Basement-cover tectonics, structural inheritance and deformation migration in the outer parts of orogenic belts: A view from the western Alps

Robert W.H. Butler

Geology and Petroleum Geology, School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, Scotland, Britain.

ABSTRACT

The structure and geology of former rifted continental margins can exert significant influence on their subsequent incorporation into collisional orogens. While thinned continental crust attached to the subducting mantle lithosphere may be incorporated into subduction channels, the weakly rifted parts of the margin are likely to resist subduction and thus deform ahead of the main orogenic front. This expectation is corroborated by a case study from the external western Alps. The former Dauphinois basins have inverted to form external basement massifs. Much of the deformation was widely distributed, with few localised thrust structures. Existing models that invoke distinct deformation events, separated in time by a major (late Eocene, “Nummulitic”) unconformity are abandoned here in favour of crustal shortening that was continuous in time. Integrated stratigraphic, paleothermal and geochronological data reveal that basin inversion was protracted over 6-10 Myr, coeval with deformation in the more internal parts of the chain. The notion of continuous, rather than episodic, deformation raises issues for how rates and tectonic activity may be evaluated within ancient orogens.

Keywords: tectonic inversion, Alps, foredeep, basement deformation

INTRODUCTION
There is a tacit assumption in tectonic models of mountain belts that deformation simply steps out into the foreland with time. But such assumptions are also implicit in many orogenic reconstructions and in strategies adopted for balancing and restoring regional cross-sections. Indeed structures that may not conform to this assumption are generally referred to as being “out-of-sequence”, reinforcing the notion that simple forelandward migration is the norm. The aim of this paper is to discuss the issue of the migration of deformation in mountain belts and how it has been influenced by pre-existing structures.

Large-scale structural inheritance and its impact on the patterns of crustal shortening are inferred for many orogens (Appalachians, e.g., Hatcher and Hooper, 1992; Papua New Guinea, e.g., Hill and Hall, 2002; Pyrenees, e.g. Roure et al., 1989). However, in many cases the basement regions have been exhumed from the once deeply-buried internal parts of mountain belts (e.g. McBride et al., 2005) so that erosion has removed much of the key evidence for inherited basin faults. The Alps are a rare example where critical geological relationships are preserved, not least because the former rifted continental margin that existed prior to deformation was highly sediment-starved (e.g. Lemoine et al., 1986). They may therefore inform the interpretation and future investigation of other orogens.

The external western Alps provide the case study. The region has seen a number of contrasting interpretations of basement-cover tectonics that have different implications for crustal structure. These are reviewed and a preferred model is then integrated with a variety of existing paleothermal and geochronological data, together with important stratigraphic relationships. This in turn informs a discussion of deformation migration within the western Alps. Many of these relationships are well-known in the existing literature but are generally viewed as resulting from pulsed tectonics that operated in distinct episodes. The aim here is to show that the geological relationships are better understood in terms of a continuum. Protracted deformation that is heterogeneously distributed both in space and time is an expectation of orogenic evolution of former rifted continental margins with their inherent heterogeneity in lithosphere structure. This re-evaluation raises issues of how the evolution of
orogenic belts can be resolved, especially when syn-tectonic sedimentation is no longer preserved.

It is increasingly recognised that simple thrust evolution is strongly controlled by the presence of pre-existing structures (Butler et al., 2006, and references therein). These can act to localise thrusts or influence their trajectories. Most studies assume that these inherited structures simply influence the detail of local thrust trajectories rather than necessarily controlling the overall development of the orogen. However, recent advances in understanding the structure of rifted continental margins emphasise the presence of heterogeneities beyond simple rift faults that could exert more fundamental influences on orogenic structure (e.g. Péron-Pinvidic and Manatschal, 2010, and references therein). These include abrupt changes in crustal thickness and large-scale tracts of serpentinized upper mantle that could influence coupling between crust and mantle in evolving orogens. Two recent studies explore the significance of these heterogeneities.

Butler et al. (2013) show from modelling that large-scale rifted margin structure can exert a first-order control on how the continental crust deforms within a convergent system. Previously thinned crust can be subducted, recording this burial through the acquisition of ultra-high-pressure metamorphic mineral assemblages. Return of these deeply buried segments of crust requires their decoupling from the otherwise subducting plate (Fig. 1). In contrast, the weakly rifted landward components of the rifted margin resist subduction and thicken at the top of the subduction channel, while the subduction of the previously thinned crust can continue. The deformation of the continental crust at the mouth of the subduction channel can continue over a protracted time. Butler (2013) notes that the original coupling between crust and mantle that has been inherited from the riftting phase will limit these behaviours (Fig. 1). This coupling is likely to vary, perhaps reflecting differing amounts of water ingress into the upper mantle and its associated serpentinization, during the later stages of rifting (e.g., Péron-Pinvidic and Manatschal, 2010).

In the western Alps, the focus of this study, it is the external zones and their basement massifs that represent the weakly rifted parts of the former continental margin (e.g. Lemoine et al., 1986; Mohn et al., 2010). While rift
structures and their influence on Alpine compressional tectonics have long been
recognised (e.g. Gillcrist et al., 1987; Butler, 1989; Dumont et al., 2008; Bellahsen
et al., 2012; Butler, 2013), the significance of protracted deformation is less well-
established. Many other orogens have similarly developed by contractional
deforation acting upon pre-existing basin systems and other forms of inherited
structures that collectively represent significant lateral heterogeneities in
continental crustal structure. Thus, although the focus in this paper is on an
Alpine case study, it is likely that the deductions reached here are relevant to
many other orogenic systems.

ALPINE CONTEXT

The western Alps are a classic example of a basement-cover thrust
system, derived from stacked portions of the former European margin of the
Tethyan ocean system. The chain has developed between the Apulian continental
block (essentially the Italian peninsular and Adriatic region) and the rest of
Europe. The outer parts of the mountain belt, the focus of this paper, are found in
SE France.

Pre-orogenic basement and cover units

The regional geological and stratigraphic context for the western Alps is
widely described (see de Graciansky et al., 2013 for a readable account).
Basement rocks of the foreland outcrop in the French Massif Central where they
record a complex history of metamorphism, magmatism and deformation. This
culminated with the Variscan orogeny that deformed most of what is now
western and central Europe during the late Paleozoic (e.g. Schulmann et al.,
2014, and references therein). This heterogeneous crust is incorporated into the
Alps and is exposed in the so-called “external basement massifs” (e.g. Raumer et
al., 2009; Fig. 2).

The external Alpine basement is overlain unconformably by a Mesozoic
cover succession. This begins with a thin (<50m) Triassic sequence chiefly
comprising shallow-marine quartz sandstones, dolostones and local evaporites
that chart both planation of the pre-existing Variscan chain and marine
transgression. The overlying Jurassic and Lower Cretaceous strata chart
heterogeneous subsidence across the region – with modern accounts stressing
the importance of early Jurassic rifting followed by a protracted phase of post-
rift thermal subsidence. This period is characterised by limestone and shale
deposition, with virtually no siliciclastic input. A series of carbonate platforms
are widely interpreted to have built out from less rifted Europe (represented
now by central France) towards the fledgling Tethyan ocean. In the NW Alps, the
most recent of these platforms forms a lithostratigraphic unit termed the
“Urgonian”, of Hauterivian-Barremian (Early Cretaceous) age. The maximum
extent of the carbonate platforms is well constrained by a few spectacular
outcrops (Clavel et al., 2013) within the Subalpine chains. Oceanward of the
platforms, sedimentation rates are inferred to decrease so that, across much of
the region, the Mesozoic rift basins were under-filled. In the SW Alps, platform
carbonates that built out from Provence (Fig. 2) continued into the Late
Cretaceous. Thick basinal sediments accumulated, essentially keeping pace with
subsidence to accumulate over 9 km of Mesozoic strata in the Vocontian Basin
(e.g. de Graciansky et al., 2013, and references therein; Fig. 2). Thus not all the
continental margin was starved of platform-derived sedimentation, as implied in
some syntheses (e.g. Lemoine et al., 1986).

Contractional deformation in SE France, that culminated in the formation
of the Alps, is generally viewed as having had a long and complex history. Much
significance is placed on an angular unconformity in the Dévoluy area (Gidon et
al., 1970; Fig. 2) that truncates folded strata up to Early Cretaceous in age and is
overlain by Upper Cretaceous pelagic limestones. The tectonic status of this
deformation, demonstrably of Cretaceous age, is controversial. Although
classically ascribed to “Pyrenean” tectonics and the initial convergence between
Iberia and France, Dumont et al. (2011) consider them to be large-scale slump
structures. Cretaceous deformation has also been proposed on the flanks of what
is now the Ecrins basement massif (Fig. 2), although stratigraphic considerations
here only indicate that deformation pre-dated late Priabonian (Late Eocene)
times. Further discussion of the timing and significance of these ages of
deformation is reserved until later.
The main Alpine deformation in SE France dates from the Eocene to earliest Pliocene (e.g. Dumont et al., 2011, and references therein). The onset is marked by a transgressive sequence of deposits generally ascribed to the fledgling Alpine foredeep and termed the “Nummulitic” (reviewed by Joseph and Lomas, 2004). It classically comprises three formations: a basal shallow water (Nummulitic) limestone; blue marls (the “Marnes Bleues”) and a sequence of turbiditic sandstones that include the much-studied “Grès d’Annot” (Annot Sandstone). These lithostratigraphic units are diachronous, charting the lateral migration of the ancestral foredeep basin foreland-ward from the Lutetian to Priabonian (Mid-Late Eocene) (e.g. Sinclair, 1997; Ford and Lickorish, 2004; Dumont et al., 2011). Deposition is terminated by an olistostromal unit (the “Schistes a blocs”) and the arrival of thrust sheets. Deformation continued through to the Pliocene, the age of strata in the footwall to the Digne thrust (Fig. 2). However, in the NW Subalpine chains it is likely that thrusting terminated in latest Miocene times (e.g. Dumont et al., 2011).

Subalpine chains

The external NW Alps can be divided into two distinct domains: The outer thrust belt of the Subalpine Chains; and the basement –involved structures of the Dauphinois. The Subalpine Chains are generally considered to be a “thin-skinned” fold and thrust belt detached on either thin Triassic evaporites or Jurassic shales (Gratier et al., 1989). Deformation incorporates syn-orogenic sandstones – with thrusts over-riding these Miocene strata in the Grenoble area (Fig. 2). These structures were broadly WNW-directed (Butler, 1992).

The Mesozoic stratigraphy changes markedly across the Subalpine fold-thrust belt. In the foreland-ward side the strata are chiefly platform carbonates and reach a thickness of no more than 2 km. In the east the stratigraphy expands to a thickness of around 6 km, and lies in more basinal facies (reviewed by de Graciansky et al., 2011). These variations chart the transition from the stable European continent towards the more rifted regions on the margins of the former Tethys ocean.
Most probably, thrust detachment under the Subalpine Chains roots beneath the westernmost basement units of the Alps – the Belledonne massif (Figs. 2 and 3; e.g. Butler et al., 1986; Gratier et al., 1989). This interpretation is consistent with deep seismic reflection profiling (Bayer et al., 1987) and is a general component of modern sections through the region (e.g. Schmid and Kissling, 2000; Schmid et al., 2004; Butler, 2013; Bellahsen et al., 2014). This Basal Belledonne Thrust was presumably responsible for the main uplift of the Dauphinois region that lies in its hanging wall. Sustained exhumation of the Dauphinois domain has been identified through inverse modelling of data from diverse thermochronological systems and dated at 13Ma – 8Ma (van der Beek et al., 2010). This Miocene age-range is consistent with the inferred coeval relationship between displacements on the Basal Belledonne Thrust and the emergent Subalpine Thrust system.

Dauphinois basement-cover system

While the Subalpine fold-thrust belt is dominated by outcrops of Cretaceous strata, especially of prograding carbonate platforms, the Dauphinois region to the east is characterised by outcrops of basement rocks, overlain locally by a few metres of Triassic shallow-water quartz sandstones and dolostones (with local basaltic lavas), together with basinal Jurassic shales. Over the past 50 years there have been competing structural interpretations of the relationship between crystalline basement and the Jurassic sedimentary cover. Early ideas considered the cover to lie within “pinched-in” synclines whose geometry simply reflected rheological variations (e.g. Ramsay, 1963; Fig. 4a). With the popularisation of thrust tectonic models, Beach (1981) interpreted the juxtaposition of basement and cover as the result of westward-directed thrust imbrication (Fig. 4b). He went on to interpret the northward limit of the Ecrins to be the result of lateral ramps, with crustal-scale imbricates cutting up-section to the north. This model was subsequently followed by Butler et al. (1986) in their regional study of Alpine thrusting. However, consideration of stratigraphic relationships within the Jurassic rocks and the recognition of Jurassic-age normal faults (Barféty et al., 1979) established that many of the cover slices in the Ecrins were compressed.
half-graben. Thrusting, although important further east in the Ecrins, was generally abandoned as an explanation of basement-cover contacts for much of the massif (Gillcrist et al., 1987, Coward et al., 1991; Fig. 4c). Since then it has generally been assumed that the cover and basement of the Ecrins have shortened together, with limited detachment between them (e.g. Butler et al., 2006; Dumont et al., 2008; Fig. 4d). In these approximations, deformation is considered to involve heterogeneous sub-horizontal shortening. Since then Bellahsen et al., (2014) have argued for more localised simple-shear zones cutting the basement and then distributing the deformation upwards into the Jurassic cover (Fig. 4e).

Normal faults are increasingly being invoked within the pre-orogenic templates for orogenic belts (e.g. Butler et al., 2006). In the Dauphinois area many of the pre-orogenic faults preserve normal-sense (rift-related) throws (e.g. Dumont et al., 2008). However, it is not established whether some of the rift-related throw has been recovered by contractional reactivation of these faults during Alpine orogenesis. Most workers have long assumed that, because these faults preserve a net normal throw, they have not reactivated as thrusts – but this is an arbitrary assumption. Nevertheless, there is certainly significant basement deformation distributed away from these pre-existing faults (Dumont et al., 2008; Bellanger et al., 2015). This implies that the faults were not significantly weaker – either because of their frictional state or their orientation – than the host crystalline basement (Butler et al., 2006). Distributed basement weakening is consistent with mineralogical studies of the external Alpine basement. Former feldspars within granitic components in the basement have been altered to sericite suggesting significant hydrothermal alteration either before or during Alpine deformation (Wibberley, 1997; Francois and Lemet, 1999).

Despite significant Alpine deformation, some of the Mesozoic rift structures are famously well-preserved, with stratigraphic relationships interpreted as recording syn-rift deposition (Barféty et al., 1979). The best of these is the Ornon fault (Fig. 5a). This east-dipping structure serves as the eastern limit to the Taillefer massif (Fig. 3). Jurassic sediments in the hanging wall to the fault (Fig. 5b) are strongly deformed by upright folds and steeply-
dipping cleavage that is attributed to Alpine contraction buttressed against the Jurassic fault block (e.g. Barféty et al., 1979). These geometries are similar to the ‘mushwad’ deformations within Cambrian shales deformed against basement faults in the Appalachian thrust belt (e.g. Pashin et al., 2012). Basement in the hanging wall to the Ornon fault forms the composite Grandes Rousses – Rochail block (Fig. 4d). This block bounded to its east by the Mizoen fault that in turn has the Emparis basement block in its hangingwall. Further eastwards the effects of Alpine deformation become more pronounced so that the former presence of Jurassic half-graben becomes more conjectural. The Meije block has been carried by its eponymous thrust (Fig. 5c) to lie structurally above the Emparis block (Plateau d’Emparis on Fig. 4d). Likewise, the Combeynot block has been juxtaposed to structurally overlie the Meije (Fig. 5c).

The Combeynot basement block is stratigraphically overlain by the Nummulitic strata, with the local omission of the entire Mesozoic succession. These turbidites (locally termed the Aiguilles d’Arves Sandstone) are tectonically overlain by more internal Alpine units of the so-called Sub-Brianconnais domain. The contact is generally considered to be one of the fundamental structures of the Western Alps, termed the Frontal Pennine Thrust. Note however that some compilations consider the Combeynot basement and its Tertiary cover to also lie in the hanging wall to the Frontal Pennine Thrust (e.g. Schmid et al., 2004) – an interpretation that will be revisited later.

Notwithstanding general understanding of the regional Alpine structure of the Ecrins, there has been long-standing disagreement as to the timing and significance of these structures. The key stratigraphic marker for these deliberations has been the unconformity beneath the Nummulitic limestone and its overlying foredeep turbidites. For some researchers (e.g. Beach, 1981), basement thrusting and the formation of the Ecrins was exclusively “post Nummulitic”. Other researchers have emphasised the importance of pre-Nummulitic deformation. In recent times this complex history has been interpreted as distinct tectonic phases, one pre-Nummulitic and another post-dating the youngest turbidites, which were deposited during the Oligocene (e.g. Dumont et al., 2011). These relationships are central to the theme of this paper and further discussion is reserved for later.
A composite cross-section is presented here (Fig. 6) on the east-west transect across the external French Alps, passing close to the city of Grenoble (Fig. 2). The western part of this section illustrates the structure of the Vercors segment of the Subalpine chains (after Butler, 1987). Outcrop across the Vercors is dominated by the gently folded Urgonian platform carbonates. The frontal thrusts are shown with rather small displacements (c.f. Deville and Sassi, 2006) as they show en echelon map patterns and lateral tips just a few kms. out of the plane of section (Butler, 1987). Likewise thrusts within the Vercors show little displacement – the total shortening implied by the cross-section is around 8 km (Butler, 1987). This figure is significantly lower than equivalent sections further north along the Subalpine chains (Gratier et al., 1989; Butler, 1992), yet all these structures appear to root beneath the Basal Belledonne thrust. It is likely that this major thrust retained much of its displacement along strike – as the uplift of the basement rocks (the Belledonne massif) is sustained laterally. Butler (1987) proposed that the Vercors transect contains further shortening than is recorded in the broadly WNW-directed thrusts and that this segment of the Subalpine chains has also been partly backthrust over the leading edge of the Belledonne massif. These interpretations are also followed by Bellahsen et al. (2014). A total displacement on the Basal Belledonne Thrust, as accommodated within the Vercors fore-thrust – backthrust system, is estimated as 18 km.

The structure of the Dauphinois region is illustrated on Fig. 6 using the Romanche valley transect that runs between Bourg d’Oisans and La Grave (Fig. 3). Earlier interpretations of this specific section are shown on Fig. 4d,e. This profile has seen significant attention in recent years. Bellahsen et al. (2012) restored a section along this transect using the Triassic as a marker against which the underlying basement was reconstructed. Unlike much earlier attempts that used this method (e.g. Butler, 1986), these authors incorporated the concept that this Triassic marker was offset by pre-orogenic rift faults. Consequently their restored section shows the Ecrins in its pre-orogenic state containing an array of half-graben bounded by east-dipping normal faults. In this way the
restored section length across the Ecrins consists of the sum of the Triassic bed-
lengths together with all the heaves on the pre-orogenic normal faults. These
heave values are arbitrary because the original dip of the Jurassic structures is
uncertain.

Boutoux et al. (2014) present a revision of the Bellahsen et al. (2012)
restoration, based on integrated strain analyses in the strongly deformed lower
Jurassic cover sediments that represent the original fill to the various half-
grabens. Comparison between the two restorations is difficult using percentage
shortening as they use different reference points. However, the effective
horizontal shortening may be compared. Boutoux et al’s (2014) strain-based
restoration yields a shortening estimate of 8 km across the composite Ornon and
Mizoen half-graben. In contrast, Bellahsen et al’s (2012) restoration using the
Triassic layer yields a shortening value of 9.7 km across the same half-graben.

While strain studies are useful for restoring the distributed contractional
deformation within the Jurassic half-graben, they do not address displacements
on discrete fault structures. It is unclear if the Jurassic normal faults have
themselves been reactivated. The section also contains two major thrusts that
carry the Combeynot and La Meije basement units. Direct determination of their
displacements from matching footwall and hanging-wall cut-offs is not possible.
Most interpretations (e.g. Fig. 4) indicate total displacements across these
thrusts in excess of 10 km.

Balancing the crust

The structural geology exposed along the Romanche transect can now be
incorporated into a crustal scale section with the aim of establishing large-scale
shortening patterns in the outer parts of the western Alps. The workflows laid
out by Butler (2013) are followed here. For these purposes the top of the
basement on the transect is taken from the regional cross-section (Fig. 7). The
depth to the Moho across the Ecrins is taken from existing maps of crustal
thickness for the western Alps (Cavazza et al., 2004). It increases from around 30
km beneath the foreland to about 45 km beneath the Frontal Pennine Thrust and
the eastern Ecrins. Recent receiver function seismic modelling reported by Zhao
et al. (2015) also shows a gradual increase in crustal thickness beneath the Alps from the foreland. However, this experiment was located on a profile that runs across the inverted Vocontian basin rather than Ecrins. Thus it generally shows lower values for crustal thickness compared to those used here for the Ecrins section (Fig. 7).

The uncertainty on Moho depth on Fig. 7 is likely to be about 1-2km across the section as a whole. As the section is 120 km across, this equates to an uncertainty in estimates of crustal area of 100-200 km². In contrast, graphical measuring errors for crustal area are estimated at about 50 km². For the following construction a pin-line is established in the foreland of Bas Dauphine. The positioning of this pin is arbitrary, therefore percentage shortening values will not be reported for the cross-section as a whole. Rather, shortening is reported in parameterised km.

The total area of crust shown on the cross-section (Fig. 7) from a pin line in the Alpine foreland to a trail line beneath the Guisane valley (Frontal Pennine Thrust) is 4178 km². Using the inferred shortening in the Vercors system (18 km) as a proxy for displacement on the Basal Belledonne Thrust, the foreland crust has a top-basement length of 65 km from the pin line. This frontal portion, ahead of the footwall ramp to the Basal Belledonne Thrust, is considered to have not experienced significant distortional strain so it retains its lengths of top-basement and Moho. This distance of 65 km overlies a cross-sectional area of crust of 1717 km². The average thickness of this foreland crust is therefore 26.4 km. Assuming a pre-rifting (Triassic) depth to Moho of 30 km and uniform stretching (Jurassic), the crustal stretching factor is (30/26.4) = 1.14.

The remaining (4178-1717) 2461 km² of crust on the Ecrins transect (Fig. 7) represents the material that underlies the shortened Jurassic basins now found across the Ecrins massif. The present width of this basement, from an intermediate reference line at the leading edge of La Mure massif to the trail line in the Guisane valley, is 74 km. Bellahsen et al. (2012, 2014, modified by Boutoux et al., 2014) estimate that the net shortening of the top basement along this transect is 22 km. This yields a restored length of top basement of (74 +22) 96 km and an average restored thickness for the sub-Ecrins crust of (2461/96) 25.5 km.
The shortening estimates used above are conservative and probably underestimate displacements on Alpine thrusts. Additionally, they do not consider any contractional reactivation along the Jurassic normal faults. Allowing for these additional factors, the restored width of the former Dauphinois basins illustrated in Figure 7 is 110 km, with an implicit shortening of 36 km. Using the cross-sectional area of 2461 km², the mean restored crustal thickness beneath the Dauphinois basin can be estimated at \((2461/110) = 22.4\) km. This equates to a mean crustal stretching factor of 1.34 for uniform extension.

PALEOTHERMAL AND GEOCHRONOLOGICAL CONSTRAINTS ON ECRINS DEFORMATION

The following account relies heavily on the recent comprehensive study by Bellanger et al. (2015), although the interpretations offered here differ from these authors. They present a suite of estimates for peak temperatures, using Raman spectroscopy applied to carbonaceous material sampled from Jurassic and Tertiary strata around the Ecrins. A subset of these data are displayed on Fig. 6. The highest peak temperatures \((338°C)\) are recorded by the Jurassic strata of the Dauphinois basins. To the east of the Ornon fault, peak temperatures experienced by Jurassic rocks range between 319°C and 338°C. It is tempting to relate this thermal pattern to Alpine shortening (Bellanger et al., 2015).

Peak temperature data are also available for the eastern Subalpine domain, from Cretaceous strata adjacent to the Vercors plateau down into lower Jurassic strata in the Drac valley (Fig. 6; Bellanger et al., 2015). These display a systematic cooling, with the deepest strata recording peak temperatures of 329 °C. This peak value is consistent with estimates of deep burial during Mesozoic basin filling (Butler 1987; Bellahsen et al., 2012) together with relatively steep geothermal gradients \((40°C/km; Phillippe et al., 1998)\) derived from high heat production in underlying basement (Deville and Sassi, 2006).

Elevated geotherms and high burial temperatures are also supported by peak temperature data from the Jurassic cover of the Dome de la Mure (Fig. 6). Bellanger et al. (2015) report peak temperatures here of 279°C. These strata lay
on a Jurassic fault block (e.g. de Graciansky et al., 2011). Adjacent, age-equivalent strata from the former basin areas record peak temperatures of 329°C. These units, from fault block and basin, have been juxtaposed by the backthrust that carried the Vercors system eastwards onto the Belledonne (Fig. 6). The thermal structure must largely have been established before this Alpine deformation. Note also that the peak temperatures experienced by Jurassic strata in both the hanging wall and footwall to the Meije Thrust are indistinguishable (both are 328°C; Fig. 6). This pattern is consistent with peak temperatures for Jurassic strata that achieved similar burial depths before significant displacement on the thrust.

Bellanger et al.’s (2015) data do however show that the thermal history of the Dauphinois Jurassic strata is more complex than being simply inherited from Mesozoic basin subsidence. Indeed the absolute values would imply burial depths of around 8 km, assuming a geothermal gradient of 40 °C/km. Such stratal thicknesses are evident in the Vocontian basin, to the south of the Ecrins (Fig. 2; e.g., de Graciansky et al., 2011), although they are generally regarded as having been greater than those achieved by the Dauphinois successions considered here. Simple uniform stretching models can relate the thicknesses of crust and basin fill (e.g. McKenzie, 1978). The crustal restoration (Fig. 7) implies a stretching factor of 1.34 for the Dauphinois crust, for which a sediment thickness of around 5 km could be accommodated. This however can be increased by inversion and thickening of the basin sediments. 25% shortening, as estimated by Boutoux et al. (2014), increases sediment thicknesses to 6.25 km. For the more eastern sites, further burial may have been achieved by thrust repetition of Jurassic strata. However to achieve temperatures of 330°C a geothermal gradient of around 50°C/km is required during inversion, together with no erosion of the overburden. So, even using the strain values of Boutoux et al. (2014), the choice of appropriate geothermal gradient and the original (pre-inversion) thickness of Mesozoic strata across the Dauphinois basins remain unknown and thus further quantitative consideration of thermal evolution is premature. There are however, other aspects that demand attention.

Strikingly, the Eo-Oligocene units that lie directly upon the Jurassic strata to the east of the study area (Fig. 6) chart maximum temperatures of 298±4 °C,
immediately adjacent to Jurassic strata that record peak temperatures some 40°C higher. This suggests that the Dauphinois Jurassic strata have experienced two distinct heating episodes. The first of these pre-dates not only the deposition of the Eo-Oligocene strata but also the period of erosion that is represented by its underlying unconformity. The second heating episode was presumably accompanied by tectonic burial by the over-riding thrust sheets derived from the internal Alps and was experienced by the Jurassic and Eo-Oligocene strata together. It is not clear how much of the Dauphinois area experienced this second episode: The full extent of the internal Alpine thrust sheets is not preserved nor are there further Eo-Oligocene deposits preserved across the western Dauphinois area.

The two-phase thermal evolution might be expected to have been recorded by geochronological data. Various radiometric techniques have been applied to establish the timing of Alpine deformation in the Ecrins massif, as recently reviewed by Bellanger et al. (2015). These authors complement existing data with their own substantial data set of Ar-Ar mica ages from selected shear zones within the Ecrins (Fig. 8). The compilation shows significant spread, with a tail of old ages that presumably reflects both the incorporation of old radiogenic Ar from the basement and the incomplete recrystallization of relict mica. However, their study shows a strong cluster of Ar-Ar ages between 20 Ma and 40Ma. Bellanger et al. (2014) suggest that the main deformation phase was at 30-36 Ma. These data do not identify polyphase deformation – an issue to which we shall return after consideration of stratigraphic relationships from the southern Ecrins.

INTEGRATING STRATIGRAPHIC RELATIONSHIPS

The geochronological data pose significant problems for interpreting the deformation history of the Ecrins, when considered alongside stratigraphic relationships. The peak deformation age (30-35 Ma) straddles the late Eocene-early Oligocene (Gradstein et al., 2012). This was the time during which the Nummulitic strata accumulated in the Dauphinois realm. The key location for
understanding the relationship between deformation and deposition of these
strata lies on the southern flank of the Ecrins, in the Champsaur district (Fig. 9).

A regional unconformity at the base of the Nummulitic strata has long
been described from the Champsaur district. The unconformity oversteps
synclines that hold Jurassic and Triassic strata (e.g. Ford, 1999; Fig. 10a). The
Nummulitic strata are folded and overthrust by far-travelled thrust sheets (so-
called Embrunais-Ubaye nappes). These relationships are generally interpreted
to imply two distinct phases of Alpine tectonics – one “pre-Nummulitic” and
another “post-Nummulitic” (e.g. Dumont et al., 2008, 2011). Furthermore, some
interpretations infer that the Ecrins massif was continuously high-standing
during Alpine deformation, so that it acted not only as a generally rigid
obstruction to thrust sheets emplaced from more internal parts of the Alpine
chain, but also a barrier to the northward passage of turbidity currents in the
ancestral foredeep basin (e.g. Ford and Lickorish, 2004). Consideration of the
depositional architecture of the turbidite sandstones of the Champsaur area
suggest a different interpretation.

The Champsaur district contains two, broadly coeval turbidite sequences
contained within two distinct basin areas separated by an Alpine thrust zone
(the Selle fault, e.g., Ford, 1999; Fig. 9). The Eastern Champsaur Basin represents
a northern continuation of the main Annot sand fairway (Vinnels et al., 2010).
Sand compositions are chiefly quartz-rich, consistent with the Annot correlation
and are presumed to be similarly sourced from the same Corsican landmass. The
island archipelago of Corsica and Sardinia lay immediately south of the modern
southern French coast during late Eocene-early Oligocene times (e.g. Joseph and
Lomas, 2004). In contrast the Western Champsaur basin has a distinctive
volcanic sand component (e.g. Lami et al., 1987; Brunt et al., 2009, and
references therein). The structural-stratigraphic relationships of these basins are
considered in turn.

The Eastern Champsaur basin lies directly beneath thrust sheets derived
from the internal Alps and is deformed into a series of WSW-facing folds (e.g.
Bürgisser and Ford, 1998). These folds deform the turbiditic component of the
Nummulitic succession, detachment along the Blues Marls. The underlying
Nummulitic limestone rests unconformably on basement rocks, seen in the
windows of the Fournel and Dourmillouse valleys (Fig. 9a). Local accumulations of continental deposits lie within incised portions of this unconformity, beneath the limestone. Notwithstanding the deformation, regional onlap of the turbidites onto the Blue Marls is evident, so that they are discordant to the underlying Nummulitic limestone. This indicates that the substrate to the Eastern Champsaur Basin was deforming during deposition.

Vinnels et al. (2010) document onlap of the turbidite sandstones and provide paleoflow data collected from their sole structures (Fig. 9). These broadly confirm that the turbidites of the Eastern Champsaur are the northern continuation of the Annot sand fairway (e.g. Sissingh, 2001). The quartz-rich composition of the Champsaur turbidite sandstones is also consistent with this provenance. Paleocurrents indicate that the turbidity currents that supplied the Eastern Champsaur basin were repeatedly deflected by minor intrabasin bathymetry but that overall these flows were not impeded by a basin margin to the north. This means that, during turbidite deposition, the Ecrins massif was not high-standing. Indeed it must have been lower-lying than the Annot basin systems further south in the Alps. But the deflection of individual flows by transient basin-floor bathymetry is consistent with the large-scale stratigraphic motif – that the underlying Ecrins basement was deforming during deposition. This bathymetry could not have been inherited from the Mesozoic for example, as the turbidites of the eastern Champsaur basin are underlain by shallow-water Nummulitic limestone. Furthermore, the onlap angles described by Vinnels et al. (2010) – with 400m of strata pinching out over 4 km – are too high to be explained by regional foredeep flexure alone, especially when decompacted.

The Western Champsaur basin is distinct from the eastern basin because its constituent sandstones are volcaniclastic. Although early stratigraphic syntheses (e.g. Sinclair 1997) assumed these sediments were derived from a now-eroded arc volcanic source in the Alps, paleocurrent and stratigraphic studies indicate a SW provenance, most probably from Oligocene volcanic terrains on Sardinia. Lami et al. (1987) describe the onlap of the sandstones of the western basin onto the Blue Marls together with slumps inferred to have been derived from paleoslopes adjacent to the Ecrins. As with the eastern basin, the onlap angles for the Western Champsaur are too high to be the product of
regional flexure alone – and are strongly oblique to the regional foredeep (e.g. Joseph and Lomas; 2003). These stratal relationships (Fig. 10b), together with the systematic decrease in bedding inclination up section, are strong indicators that the southern flank of the Ecrins was deforming during deposition. While this provided a local confining slope to turbidite deposition, the flows continued to pass to the NE, as indicated by paleoflow data (Fig. 9a) together with the geometry of incisional canyons within the system (e.g. Brunt et al., 2007). Thus, as with the Eastern Champsaur Basin, its western counterpart indicates that the adjacent Ecrins massif offered no significant barrier for the passage of turbidity currents in the ancestral foredeep basin and that it continued to deform during their passage.

All three lithostratigraphic components of the Nummulitic system are found on the northern side of the Ecrins – with the turbities here known as the Aiguilles d’Arves sandstone (Fig. 3). These units are very poorly described in the literature and have seen no published modern sedimentological studies. Reconnaissance work by the author has discovered a very similar bed-set motif to the turbidites of the Eastern Champsaur Basin. Coarse to medium-grained sandstones are quartz rich. Sole marks imply paleoflow from the south and SE. These observations are consistent with the Aiguilles d’Arves sandstone being further down the same sand fairway as the Eastern Champsaur and Annot systems. It is likely then that, during the deposition of the Aiguilles d’Arves and Eastern Champsaur sandstones, the Ecrins basement did not impede their co-genetic turbidity currents. The down-system continuation of the volcaniclastic turbidites of the Western Champsaur Basin has yet to be identified, although similar rocks are found in the northern Subalps (the Taveyanne Sandstone, reviewed by de Graciansky et al., 2013).

The turbidites of both the Eastern and Western Champsaur basins, despite showing distinctly different provenances, both chart deformation of the underlying basement during their deposition. However, both basins also chart deformation that preceded the Nummulitic. Not only has the Mesozoic cover been largely removed by erosion, both basins contain minor amounts of continental deposits directly beneath the Nummulitic limestone that chart subaerial exposure and denudation (e.g. Gupta and Allen, 2000). In the Cedera
area the Nummulitic succession of the Western Champsaur basin oversteps folds cored by Triassic and Jurassic strata (e.g. Ford, 1999; Fig. 10a).

Field relationships in Champsaur are classically interpreted as the result of two distinct phases of Alpine deformation, separated by a significant period of time represented by the sub-Nummulitic unconformity (e.g. Dumont et al., 2008). The recognition of active basement deformation during turbidite deposition and the long-recognised onlap of turbidites, not onto basement but onto the Blue Marls (Lami et al., 1987), indicates that deformation continued during the Nummulitic. Perhaps the geological history is better explained by continuous rather than episodic deformation.

A CONTINUUM MODEL FOR ALPINE DEFORMATION IN THE ECRINS

The field relationships in the Champsaur district inspire a model for the tectono-stratigraphic relationships across the Ecrins that may in turn inform discussion of the thermal history (Fig. 11). The section is based on a single hypothetical inverting half graben. This geometry has been proposed for the tract of Jurassic sediments that lie between Combeynot and La Meije basement blocks in the NE of the Ecrins area (e.g. Coward et al., 1991). In this case the hanging wall to the normal fault becomes the Combeynot block. The Mesozoic cover to Combeynot is only found along its western and northern margins. On its eastern side Nummulitic strata lie unconformably on basement. In the model presented here, contractual deformation of the basin began in the mid-to-late Eocene without significant denudation, allowing the Jurassic strata to thicken, burying their deeper portions. It is at this stage that the Jurassic strata achieved their peak temperatures (Fig. 11b). These early parts of the compression are presumably marked either with contractual uplift being outpaced by regional subsidence (e.g. because of flexural loading of the foreland lithosphere) or because there was significant bathymetry across the Mesozoic strata. As deformation continued the evolving, contractual structure was denuded, so that uplift presumably outpaced any regional subsidence (Fig. 11c). Eventually little of the Mesozoic cover was preserved. This stage is marked by the subaerial unconformity at the base of the Nummulitic sequence, during Priabonian (Late
Eocene) times. The transgression of this sequence and its progressive foundering charts a period in the continuing deformation where uplift due to contraction was outpaced by regional subsidence – most probably due to flexural loading of the foreland lithosphere (e.g. Ford and Lickorish, 2004). Contractional deformation continued through the accumulation of turbidites across the area (early Oligocene). The deposition terminated with the emplacement of thrust sheets from the internal zones of the Alps. Up until then all the deformation had been emergent. Further deformation of the basin (not illustrated in Fig. 11) will have continued beneath this tectonic cover of thrust sheets but, being buried, is not explicitly recorded by stratigraphic relationships at this location.

The kinematic model can be tied to the thermal evolution of the basin. A key result of the analysis of Bellanger et al. (2015; Fig. 6) is that, despite their close proximity, the Nummulitic turbidites north of the Combeynot massif show maximum paleotemperatures c 40 °C lower than their immediately underlying Jurassic substrate. The simplest explanation of these results is that the two units reached their thermal maximum at different times. A qualitative thermal model is presented alongside the kinematic representation (Fig. 11) to illustrate how this might have been achieved.

Deformation with different levels of denudation and burial through time is likely to lead to a complex thermal history in the uppermost crust. A more rigorous treatment is currently unwarranted in the absence of heat flow and heat production data for the Ecrins. However, the region probably has values for these parameters that are high relative to most continental crust. The Ecrins basement contains significant volumes of granite and micaceous schists. These units contribute to elevated heat production in analogous basement elsewhere in the Alpine chain (Corsica and Maures-Esterel; e.g., Lucazeau and Vasseur, 1989). Deville and Sassi (2006) use the relatively high heat flow estimate of 80mW per square metre for their models for hydrocarbon maturation in the Vercors. High heat production in basement and high heat flow into the overlying cover units is likely to lead to elevated near surface temperatures during periods of denudation (Fig. 11c) and, for subsequent burial under thrust sheets (Fig. 11e), rapid re-heating of the Jurassic strata. That these strata did not achieve their thermal maximum during this subsequent burial suggests that the overlying
tissue sheet was substantially denuded relatively soon after its emplacement, as
deformation continued into the Miocene.

THE ALPINE SUBDUCTION CHANNEL AND CONTINUOUS FORELAND
DEFORMATION

The pattern of long-lived continuous deformation and tectonic inversion
within the external basement massifs can now be placed in a broader Alpine
context (Fig. 12). Although this deformation straddled the Eocene-Oligocene
boundary (c. 34 Ma, Gradstein et al., 2012), it is unclear how much earlier it
started. Elsewhere in the Annot system deformation appears to have begun only
after the Nummulitic transgression (e.g. Salles et al., 2014) – suggesting an onset
only within the Priabonian (i.e., after 38 Ma, Gradstein et al., 2012). Thus most
plausibly deformation in the Ecrins began in the Priabonian (around 37±1 Ma).
Likewise the termination of significant deformation within the Dauphinois
basins is difficult to establish, although consideration of the Ar-Ar data (Fig. 8)
indicate it had ended by 20 Ma. Bellanger et al. (2015) suggest that deformation
was concentrated in the period of c 36-30 Ma during the Oligocene. After this
time, it is likely that deformation had localised onto the Basal Belledonne Thrust
(Fig. 7) and that this simply elevated the Ecrins massif, as charted by its late-
stage denudation history (van der Beek et al., 2010). Therefore deformation of
the Ecrins basement was probably protracted over a period of 6-10 Myr during
which time around 35 km of crustal shortening was accommodated. The
shortening rate was therefore around 0.35 - 0.5 cm/yr.

While the Nummulitic succession was being accumulated across the
inverting Dauphinois basins, the more distal parts of the former rifted
continental margin of Europe were being taken into the subduction channel of
the Alps. Peak burial to 3.5-4.4 GPa of the Dora Maira massif, equating to depths
of c 120 km, is dated at 34-35 Ma (reviewed by McClelland and Lappin, 2013).
Exhumation to c. 1.5 GPa (c 45 km depth) occurred within the following 2-3 Myr,
at rates of 2-3 cm/yr. Thus both the original subduction of continental crust and
a significant part of its exhumation within the subduction channel was coeval
with crustal shortening in the Ecrins (Fig. 12). However, only a small part of the
exhumation of the Dora Maira massif could have been accompanied by thrusting in the external basement massifs. Significantly more displacement may have been partitioned onto the Frontal Pennine Thrust and yet more within the internal Alps. Establishing these displacements is a task for future investigations.

DISCUSSION

The study presented here confirms and develops the general notion that the former rifted margin structure of Europe influenced the tectonic evolution of the western Alps (Gillcrist et al., 1987; Butler et al., 2006; Bellahsen et al., 2014). For the former Dauphinois basins, contractional deformation was broadly distributed within the upper crust and unlike some other basin settings, did not localise exclusively onto the pre-existing extensional fault systems (Coward et al., 1991; Butler et al., 2006). Area balancing the crust beneath the external Western Alps, with the assumptions of whole crustal deformation and plane strain, gives a prediction of the pre-orogenic crustal thickness and therefore an estimate of stretching factors during the earlier development of the rifted margin. These restorations are broadly consistent with illustrations of crustal thickness on qualitative representations of this part of the former rifted continental margin of Europe (e.g. Lemoine et al., 1986; Mohn et al., 2010).

The key conclusion here is that inversion of the Dauphinois basins was protracted, continuing for c. 6-10 Myr. Much of this deformation was distributed with no discernable “sequence”. There is no evidence for simple forelandward migration of inversion. Rather deformation appears to have been continuous, only localising onto a few structures (the Combeynot, La Meije and Basal Belledonne thrusts). This deformation occurred in tandem with subduction and exhumation of originally more distal (oceanward) parts of the former continental margin of Europe. This synchronicity of deformation within the former continual margin is consistent with previously hypothetical predictions of how the inherited heterogeneous structure can influence deformation styles and timing (Butler, 2013; Fig. 1).

Descriptions of deformation within mountain belts have generally inferred a simple forelandward migration (e.g. Ford and Lickorish, 2004).
However, in regions where deformation can be dated directly by stratigraphic relationships in syn-kinematic deposits (e.g. Butler and Lickorish, 1997 and references therein), simple thrust sequences are not evident. Rather deformation can be shown to have occurred synchronously across an array of folds. Furthermore, distributions of earthquakes and geodetic measurements reveal that, in the modern world, active contraction does not simply occur on a single structure. These data too show broadly synchronous activity across an array of faults (e.g. Ansari and Zamani, 2014). The deductions for structural evolution in the Ecrins presented here are consistent with these studies.

Classical stratigraphic approaches of deducing the timing of tectonics rely on unconformities (e.g. Stille, 1924), a focus that has fostered consideration of orogenic evolution as a progression of distinct events. This is misleading as unconformities in progressive deformation simply chart the interplay between erosion and this deformation. The recognition of growth strata is critical – but complex - as different styles of deposition, both in terms of distribution and rate, create different growth stratal patterns (e.g. Butler and Lickorish, 1997), which necessitate protracted stratigraphic studies. These may be difficult where the key strata subsequently become incorporated into the developing orogen. Within the Alpine system, the syn-kinematic status of various successions is becoming recognised (e.g. Salles et al., 2014). But in many settings these succession have been eroded during subsequent periods of deformation.

A complementary approach to using stratigraphy to chart deformation histories is to integrate geochronology, such as the study of Bellanger et al. (2015) used here. The limitation, however, is that a few spot-dates may be insufficient for tracking the deformation activity and its migration across an array of structures. This is equivalent to obtaining a few biostratigraphic ages for a sedimentary succession. Without establishing the stratal geometries, the necessary deduction of syn-kinematic successions is highly ambiguous. The challenge for evaluating the timescales for continuous deformations is to develop better investigative strategies that incorporate substantially larger and more diverse datasets.

ACKNOWLEDGEMENTS
The account presented here is based on many years of Alpine research by the author and numerous discussions with individuals on Alpine and other tectonics. I especially thank Bill McCaffrey and others within the Leeds Turbidites Research Group for initiating me in the ways of deep marine clastic sedimentology. Mark Cooper and Steve Matthews are thanked for their acute comments on an earlier draft of this manuscript. I also thank editor Rick Law for his patience with this manuscript.

REFERENCES CITED

Butler, R.W.H., 2013, Area balancing as a test of models for the deep structure of mountain belts, with specific reference to the Alps: Journal of Structural Geology, v. 52, p. 2-16.

McBride, J.H., Hatcher, R.D., Stephenson, W.J., and Hooper, R.J., 2005, Integrating seismic reflection and geological data and interpretations across an internal
basement massif: The southern Appalachian Pine Mountain window, USA:

McClelland, W.C., and Lappin, T.J., 2013, Linking time to the pressure-
temperature path of Ultrahigh-Pressure rocks: Elements, v. 9, p. 273-279.

McKenzie, D., 1978, Some remarks on the development of sedimentary basins:

Mohn, G., Manatschal, G., Muntener, O., Beltrando, M., and Masini, E., 2010,
Unravelling the interaction between tectonic and sedimentary processes during
lithospheric thinning in the Alpine Tethys margins: International Journal of

Pashin, J.C., Kopaska-Merkel, D.C., Arnold, A.C. McIntyre, M.R., and Thomas, W.A.,
2012, Gigantic, gaseous mushwads in Cambrian shale: Conasauga Formation,
70-91.

Péron-Pinvidic, G., and Manatschal, G., 2010, From microcontinents to extensional
allochthons: witness of how continents rift and break apart: Petroleum
Geoscience, v. 16, 189-197.

oblique basin margins: example of the western Vercors and Chartreuse
Subalpine massifs (SE France), in Mascle, A., Puigdefabregas, C., Luterbacher,
H.P., and Fernandez, M., eds., Cenozoic Foreland Basins of western Europe:

Ramsay, J.G. 1963, Stratigraphy, structure and metamorphism in the Western Alps:

Raumer, J.F. von, Bussy, F., and Stampfl, G.M., 2009, The Variscan evolution in the
External massifs of the Alps and place in their Variscan framework: Comptes
Rendus Geoscience, v. 341, p. 239-252.

Roure, F., Choukroune, P., Berastegui, X., Munoz, J.A., Villien, A., Matheron, P., Bareyt,
M., Seguret, M., Camara, P., and Deramond, J., 1989, ECORS deep seismic data
and balanced cross-sections: geometric constraints on the evolution of the

Figures

Figure 1. Schematic model for the timing of deformation (a-c in time) in a subduction channel containing segments of an originally rifted continental margin. Modified after Butler (2013). X represents the leading edge of the down-going rifted continental margin (e.g. future Dora Maira massif of Western Alps). Y represents the former oceanward extent of the weakly rifted continental crust (future external basement massifs of the Western Alps). Ellipses qualitatively represent strain states within the crust.

Figure 2. Simplified geo-tectonic map of the western Alps (modified after Schmid et al., 2004), showing locations discussed in the text. DT = Digne Thrust.

Figure 3. Simplified geological map of the external basement massifs centred on the Ecrins (chiefly after Gidon, 1977). See Fig. 2 for location.

Figure 5. Basement cover relationship in the Ecrins district. a) Classical view looking SE (e.g. Lemoine et al., 1986) of the Ornon fault in its type location (La Chalp village). The fault plane is represented by the main escarpment, with the gentle low ground containing the Jurassic sediments of the Ornon basin. The visible hillside (eastern margin of the Taillefer basement block) is c 1700m high. b) detail of the Ornon fault (boxed area on Fig. 5a) showing the Jurassic fault plane (figures for scale, reverse angle to Fig. 5a). The hanging wall to the fault contains deformed sedimentary breccias of Jurassic age with a pronounced slaty cleavage that is sub-parallel to the
plane of the Ornon Fault. c) Looking east into the upper Romanche valley above the village of La Grave. Most units dip away from the viewer. The foreground contain the Emparis basement block, overlain by its sedimentary cover (chiefly Jurassic shales). These in turn are tectonically overlain by the La Meije basement, carried on the La Meije Thrust (MT). This basement unit is overthrust by the Combeynot Thrust (CT) that carries the Combeynot Bock (CB). Note that the main thrusts climb laterally (northwards) in their hanging walls, from basement out into Jurassic cover rocks.

Figure 6. Simplified regional cross section (located on Fig. 3) showing the chief structural elements in the external western Alps, along a transect from the Vercors to the Frontal Pennine Thrust just east of the Combeynot massif (Fig. 5). The thermal data are after Bellanger et al. (2015) and display peak temperatures recorded in sedimentary rocks.

Figure 7. A simplified balanced and restored cross section for the continental crust along the Ecrins-Vercors transect (Fig. 6). See text for discussion.

Figure 8. Compilation of Ar-Ar age data from the Ecrins and Combeynot areas, after Bellanger et al. (2015).

Figure 9. a) Simplified geological map of the southern Ecrins district showing the two Champsaur turbidite basins. Paleoflow data is after Brunt et al. (2007) and Vinnels et al. (2010). The section (b) is after Gidon (Géol. Alp website).

Figure 10. Relationships between the Nummulitic succession and its substrate in the southern Ecrins. The viewpoints are shown on Fig. 9. a) looking onto the west face of Cedera from the hamlet of Les Fermons (c 1400m). b) looking towards the main tract of the Western Champsaur Basin from Sommet Drouvet (2655m). The lolly-pops denote bedding dip.
Figure 11. Schematic tectono-thermal model for continuous deformation (a-e in time) of the Ecrins domain – based on structural and stratigraphic relationships applied to a single inverting half-graben. J represents Jurassic strata on the thermal model, while e represents the Eo-Oligocene strata. See text for further details.

Figure 12. Placing the Ecrins in a subduction channel context. a) is a schematic illustration of the rifted European continental margin before orogenic contraction (after Butler, 2013). b) schematically illustrates the tectonic situation at c 34 Ma, as Dora Maira achieves its peak burial while deformation progresses with inversion of the former Dauphinois basins, at the mouth of the subduction channel. Subsequent return flow of the Dora Maira crust as a pip within the subduction channel generates significant “late” deformation in units further up (as sketched in Fig. 1c).
Figure 1.
Figure 6
Royans Vercors plateau Drac valley
predicted normal fault
Bas Dauphine
W
Om
10 km

Dome de la Mure
Om
Taillefer
La Meije
Combeynot
Plateau d’Empairis
Grandes Rousses
Tilted Eo-Oligocene unconformable on basement
1919 km2
542 km2
1717 km2

Dauphinois rift basins future Meije and Combeynot thrusts
2259 km2

Future Meije and Combeynot thrusts
1919 km2

Figure 7
Combined Ar isotopic data for Ecrins basement

- **Inherited radiogenic Ar**
- **Mixed ages**
- **Later Alpine deformation?**
- **Early Alpine deformation?**

Figure 8
Figure 9

Internal units
Eo-Oligocene
Mesozoic cover
basement
g - gneisses
m - metasediments
gr - granite

KEY

paleo-flow in turbidites

viewpoint (Fig. 10)

Drac Blanc valley

Drac Noir

Sirac

Vieux Chaillol

la Muande

Embrunnais-Ubaye thrust sheets

Drac Blanc

Drac Noir

Selle Fault Zone

Dourmillouse window

Eastern Champsaur Basin

Western Champsaur Basin

Valgaudemar

Aig de Morges

Vieux Chaillol

Cedera

Sirac

Fournel window

Figure 9
Figure 11
a)
Dauphinois basins

b)
European sub-continental mantle lithosphere

shortening at mouth of subduction channel
proto-Ecrins massif

"foreland" basin

Moho

Apulian continent

subducting European mantle lithosphere

UHP metamorphism in future Dora Maira massif

future Dora Maira block