 4.1. As an algebra, H* is the direct sum of the algebras A* and (gA)*.
The algebra A* is spanned by the elements s;; and t;; and its multiplication is given

by:

(4.4) 5i5 5K = 05 k041 Sij, triSij = 0510, —1 thi,

Sijtkl = 0;k0j,1 trl, tijthr = 0 k05,1 Sij-

The algebra (gA)* is generated by the elements v;; and B subject to the following
relations:

(4.5) B? =g 4, Yii Vet = CV I Yk s and  Bv;; = 7i; B.
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The comultiplication, counit, and antipode of H* are given by:

1 .
A(sij) = Z Skl @ Si—kj—1 + ?C @Ry @ Y,
o

e(sij) = 6:,065,0, S(sij) = s—i—j,

. 1 .
Altiy) =Y ¢ Mty @ty g+ ¢ "B ®@ kB,

ol
(4.6) e(tij) = 90050, S(tis) = ("Ytyj,
Alyig) = M sr @ i + 5 @ s,
ol
(i) =0, S(vij) = v=j—i>
AB) =Y MyB @ty + ty ® 0B,
ol
£(B) =0, S(B) = B.

(The operations in the indices are all done modulo p.)

Proof. From the dual basis B* in ([£.2]), we are going to construct a new basis of H*
which is more convenient to express the multiplication. In (gAp)*, instead of {a;;}
we take the dual basis of {gfi;}, where {f;;} are the idempotents in [BI3). We
denote this basis by {7;;}. Then:

vij (gugup) = ¢
The s;;’s and t;;’s form a basis of A* and the §;;’s and ~;;’s form one of (gA)*. A
direct and tedious calculation yields the following formulas:

84Skl = 03 101 Sij, b1 Sij = 03 k0,1 thi,
Sijter = 0; k05,1 Lkl tijtel = 0i k05,1 Sij,
— i(gtk—i = (ilitk—j—l
Vij B = (IR0 i, Bravig = (TR =I=08 i i,

Yij Vet = CU Ry g
This gives the statement for the multiplication in A*. For the one in (gA)* we
proceed as follows: consider the element

(4.7) B=pY fuo.
k

It commutes with the v;;’s in view of the above formulas. A simple computation
shows that B% = €ga- Each 3;; can be expressed as

1 .
184. — C_kZ'Wc—'kB-
R

This can be verified directly by using the equality:
(4.8) (v B)(9v5v) = VD P15
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Then {v;;} U {y:;B} is a basis of (gA)*. We change our basis of H* again to

(4.9) L= {si5} U {ti} U {ig} U {e B}
The multiplication of H* is then fully described on £ by ([@.4) and (£.5).

We next compute the formulas for the comultiplication of H* given in (4.6]). These
formulas follow from direct calculations, just using the multiplication in H. The
calculations do not present any special difficulty. We briefly indicate how to proceed
for s;; and leave the details and the other cases to the reader. The element s;;
vanishes on A1, gAg and gA;. Since AgAg = (g40)(gAp) = Ap and AgA; = A1 A =
0 no other kind of summands can occur in the right-hand side. Hence it suffices to
evaluate A(s;;) at ufjué @ ug'uy and gfr @ gfmn- The coefficients of sp; ® sy, and
Vil ® Ymn must be respectively:

(sij,(ubup) (uup)) =0; jrm0jitn  and <Sija(9fkl)(gfmn)>:1?< IR 6 61 -

Finally, one can check with no effort that the counit and antipode are the ones

given in (4.0]). O

4.2. Self-duality. Nikshych proved in [11I, Proposition 5.2| that H and H* are iso-
morphic as algebras. In this subsection we strengthen this result by the following
proposition:

Proposition 4.2. The Hopf algebras H and H* are isomorphic.

Proof. Let us begin by finding inside H* a Hopf subalgebra isomorphic to A. Set
= p—;rl. Consider the elements:

(410) g =Y sy a=> (" e =qaa T =Voda.
ol kol

Let A be the subalgebra generated by g, @y, Ue, and Ty. Using the multiplication
rules ([44]) and (4I) one easily checks that the assignment u, +— Uy, v, — ¥, for
x € {a,b} establishes an algebra isomorphism ¥ between A and A. The elements
corresponding to the central idempotents eg and e; in Subsection B.1] are

(4.11) €4 = Z Skl and €94 = 700-
Kl

Notice that e4 + €44 = eg = 1g+. Using formulas (£6]) one can verify with a long
but direct computation that the above isomorphism is actually an isomorphism of
Hopf algebras.

Consider finally the element

g=B+> "y
ol

It can be shown that §2_: 1+, conjugation by g stabilizes A, and, by the above
isomorphism, g acts on A as g acts on A. Moreover, one can show that ¥ extends
to a Hopf algebra isomorphism from H to H* by defining g — g. This finishes the
proof. O
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Remark 4.3. If p = 1 mod. 4, then \/p € Q(¢) and the above isomorphism is
defined over Q(¢). Otherwise, it is not defined over Q(¢) but over Q({,w), with w a
primitive fourth root of unity, and maps B to wB. Consider H as defined over Q(().
Then B belongs to H ®g() K but not to H because /p ¢ Q(¢) in this case. In fact,
since the orbit of B under the group of Hopf automorphisms of H is {B, —B}, see
Subsection [4.3], it follows that an isomorphism between H and H* cannot be defined
over Q(¢). The Hopf algebra H* will be a form of H but not isomorphic to it over

Q(Q)-

In the next two subsections we describe the irreducible representations of H and
H* and their characters, see [11, Proposition 5.2|, which will be used to find the
possible Hopf orders of H.

4.3. Characters of H. We have the following irreducible representations of H and
corresponding characters:

4.3.1. Dimension 1. There are 2p irreducible representations of H of dimension 1.
They arise from the elements in Ag that are g-invariant. For i =0,...,p—1 we have
the representation Vf (resp. V;7), upon which A; acts trivially, ugué acts through
the scalar ¢*+Di and ¢ acts as 1 (resp. —1). By using the previously chosen basis
L of H* (see Equation [L.9) we can write the characters of these representations as:

(4.12) Xy+ = £ + Z ¢HFHligy,.
Il

4.3.2. Dimension 2. The irreducible representations of H of dimension 2 come from
the 1-dimensional representations of Ay which are not g-invariant. Therefore, their
orbits have two elements: K% and K7 for i # j. Such representations are param-
eterized by pairs (¢,7) with ¢ < j. We denote them by W;;. There are @ such
representations. The elements g and u’jué act on W;; as the matrices

0 1 Cik+jl 0
( 1 0 > and < 0 Cil—f—jk

respectively, and A; acts trivially. The associated characters with respect to the
basis £ of H* are:

(4.13) Xuy, = Z(Cik+jl + (k) g
k.l

4.3.3. Dimension p. Finally, there are two irreducible representations of H of dimen-
sion p. They arise from the p-dimensional representation M of Aj, see Subsection
B3l We denote them by M* and M~. They have basis {mg,...,m,_1}, the ele-
ments in A; act as vam; = Cmy, vpm; = m;y1 and g acts as +1. The elements of Ag
act trivially. The corresponding characters in the basis £ of H* are:

1
(4.14) Xm* = ptoo £ 7 > iB.
5

N4
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4.4. Characters of H*. To describe the irreducible representations of H* we will
use the decomposition (3] expressing H* as the direct sum of algebras H* = A* @
(gA)*. We start with the irreducible representations of A*. By the multiplication
rules ([44]), A* is the direct sum of algebras

A*:<@Ri)@(§?3i,j),

where R; is spanned by s;p and t;0 and R;; by s;j,s;—j,t;5,t;—j. The index ¢ runs
from 0 to p — 1 and j from 1 to ;%1 to avoid repetitions.

4.4.1. Dimension 1. The algebra R; has two 1-dimensional representations, on both
of which s;o acts as 1 whereas t;y acts as 1. We denote them by L;r and L;
respectively. The characters of these representations, expressed in the basis B of H,
see Equation 1] are:

(4.15) Y = ul + vl

4.4.2. Dimension 2. The algebra R;; is isomorphic to My (k). Therefore, it has one
irreducible 2-dimensional representation, which we denote by P;;. This representa-
tion is given by the following map:

1 0 0 0 0 1 0 0
Sij'_> 0 0 s Si,jl—> 0 1 s tij'_> 0 0 s ti,]’i—> 10 .

In the basis B of H the characters of these representations are expressed as:

(4.16) Yp, = uZu{) + ubu, .

4.4.3. Dimension p. Lastly, we discuss the irreducible representations of (gA)*. Since
B? = glga = 1(ga)-, we have the following two central idempotents:

1 1
n:§(€]9A+B) and Kl:i(g‘gA_B)'

They induce the algebra decomposition (gA)* = (gA)*k & (gA)*x’. From (@3] we
obtain Y4y = 75, = €44 and Y0701 = (*Y01710- Then (gA)*k and (gA)* are iso-
morphic to My,(K'). Hence (gA)* has two p-dimensional irreducible representations,
which we denote by N and N~. Both have a basis {no,...,np_1} with actions

ci+2il

Yijny = Nty Bn; = £ny.

The characters of the above representations are given by:

1 1 4
4.17 e =— Y guiult— gul.
( ) N p%: a“h \/]_QZZ: a
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4.5. Hopf automorphisms. The group of Hopf automorphisms of H is described
by the following result:

Proposition 4.4. The group Auty,,(H) is isomorphic to Cy x (Cy x Cp). Writing
Cy as {£1}, the Hopf automorphism ¢ of H corresponding to the triple (€1, €a,t) is:

¢(ua) = ug?, P(up) = w?,
¢(va) = vg?, d(vp) = C'vy?, ¢(9) = gleo + e1e1).

Proof. We know from (B.J) and (82) that H = A & gA as coalgebras and hence
H* = A*®(gA)* as algebras. The algebra A* splits as a direct sum of matrix algebras
over K of dimension 1 or 4 (Subsections L.4.1] and [£.4.2). On the other hand, the
algebra (gA)* is the direct sum of two matrix algebras of dimension p? (Subsection
M43). Let 0 € Auty,,;(H). Since o must preserve the Wedderburn decomposition
of H*, it must hold that o(A) C A. Thus |4 is a Hopf automorphism of A. We are
so led to compute Autg,,s(A). This gives a group morphism

O : Autpyoy(H) = Autop(A), 0 — ola.
Using this morphism, we are going to compute Auty,,;(H) in two steps:

Step 1. Hopf automorphisms of A. We know from Subsection 3] that A has an
algebra decomposition A = Ag@ Ay, where Ay = K(C, xCp) and Ay = K¢(C, x Cy).
Considering, as before, the dimensions of the simple components of the Wedderburn
decomposition of Ay and A; we get o(Ag) = Ag and (A1) = A;. The group-like
elements of A are u!, & v’ with 0 <14 < p. Since o preserves group-like elements and
the relations uh, = e and v = €1, we must have o (u, +v,) = u’, + 0!, for some r # 0.

As o(ug) € Ag and o(v,) € A1, we obtain
(4.18) o(ug) = uy and o(vg) = vy,

On the other hand, o(up) = u’;ug for some k,s # 0 because o induces a Hopf
automorphism on the quotient Hopf algebra Ag of A. We derive that & = 0 from
the equality puAo(up) = opul(up). Here p stands for the multiplication of H. So
o(up) = uj. Using the equality Ao(up) = (0 ® 0)A(up) we arrive to o(vp) = Avg
for some A € K*. Moreover, \’ = 1 because o(vp)? = e;. Put A = ¢! with
0 <t < p. Applying o to the relation v,v, = (vpv, we get st = 1 mod. p.
Then

(4.19) o(up) = ug and o(vp) = ¢'vf, with s = 77! mod. p.

Thus o determines a pair (r,t) € CpX x (). Conversely, one can check that any such
a pair together with (£I8) and (AI9]) defines a Hopf automorphism of A. Finally,
by composing two automorphisms one sees that Aut ,,;(A) ~ Cy x Cyp.

Step 2. Computing the kernel and image of ©. We claim that Ker® ~ Cs. Let
v € Ker®. We know that H has a coalgebra decomposition H = A & gA, that v
must preserve. Then v(g) = gz for some z € A. Since v|4 = ida, we have for every

x € A:

grg ' =v(gzg') = gzazlg.
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From this it follows that z € Z(A). Recall that A(g) = (g ® ¢)Q2, where Q is given
in Equation 314l Using this and that v is a coalgebra map we get:

(9® 9)QA(z) = A(gz) = Av(g) = (v @ ¥)A(g) = (92 ® g2)Q.

We also used here that @ € A® A and v|4 = ida. Since z € Z(A) and €2 and ¢
are invertible, the above equality implies that z is a group-like element of A. As
1 = v(g)? = gzgz, the only nontrivial option is z = eg — e;. Conversely, one can
easily check that a map of this form defines an element of order 2 in Ker ©.

We claim now that Im© ~ Cy x C),. Let 0 € Im©. Assume that o is given by
(r,t) € C) x Cp and equations (I8 and ([.I9). Then, arguing as before, o(g) = gz

for some z € A. We have:

up = o(w) = o(guag ™) = gzupzlg T =,
From this, > = 1 mod. p and so r = 1. Conversely, the Hopf automorphism 7 of
A corresponding to (1,t) is given by conjugation by the group-like element uf, + vf.
Conjugation by the same element defines 7 € Autp,,;(H) such that ©(7) = 7. Let
¢ € Autp,(A) be corresponding to (—1,0). One can check effortless that ¢ € Im ©
with preimage @ defined by ¢|4 = ¢ and ¢(g) = g.

Thus we have a short exact sequence
1 — Cy = Autpyy(H) = Cy x Cp — 1.

This sequence splits because @ has order 2. The action on Cj is trivial (this is the
only possible action), and then

AutHopf(H) ~ CQ X (CQ X Cp)

5. ORDERS OF NIKSHYCH’S HOPF ALGEBRA

In this section we will use the results of the previous sections to classify the orders
of Nikshych’s Hopf algebra. We will see that Nikshych’s Hopf algebra admits at most
one order over any number field.

We keep the conventions and notations of Section B} ( is a primitive p-th root of
unity; K is a number field containing (; R = O is the ring of integers of K; H
denotes Nikshych’s Hopf algebra of dimension 4p?, and A stands for Masuoka’s Hopf
algebra of dimension 2p?, both defined over K.

Recall from Remark B3] that H is defined over Q(¢). However, we will prove here
that H does not have orders over Ogc), but only over the ring of integers of some
extension of Q(¢). Set K = Q(¢,w), where w is a primitive fourth root of unity. The
field Q(¢) contains either \/p or \/=p, depending on the value of p mod. 4. The
existence of w allows us to assume that \/p € K and treat our computations in a
unified way avoiding the distinction of cases.

The proof of Theorem 2is quite involved. We will divide it into several parts.
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5.1. Elements that must be in any Hopf order. Suppose that X is a Hopf
order of H over R. Our goal in this first part is to prove that several elements of H,
arising from (co)characters, must belong to X. This will be used later to show that
all basis elements of H, given in (41]), must be in X.

We retain the notation of Section 3 eq, e; are the units of Ag and Ay and e4,e44
denote the counits of A and gA respectively. We start with the following:

Lemma 5.1. The elements ep,e1 are in X and 4,44 are in X*.

Proof. We first show that eg,e; € X. The subalgebra Hy of H generated by u; and
vy is a Hopf subalgebra. Consider the algebra maps o : Hy, — K, up — (,vp — 0 and
T Hy = K,uy = 0,vy = . They are group-like elements of H; and ol =7P =1
and o7 = 7P~ 1g. Then H} ~ K(Cy x C,) as Hopf algebras and X N Hj, may be
viewed as a Hopf order of K(Cy x Cp)* by Proposition [[I[(iii). According to the
proof of [I Proposition 2.1], X N H;, contains the idempotents tg,¢; (notation as
there). Let {vyis}ij C K(Ca x Cp)* be the dual basis of {o77}; ;. Recall that
to = > ; vz and tl' = Y. Vori- One can verify directly that v.; = %Zk CIRuf
and v, ; = I—I)Zk ¢U=Dkyk Then tg = ep and t1 = e;.

For the second statement, take into account that H is self-dual by Proposition
4.2l The isomorphism between H and H* established there maps eg,e1 to €4,644
respectively, see ([{II]). We now get that e4,e44 € X* from self-duality of H, the
above fact, and the first statement applied to X* and H*. O

Recall from (A7) the element B used in describing H*.
Lemma 5.2. The elements ge; and B belong to X and X* respectively.

Proof. We first prove that ge; € X. We know from Proposition that characters
of H* are in X and characters of H are in X*. Using the previous lemma, (EI7])
and (AI4) we obtain that

1 o
' :=eyn+ = Z—QZguZui € X,
i7j

1
(5.1) [y :=cegaxy+ = —p Z’ykkB € X™.
k

7

Then (I'y ®p idx)A(T'1) € X. We check that (I's ®pg idx)A(T'1) = ge;. Recall that
I’y vanishes on Ay @ A; @ gAp, so we only need to compute the part of A(T';) in
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gA1 ® gA;. Tt is:

1 B o
2 2 (guieh @ 9o o) (vi] @ i)
i?j7k“7l

1 ) ) . ) .
_ ? Z sz(kJrl)gverlvé-F] ® gvcz;lvl/f J

i7j7k7l
1 ’ -/ -/ -/ -/ / -/ -/ ’
_ § : U'—i") (i —k i g Ui —5'—l
- ? C( X )gva Uy ®gvavb
il?j,7k7l,

putting ' =k +1,5 =1+ 7, and ' =7 — [,
1 1 A o o
= E C(l_m(]; E C“‘”’“)gvzvﬁ @ guh, !

ivjyl k
putting 1 =, 7 =7, and [ =1’,

1 o S

= 1S i @ gy
P
7/7]

Applying I'; ®pg idx to this expression we get

—— N B)(guiv)gviv,? = =N (R
PVD = P <
7.k ik
1 " )
AR
= gej.

Therefore ge; € X.

We next show that B € X*. From (£I4) and Proposition [[2] we know that
Xp+ = ploo + % > viB € X*. Using Lemma B.1] we obtain eaxp+ = ptog € X™*.
Now,

@o 1
(5.2) (ega ® £ga)A(ptoo) = p > wmB® B € X* @p X*.
ol

On the other hand, by (£I7) and Proposition [[.2] we have
1 o A
Une = D g+ 5 g € X
Using again Lemma 5.1 we get
1 4
e+ = — » gu, € X.
N \/ﬁ ZZ: a
Finally, applying e1¢n+ ®pg idx+ to (5.2]) we obtain
1 ) 1 )
—— > (wuB)(gvi) kB = =Y ¢"61_ k0B = 0B = B.
Pv/P ikl P
So, B € X*. 0
Lemma 5.3. The elements ug, Vg, % S, ul, and % >, vl belong to X.
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Proof. By (4I5)) and Proposition [[2] u, + v, € X. Then e1(uq + v4) = v, € X and
Ug = (ug +v4) — v, € X. We have just seen in the above proof that % >oigvh € X.

Multiplying by gey, we have # >, vi € X. Let H, be the Hopf subalgebra of H

generated by wu, and v,. Proposition [L1[iii) entails that X N H, is a Hopf order of
H,. Then

1 A\ @D 1 . . . .
A(— vz) = — Y u®u, +v,Qu, € (XNH,) ®r (X NH,).
\/?—QZZ-: \/522: ( ) @n ( )

Consider the character ¢ of H, given by ¢(u,) = 0 and ¢(v,) = 1. By Proposition
L2 ¢ € (X N H,)*. Applying ¢ ®pg idxnpm, to the above equality we conclude that

ﬁziugex O

5.2. A special case. If we show that gey € X, then it will follow from Lemmas [5.1]
£.2] and 53] that all elements of the basis B in (£.1)) of H will be in any Hopf order
X. Unlike for other elements, this can not be shown directly. The strategy will be
to adjoin to K an element 7 such that 72 = ¢ — 1, prove the statement in this case
and then derive it for K. So, in this subsection we assume that K contains such an
element 7. The proof requires some preparations.

Lemma 5.4. The map T : A1 — gAO,vfle — (B®pg idX)A(gvsz) can be expressed
as

- 1 , -
T(vovy) = 7 ZC]kgulguz k
k

Moreover, T(X N A1) C X N (gAo).

Proof. Since B vanishes on Ag @ A1 @ gAy, only the part of A(gvévg) in gA1 ® gAg
is relevant for the computation. We have:

T(vévi) = 2—9 Z Ck(kH)B(gvsHvb ( )vévi)guﬁﬂub J
k,l

1 ; i —(k+D)+j i 1—j
_ 1_9 ZC(Hz)(Hl)B(gngﬂvb (k+1) J)gulg—l—zub J
k.l

@ 1 Z (k+i)j . k+i, —k

= — ¢ T gug uy
VP
1 . 4

= — Z ijgu’;u;;k.
VP

Let now z € X N A;. By Lemma (2] we know that ge; € X and B € X*. Then
gr = gerx € X and A(gr) € X®rX. From here, T'(z) = (B®pridx)A(gr) € X. O

Proposition 5.5. Let Z be an R-algebra and z,e € Z. Assume that ze = ez = z.
Set 2= L(z—e). If € Z, then
1 i
— z
VP Z

is an R-linear combination of powers of Z.
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Proof. Set
(T2t e’ —e = (P, _ph1
Tz B kz—l k (m2)™"
As in the proof of Lemma 23] the fractional expression is just symbolic. The left-

hand side equals ;;01 2*. We obtain the result by dividing this equation by V/Ds

noticing that 7P~1 = ¢ /P for some invertible £ € R, and (g) is divisible by p for any

k=1,...,p— 1. ]
We are now ready to tackle the difficult point.

Lemma 5.6. The element gey belongs to X.

Proof. View A as a Hopf subalgebra of H and Aj as a quotient Hopf algebra of A
via projecting any element on its component in Ag. Then X N Ay is a Hopf order
of Ag in light of Proposition [[L.T1 Look now at the Hopf subalgebra of Ay generated
by ug. Lemma [5.3] shows that # >, ul € X. Applying Corollary 29(ii), we have
%(ud —ep) € X N Ap.

On the other hand, Lemmas 5.1l and 5.4] yield that

1
T(e1) = % Zgusub_k e X.
k

Put e = %Zk u¥uy . Observe that e is an idempotent and T'(e;) = /b ge € X. Let
G be the group generated by o, 7 subject to 02 = 7”7 = 1,07 = 70. The assignments
e1 — 0;uq,up — 739 — o define a surjective algebra map f: H — KG. It is easy to
check that f is a Hopf algebra map and Ker f equals the ideal generated by e; and
uqu, ' —eg. By Proposition [LI(iv), f(X) is a Hopf order of KG. The element ¢ must
be in f(X) because it can be received from characters of (KG)*. Take x € X N Ay
such that f(z) = 0. Then x — geg = h(uaub_1 — ep) for some h € H. Multiplying by
/P ge we arrive to \/p (xge —e) = 0. Thus \/pe = 2(y/pge) € X N Ag. Consider the
Hopf subalgebra E of Ag generated by uauljl. As \/pe = ﬁ >k u];ugk e XNE,
Corollary 2.9(i) implies %(uauljl —ep) € X. Hence

1, _ /1 _ 1
—(u, ' —e) = ua1<—(uaub ) — =(uq — eo)> € X.
T i v
By Proposition (.5 % >, ui € X. Let Hy, be the Hopf subalgebra of H generated

by up and v,. Arguing as we did for H, in the proof of Lemma [5.3] we obtain that
% > vy € X. Applying Lemma [5.4] we have

1 A
T<— vf,) =gep € X
752
and we are done. O

5.3. The necessary condition. We next derive that all basis elements of H must
be in the Hopf order X. This will be key to establish the necessary condition of our
main result and to prove later that a Hopf order of H, if exists, must be unique.

Proposition 5.7. All elements of the basis B in (A1) of H belong to X.
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Proof. From Lemmas 5.1l and (.3, we know that eg, e1,uq, v, € X. We next see that
g € X. Take 7 € C such that 72 = ¢ — 1 and set L = K(n),S = Or. Then X ®p S
is a Hopf order of Hy, := H ®x L. Lemma combined with Lemma yields that
g € X ®r S. We can identify H ®p L with Hp, via multiplication. Inside H ®p L
we have (X + Rg) @p S C X @r S+ Rg®r S = X ®r S C (X + Rg) ®r S. This
equality holds indeed in H®r S C H®pg L. Since S is faithfully flat as an R-module,
we obtain X = X 4+ Rg. Therefore g € X.

It remains to prove that up,vp, € X. We have that upg = gu, € X. Then
up = (upg)g € X and consequently A(up) € X @p X. If follows from the latter that
vy € X arguing for Hj as we did for H, in the proof of Lemma [5.3] O

As a consequence of Lemma B3] we get
1 i i
— Z u, + v, € X.
VP 5

Let E be the Hopf subalgebra of H generated by the group-like element h := uq + vq.
Clearly, ¥ ~ KC,, as Hopf algebras. Put Z = EF'N X and denote by A the set of left
integrals in the Hopf order Z of E.

Lemma 5.8. We have A = R(% S h).

Proof. Obviously, R(% >, h) C A. For the reverse inclusion, let [ € A. There is
A € K such that [ = % >~ h'. We will prove that A € R. Using Proposition (.7

=(J® [)A(g9) € X @ X. Then (I'ys ®z I'2)(w) € R, with T’y being the element
defined in (5.I)). We next show that (T'y @ I'y)(w) = A2

Taking into account that I'y vanishes on Ay ® A @ gAy, it suffices to compute the
part of w in gA; ® gA;. We have'

(T @pT) (@) 2 2 3 N S e B 0 o) (e B) (g0

i,4,k,1 758
@@ A A Z ZCT (+R) g, 050Dy
i,5,k,0 T8
= A2
So A? € R and thus X € R. O

We can now establish the necessary condition in our main result from the previous
lemma and Corollary 2.9(i):

Proposition 5.9. Suppose that H admits a Hopf order over R. Then there is an
ideal T of R such that I*®P=1) = (p).

5.4. The Hopf order. Assume that there is an ideal I of R such that 2P~ = (p).
In this subsection we will construct from I a Hopf order of H which will turn out to
be the only Hopf order. Consider the fractional ideal J := ! = {a € K : o C R}.
By the unique factorization property in R, from I??~1) = (p) = (¢ —1)P~! = (\/]3)2,
it follows that 1> = (( — 1) and I?~! = (\/p). Then J? = (<) and JP~! (%)

—1
We need the following version of Proposition
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Proposition 5.10. Let Z be an R-algebra and z,e € Z. Assume that ze = ez = z.
If J(z—e€) C Z, then

1 i
— z'eZ.
2
Proof. Put Z = z — e, proceed like in the other proof and use that ﬁépfl ezZ. O
Theorem 5.11. The R-subalgebra Y of H generated by eg,e1,g,J(uqs — €o),
J(up —eq), J(vg —e1), and J(vy — e1) is a Hopf order of H.

Proof. We will first prove that Y is finitely generated as an R-module. Observe that
J is finitely generated. Write

Lg = Ug — €0, Tp=Ub— €05 Ya = Vg —€1, Yp=7Vp—€1.
We have that xq,2p, ya,yp € Y because IJ = R. Since eg,e; € Y, we also have
Ug, Up, Vg, Vp € Y. We next check that (Jz,)" C Zf;ll Jizl for n > p. The element
z, satisfy D7 | (P)al = 0. As JPJP2 = J2e=1) = (%), we get R = (JPp)JP~2,
Then JPp = IP~2 C R. Hence

p—1 p—1 p—1
(Jaa)l = P © 37 (P) w C Y Ral C Y S,
i=1 i=1 i=1
The same holds for zy, y,, and yp. Consider now the equality:
YaYb = VaUp — Vg — Up + €1
= QUpUq — Vg — Vp + €1
= (YpYa + (C - 1)(ya +yp + 61)-
Then, for ay,ap € J the coefficient of e; in (agy,)(apyy) belongs to R because
J? = (CTII) Using the previous equality one can prove that any product of the form
(BatE) (Boy}) with 8, € J k By € J' can be expressed as an R-linear combination of
elements in (J'y;)(J7y3) with 0 < i <1, 0 < j < k. Notice that the coefficient of e
always belong to R. All these facts, together with the relations among x4, p, Ya, Ys,
and g inside H, show that Y is finitely generated as an R-module. More precisely,
using that J is finitely generated, the following elements generate Y over R:

€o, €1, g€o, g€i, JZJFJ(:C%):UZL)’ JH—](gxéx‘Zl)a JH_j(y;;ygL)a JH_j(gy;;yé),
1,7 =0,...,p— 1.

Removing the powers of J from these elements, we obtain a K-basis of H (we un-
derstand that ¢, j are not simultaneously zero). Hence Y is an order of H.

We next prove that Y is closed under comultiplication and antipode. It is easy to
check that the comultiplication of the e’s, x’s and y’s lie in Y ®g Y, the counits of
them lies in R, and S(Y) C Y. For instance, for a € J we have:

A(axa) =0y ®Ug + QYq @ Vg + €9 @ g + €1 X aygy €Y®RK
Alaxy) = axp @ up + €9 @ axpy + ayp @ v{)’_l

p—1
+ Y e1® (P ) (am)yy " €Y @R Y.
k=1
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It only remains to show that A(g) € Y ®r Y. For, we need to rewrite A(g) as an
R-linear combination of elements in ¥ ®r Y. Recall from Equation that A(g)
consists of four summands. We treat each of them separately:

e Part in Ay ® Ap. Consider the sum

02 Z ¢ ugud © ugul, = ( ZC_ZZUZ ®ub)( Zgﬂk )

©,5,k,1

We argue on the first factor, the second one being similar. Replace ug and up by

Tq + eg and x + g respectively and expand. The coefficient of x}, ® x7 equals >
ifr=s=p—1. Then

¢! 1_ Cl 1,
— b= ®—x€

VPP

belongs to Y ®gr Y because Lp € JP~L. For either r or s different from p — 1 we use

p—1 p—
Ty QT

the following argument. The coefficient of z, ® 7 will be the same as the coefficient
of y;, ® y; in the sum

1

- ZC Zlvl ® Ub

p il

This in turn will be the same as the coefficient of y;y; in the sum

1 i1 L 1
piZJCZUQUb piZJUbUZ
(59

b . -

7
1y t+e) —er(yate)’ —er
p Yy Ya
We are using here the convention in the proof of Proposition 2.3] for these fractional

expressions. The coefficient of y;y; in this sum contains the binomial coefficient (Z)
for k =1,...,p— 1. Therefore the first factor belong to Y ®p Y.

e Part in Ay ® A;. We have the summand
1 - kot 1 Lo 11
—g ¢ (kaukul@ka + < E Uy ®vv)( g u®vv>.

We show that each of the sums belongs to Y ®p Y. We do it only for the first one.
For the second one proceed similarly. The coefficient of y, ® yfy?, in this sum will be
the same as the coefficient of 2!, ® z§z!, in the sum

1
(5.4) % Z uf @ ufuk Z(ua ® uptig)r.
k

1
VP
Observe that u, ® upu, € Y ®g Y and
J(ug @ upug —eg @ €g) = Jxq @ Tprq + JTq @ p + JT4 @ o + JT4 @ €
+eo® (Jop)axg +eg @ Jop+eg @ Jrg, €Y QR Y.
This together Proposition .10 yields that the sum belongs to Y ®r Y.

(5.3) -
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e Part in A1 ® Ag. We argue as before with the summand
kD) oo kol (L LDk k 1 Ly®P=DE gt
¢ ROk ety ( ® uhu _(_ o ®u)( vl ®u>_
Z b \/1_7 p Uy \/1_7 l b b

but using the following variation: vffl = yp+e; with g = Z?: (pgl)yg and J C JJ
forj=1,...,p—1.

e Part in A; ® A;. Consider the summand

1
—Zv vb®v vb— Zv vb®v vff.
p k,l

Write it in H ® HP as

(% vfj@v,’f) <%Zvé®vtgp—l)l>
k l

and proceed as before. This finishes the proof. O

Proposition 5.12. The Hopf order Y is unique.

Proof. Let m € C be such that 72 = ¢ — 1 and set L = K(x). We will first prove
that Hy admits a unique Hopf order over S = Oy, and derive the uniqueness for H
arguing as we did in Proposition 5.7l Write I = (). Then I*?P~Y = (p). Let J C L
be the inverse of I, which is generated by % We have seen in the precedent proof
that the order Y (over S) is generated as an algebra by eq, e1, g and the elements

1 1

1 1
Lg ‘= ﬂ_(ua 60)5 Ty 1= ﬂ_(Ub 60), Ya ‘= ﬂ_(va 61), Yp ‘= 7_(_(vb 61)‘
Let X be any Hopf order of Hy. By Lemma [53] and Corollary 29(ii), X must

contain the element %(ud +v,—1). By Proposition 5.7} X contains all basis elements

of Hy. Using multiplication by ey and e;, conjugation by g and translation by the
character p : Hy — K, up — 0,v — 1, we see that X must contain 24, 94, Tp, and gp.

Then Y C X and thus Y is a minimal Hopf order.

We know that H7, is self-dual. Then H} has also a minimal order, which we denote
by Z. This implies that Z* is a maximal Hopf order of H;. Thus any Hopf order
of Hj, lies between Y and Z*. We wﬂl prove that Y = Z*. The R-submodule Ay
of left integrals in Y is spanned by (1 +9)>u ulj7 Then E(Ay) = (2p). Using
self-duality of Hp,, we also have E(Az) (2p). Since (dim H) = (4p?), by Proposition
L3l e(Az+) = (2p). Proposition [ A4 yields Y = Z*.

Finally, let X, X’ be two Hopf orders of H. The Hopf orders X ® g S and X' @ S
of Hy, must be equal. Then X @ S = (X +X')®r S = X' ®rS. As S is faithfully
flat as an R-module, we obtain X = X + X’ = X’ and we are done. d

Remark 5.13. The precedent result shows that the behavior of orders for semisimple
Hopf algebras can be quite different to that of group algebras. When we take larger
number fields, the number of Hopf orders of the group algebra on C), tends to infinity
whereas the number of orders of H is constantly 1.
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Remark 5.14. In [8] Theorem 1.8| the second author proved that every semisimple
Hopf algebra over a number field only admits finitely many Hopf orders over its ring
of integers.

5.5. Main result. We are finally in a position to prove our main result:

Theorem 5.15. Let p be an odd prime number and K a number field containing a
primitive p-th root of unity. Nikshych’s Hopf algebra admits a Hopf order over Og,
which must be unique, if and only if there is an ideal I of O such that [*®—1) = (p).
In particular, K can not be neither a cyclotomic field nor an abelian extension of Q
if a Hopf orders exist.

Proof. The necessary condition was established in Proposition (.91 The sufficient
condition and uniqueness were proved in Theorem [(.11] and Proposition [B.12]

We prove that K can not be a cyclotomic field if H admits a Hopf order over
Ok. Let I C Ok be the given ideal such that I*°~1) = (p). Suppose that K is
a cyclotomic field, say K = Q(n) with n a primitive m-th root of unity. Since (p)
ramifies in O, by [16, Proposition 2.3|, p is a prime factor of m. Call n the exponent
with which p occurs. By [10, Theorem 4.40], there is a prime ideal B of O appearing
in the factorization of (p) with exponent e := (p — 1)p"~!. The exponent of 8 in the
factorization of I2(P~1) will be 2I(p — 1) for some I € N. Then p should be divisible
by 2, a contradiction.

That K can not be an abelian extension of Q in this case follows from the
Kronecker-Weber Theorem. O

6. ON ORDERS OF FORMS

Let L/K be a Galois extension of fields with Galois group I". We have seen before
that it could happen that Nikshych’s Hopf algebra H over K does not admit an
order over any cyclotomic ring of integers, but could a L/K-form of H do? Namely,
could there be another Hopf algebra H' over K such that H @ L ~ H @k L and
H' admits an order over some cyclotomic ring of integers? We will show in this last
section that the answer to this question is affirmative.

We first recall from |2, Proposition 1.1] and [13] Proposition 1| some basics about
Galois descent in the Hopf algebra setting. Put Hy, = H ®x L. Given v € I', a Hopf
v-automorphism of Hy is a K-linear automorphism f : H; — Hj which satisfies:

(1) f is vy-semilinear, i.e., f(ah) =~y(a)f(h) for all « € L,h € Hy,.

(2) f is compatible with the multiplication, comultiplication, and antipode.
(3) f(lHL) =1u,.

(4) ef =ne.

According to Galois descent, L/K-forms of H correspond to group homomor-
phisms ® : I' = Autg(Hr),y — ®, such that @, is a Hopf y-automorphism for all
v € I'. For such a ® the set of invariants (H)' is a Hopf algebra over K and the
natural map (Hp)' ®x L — Hyp is an isomorphism of Hopf algebras.

Our goal is to prove the following:

Theorem 6.1. Let (, € C be a primitive n-th root of unity, with n divisible by p.
Consider Nikshych’s Hopf algebra H as defined over Q((,). Let w € Z[(,] and t € C
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be such that w is invertible and t* = w({, — 1). Assume that there is d € Z[(,] such
that 3(d +1t) € Oq(caty- Then, H admits a Q(Cn,t)/Q(Cn)-form H' which in turn

admits an order over Z[(y].

Proof. Set L = Q((n,t). We will construct H' and show that the unique order
Y of Hj descents to an order of H' over Z[(,]. The Galois group I' of L/Q((,)
is isomorphic to Z/2Z. We denote the generator by ~. Bear in mind the Hopf
automorphism o of H of order two given by

o(ug) = ug_l, o(vg) = vg_l for 6 = a,b, and o(g) = g.

We can define a Hopf y-automorphism ¢’ of Hy, by ¢/(h ® ) = o(h) ® v(«) for all
he€ Hae L Let ®:T — Autg(Hy) be the group morphism mapping v to o’
Consider the form H' of H given by H' = (Hp)".

We claim that the order Y of Hj, descents to an order Y’ := YT of H' over Z[(,].
It is enough to check that the natural map p: YT ®zi¢,) O — Y is an isomorphism

(this will ensure us that Y is really a Hopf order). Since p is injective, it suffices
to check the surjectivity. We have seen in Proposition B.12] that Y is generated over
OL by €0, €1, 9, and

1 1 1 1

i‘a = ;(ua—eo), .f'b = ;(ub—eo), gja = Z(Ua—el), gjb = Z(Ub—el).

Clearly, ep,e1,9 € Imp as they are invariants. We will show that Im p contains
the rest of the generators. Since Imp is a subring of Y, this will give Imp = Y.
Let us show that T, € Imp. The proof for the other generators is similar. The
element ¢ := %2(260 —ug —uzl) = —72u; ! belongs to Y'. Since y(t) = —t, a
direct calculation reveals that o/(Z,) = %, + tq. Set z = &, + 2(d +t)g. One can
easily check that z € YT, and therefore z € Imp. Finally, &, = z — %(d + t)g, and
%(d +t)g € Imp, so T, € Im p as well, as desired. O

With the previous theorem in hand, we will describe an example in which an order
of a form does exist.

Example. Consider the case p = 7 and n = 28. Let ¢ := (58 be a primitive 28-th
root of unity. A computation done by Dror Speiser with the computer algebra system
MAGMA|showed that if w is the inverse of the element

21747826028152¢ 1 — 25061812676688¢1° + 5371269408312¢? — 2754700868376(®
+21747826028152¢" — 22307111808312¢% + 4963799311635¢* + 12069132874072¢>
—11153555904156¢% — 12069132874072¢ + 17343312496677

and d = 1, then the condition of the theorem holds. We take t such that
t?2 = w(1 — ¢*). We thus have an order over Z[(] of a form of Hy.

Then H7, as defined over the complex numbers, admits an order over a cyclotomic
ring of integers.

The following questions remain open:


http://magma.maths.usyd.edu.au/magma/
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Questions. Does there exist a value of p for which Nikshych’s Hopf algebra Hp, as
defined over the complex numbers, does not admit an order over any cyclotomic ring
of integers? More generally, does there exist a complex semisimple Hopf algebra which
admits an order over a number ring but not over any cyclotomic ring of integers?
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