Abstract
A new method for producing calcium sulfoaluminate (CA) clinkers is described. Sulfur is introduced from the gas phase as SO$_2$ and oxygen and reacts with solids during clinkerisation. Laboratory experiments and thermodynamic calculations are presented. Sulfur-containing phases, ye’elimite and ternesite, are stabilised together with belite to produce clinkers with various mineralogies. The influence of temperature and SO$_2$ partial pressure is analysed and their effect on the formation of undesirable anhydrite and gehlenite is explained. The process by which a potentially hazardous waste material such as sulfur is used as raw material, and possibly as fuel, to form CA cements, is shown to be successful.
Dear editor,

According to your comments, better quality images have now been added and the format of the manuscript has been revised.
Advances in clinkering technology of calcium sulfoaluminate cement

Isabel Galan, PhD
Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
Institute for Applied Geosciences, Graz University of Technology, Graz 8010, Austria
ORCID 0000-0001-6845-471X
igalangarcia@tugraz.at
Tel: +43 3168736885

Ammar Elhoweris
Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
Gulf Organisation for research and Development, Qatar Science and Technology Park, Doha, Qatar

Theodore Hanein, PhD
School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom

Marcus N. Bannerman, PhD
School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom

Fredrik P. Glasser, Prof
Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom

Number of words in the main text (excluding abstract and references): 5182

Number of figures: 7

Number of tables: 8
Abstract

A new method for producing calcium sulfoaluminate (C₃SA) clinkers is described. Sulfur is introduced from the gas phase as SO₂ and oxygen and reacts with solids during clinkerisation. Laboratory experiments and thermodynamic calculations are presented. Sulfur-containing phases, ye’elimite and ternesite, are stabilised together with belite to produce clinkers with various mineralogies. The influence of temperature and SO₂ partial pressure is analysed and their effect on the formation of undesirable anhydrite and gehlenite is explained. The process by which a potentially hazardous waste material such as sulfur is used as raw material, and possibly as fuel, to form C₃SA cements, is shown to be successful.

Keywords chosen from ICE Publishing list
Clinkering/clinker reactions; Diffraction (X-ray); Mineralogy; Modelling; Special cements; Thermodynamics; Waste valorisation

List of notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Chemical Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>CaO</td>
</tr>
<tr>
<td>S</td>
<td>SiO₂</td>
</tr>
<tr>
<td>A</td>
<td>Al₂O₃</td>
</tr>
<tr>
<td>S</td>
<td>SO₃</td>
</tr>
<tr>
<td>F</td>
<td>Fe₂O₃</td>
</tr>
</tbody>
</table>
1. Introduction

The formulation of calcium sulfoaluminate (CS₅A) cements is undergoing rapid development as a prelude to widespread application. The advantages of CS₅A cements relative to ordinary Portland cement (OPC) have been reported (Gartner 2004, Hanein et al. 2016, Gartner, Hirao 2015, Gartner, MacPhee 2011, Juenger et al. 2011) and include reduction of CO₂ emissions and lower specific energy requirements.

The major benefits of CS₅A cements primarily arise due to the presence of abundant ye’elimite (C₄AS₃) giving, among other advantages, high early strength. But other sulfur containing phases, including ternesite (C₅S₂S₃) and anhydrite (CS₅) can occur. CS₅A clinkers require a source of sulfur trioxide, commonly provided by addition of anhydrite to the clinker or either active anhydrite or gypsum to the raw mix. However, the formation of CS₅A clinker is challenging, particularly under laboratory conditions, due to volatilisation of SO₃ (the stable gas phase lost at elevated temperatures is in fact a mixture of SO₂ and O₂ from the solids) or, more generally, the inability to stabilise the clinker SO₃ content.

At clinkering temperatures, typically >1250 °C but lower than melting temperatures, which occur at >1300 °C (Idrissi et al. 2010, Touzo, Scrivener & Glasser 2013), the loss of SO₃ limits clinkering to a rather narrow window of temperatures and requires that the exhaust gas from the kiln is monitored and, if necessary, scrubbed to remove SOₓ. The present paper shows that this loss need not be a problem, particularly on an industrial scale: the high pressures of sulfur oxides can be used to an advantage and vapour transport is shown to be an effective way of achieving reaction amongst the components of the raw meal. Kinetic studies show that the equilibrium between gas and solid components is achieved rapidly at ≈1300 °C, even in the rapid flow rates achieved in commercial kilns.

Most experience of clinkering has been gained by laboratory experiments supplemented by pilot plant “burns”. In the present study, a somewhat different approach was taken. Experiments and thermodynamic calculations were combined to elucidate the clinkering process. The work demonstrates the importance of the vapour phase to clinkering and has led to changes in kiln operation: the kiln is modified to work as a semi-sealed system in order to gain control of the kiln atmosphere. This has been paralleled by using a small capacity (10-100g) laboratory kiln.
permitting independent control of temperature and gas partial pressures of SO\textsubscript{2} and O\textsubscript{2} and total pressure 1 bar.

Numerous high temperature thermodynamic equilibrium models based on Gibbs energy minimization have been developed for cement clinker predictions and have proved useful in cement research (Barry, Glasser 2000, Hökfors et al. 2015, Hökfors, Eriksson & Viggh 2014). Thermodynamic databases used to calculate high temperature cement phase equilibria include, MTDATA (Davies et al. 2002), FactSage (Bale et al. 2002), HSC (Roine 2002) and that recently developed by Hanein et al. (Hanein, Glasser & Bannerman 2015). As shown by Hanein et al. (Hanein et al. 2015), the stability of ye’elimite at clinkering temperatures is dependent on the fugacities (which we equate with partial pressures) of both SO\textsubscript{2} and O\textsubscript{2} in the kiln atmosphere and a thermodynamic model considering both the clinker phases and atmosphere has been developed to model the reaction path and optimising operating conditions for the production of CSA clinkers.

2. Experimental

2.1. Furnace

Experiments were conducted in a tube furnace specifically modified to operate at one bar total pressure but with controlled partial pressures of SO\textsubscript{2} and O\textsubscript{2} (Galan et al. 2014), see Figure 1. The pre-mixed gases, whose rates were monitored by means of precision mass flow controllers (Bronkhorst, NL), pass through the non-rotating furnace tube maintaining the desired atmosphere during the experiment. The discharge end of the tube is connected to a scrubber that absorbs and neutralizes unreacted SO\textsubscript{x} prior to gas discharge to the atmosphere. In that way, exit gases achieve less that 1ppm SO\textsubscript{x}. Temperature patterns (heating, idling and cooling) were programmed at the furnace control box.

2.2. Raw materials

Two sets of raw materials were used for the experiments:

Set 1: laboratory grades of Al\textsubscript{2}O\textsubscript{3} (Sigma-Aldrich 265497, 10 \(\mu\)m, 99.7%), SiO\textsubscript{2} (quartz, Fluka 83340, >230 mesh, >95%), CaCO\textsubscript{3} (Sigma-Aldrich 795445, >99%), Fe\textsubscript{2}O\textsubscript{3} (Fisher Scientific I/1150/53, general purpose grade) and CaSO\textsubscript{4} (Fisher C/2440/60, >95%).

Set 2: commercially available bauxite, clay and limestone. The oxide composition of the commercially available raw materials is shown in Table 1. The bauxite and the clay were provided by Zhengzhou Haixu abrasives Co. Ltd. (China), and the limestone was provided by Samin (France).

In both cases the raw materials were weighted, mixed, placed in crucibles or boats of aluminous porcelain or Pt, and introduced in the furnace which was ramped up to an isothermal level.

2.3. Experiments

The variables evaluated in the experiments described in this work include: SO$_2$ partial pressure, peak clinkering temperature, proportioning of raw materials and time. The O$_2$ partial pressure was kept sufficiently high to ensure oxidizing conditions to (i) prevent formation of undesirable sulfides and (ii) ensure all SO$_2$ is able to oxidize to SO$_3$ if the equilibrium sought demands formation of solids containing sulfate. The minimum O$_2$ excess was targeted at 100%, resulting in weight ratios SO$_2$:O$_2$ at least 1:0.5 (or SO$_2$:air, 1:2.5).

Approximately 25 compositions were tested and in all cases the atmosphere conditions were such that SO$_3$ was transferred from the vapour to the solid to achieve the target mineralogy. This was achieved providing an automatic check that the kinetics of transfer of sulfur species from gas to solid are rapid. The experiments included: (i) formation of CaSO$_4$ by transfer of SO$_2$+O$_2$ from the vapour to powdered CaCO$_3$ or CaO, (ii) formation of ye’elimite (Ca$_4$A$_3$S$_5$) and ternesite (Ca$_5$S$_6$S$_5$) by transfer of SO$_2$+O$_2$ to appropriate mixes of CaO and Al$_2$O$_3$, and CaO and SiO$_2$, respectively, and (iii) clinkers designed to contain Ca$_4$A$_3$S$_5$, belite (Ca$_2$S) and ferrite (solid solution CaF-CaAl$_2$F) by transfer of SO$_2$+O$_2$ to mixes of CaO, Al$_2$O$_3$, SiO$_2$ and Fe$_2$O$_3$. The different compositions were prepared by hand mixing the calculated amounts of dry solid reactants using a mortar and a pestle with a few drops of ethanol added to aid homogenisation, for 5 minutes. The resulting mix was dried in an oven at ≈100 °C for 2 hours to remove the alcohol. Clinkers were prepared from lab grade materials in the form of pellets (Table 2) and in powder (Table 3) and using commercially available raw materials (Table 4) in powder form with a particle size of approximately 40 microns. In experiments 1-11 in Table 3 lab grade calcium sulfate (CaS) was also added to the raw mix.
- Clinkers made with CaCO₃, SiO₂, Al₂O₃ and Fe₂O₃. Three different mixes were prepared in the form of 13 mm diameter pressed pellets. These were fired at 1300 °C for 30 minutes. Targeted mineralogies and gas flow conditions are shown in Table 2. The amount of sulfur introduced in the furnace was in all cases sufficient to form the target amount of Ca₃S. The rate of SO₂ used allowed for the formation of a minimum of 1.5 grams of “SO₃” in the 30 minutes the gases were passing through the tube furnace. The quantities of SO₃ required to obtain the target compositions 1, 2 and 3 in Table 2 were 0.21, 0.13 and 0.05 grams, respectively. Ca₄F was chosen as the target stoichiometry for ferrite based on trends shown by Touzo et al. (Touzo, Scrivener & Glasser 2013) for feeds with high Al₂O₃:Fe₂O₃ ratios, but changes were made in the course of the work because experiments showed that the actual ferrite lay close to Ca₄F.

- Clinkers made with CaCO₃, SiO₂, Al₂O₃, Fe₂O₃ and CaSO₄. In this set of experiments the SO₂+O₂ was turned on when the furnace reached ≈600 °C during ramp up (at 20 °C/min) and turned off during the cooling cycle (at 20 °C/min) below ≈600 °C. To facilitate reaction between gas and solid phases, a layer of the solid reactants several mm thick, ≈10 grams in total, was placed in a 15 cm long ceramic boat in the middle of the hot zone of the tube (at constant temperature). The mix proportions used and the experimental conditions (SO₂:air ratios and temperature) are summarised in Table 3. The time allowed for reaction, ≈120 minutes, does not include ramping up and down times. The amount of CaSO₄ was in all cases enough to form the desired target compositions; the SO₂+O₂ atmosphere was used to preclude sulfur losses from the solids, and to keep an atmosphere with an excess of “SO₃” at all times.

- Clinkers made with commercially available raw materials. Two different mixes were used under two different conditions. The mixes used were calculated for a certain target composition assuming silica (from both the clay and bauxite) will form belite (C₂S), the iron oxide will combine with Ca and Al oxides to form ferrite (C₄AF) and the excess of Al oxide react to form ye’elimite (C₄A₃S̅). The gas atmosphere was on from the beginning.
to the end of the experiments (to prevent possible sulfur losses during ramping up and
down). As in the lab grade experiments, a layer of the solid reactants several mm thick,
≈10 grams in total, was placed in a ceramic boat in the middle of the hot zone of the
tube (at constant temperature). The proportions used and the experimental conditions
(SO₂ partial pressure, temperature and time) are summarised in Table 4. In the column
‘time’ the number indicates the actual time at peak temperature. The excess of SO₃ in
these cases was higher: the mass of SO₃ that would pass through the tube during the
time at peak temperature (around 6 g) was 3-4 times higher than the amount needed in
theory for the target mineralogies (around 2.2 g and 1.4 g, respectively). For these
experiments C₄AF was chosen as the target stoichiometry for ferrite, as opposed to the
C₆A₄F used for the previous ones. This was done for several reasons: the exact
stoichiometry for ferrite in C₅A mixes is not well known and both extremes of the solid
solution had to be checked; also, according to the results, the ferrite phase made in
SO₂+O₂ atmospheres seems to be variable, but both the standard used for Rietveld
refinement and the data for the thermodynamic modelling consider C₄AF.

2.4. Characterisation

The products obtained were characterised by X-ray powder diffraction using an Empyrean
diffactometer (PANalytical) with strictly monochromatic CuKα1 radiation (λ = 1.54056 Å) at 45
kV and 40 mA. In order to determine the composition of the samples, they were analysed using
the Rietveld methodology as implemented in the GSAS software package (Larson, Von Dreele
2004). Final global optimised parameters included background coefficients, zero-shift error, cell
parameters and peak shape parameters. Peak shapes were fitted using the pseudo-Voigt
function (Thompson, Cox & Hastings 1987) with an asymmetry correction included (Finger, Cox
& Jephcoat 1994). A March-Dollase ellipsoidal preferred orientation correction algorithm
(Dollase 1986) was used when preferred orientation parameter needed refinement. The crystal
structure descriptions for the different phases encountered were: (Cuesta et al. 2013) for
orthorhombic ye’elimite, (Cuesta et al. 2014) for cubic ye’elimite, (Mumme et al. 1995) for β-
belite, (Colville, Geller 1971) for ferrite, (Louisnathan 1971) for gehlenite, (Irzan, Tillmanns &
2.5. Thermodynamic modelling

A thermodynamic model based on Gibbs energy minimisation and a recently compiled high temperature cement clinker stoichiometric phase thermodynamic database (Hanein, Glasser & Bannerman 2015) was used to supplement the experimental data: raw mix input and experimental conditions included in Table 4 were 'replicated' for the model calculations. The thermodynamic data for ye'elimite and ternesite (Ca₅₂S₂S̅) were recently derived by the authors (Hanein et al. 2015, Hanein et al. 2017). The thermodynamic model and compiled database used here have been validated in several studies (Hanein, Glasser & Bannerman 2015, Hanein et al. 2015, Hanein et al. 2017, Galan et al. 2017, Hanein et al. 2016). As a means of emulating the furnace operation (continuous counter-current flow) and to maintain constant SO₂ and O₂ partial pressures in the system, the gaseous atmosphere is assumed to be in excess (m_{gas}>>m_{solids}). P₂O₅ and MnO were neglected in thermodynamic simulations due to the lack of thermodynamic data for these species and phases containing them. The database also does not have thermodynamic data for Ca₆₃F; CaAF is the only calcium aluminoferrite for which data are currently available. The model used takes into account both the solids and the atmosphere surrounding them simultaneously. For comparison, only major phases formed and detected in XRD measurements of experimental runs are shown from the model results in Table 8. However, the model also accounts for all the species shown in Table 1 (except MnO and P₂O₅) and all the calculations carried out predict the conversion of all alkali to alkali sulfates; MgO also appears to remain unreacted in the thermodynamic calculations.

3. Results

3.1. Transfer of sulfur between gas and solids

The transfer of sulfur from gas to solid was confirmed to be rapid at 900-1000 °C and above: CaO reacted readily and completely with mixes of SO₂ and O₂ to form CaSO₄. For these experiments different flow rates and ratios SO₂:air were used (0.1:0.25, 0.434:1.058, 0.868:2.116 and 0.217:0.529 g/min), and they were performed using different amounts of CaO.
in powder and in porous pellets (13 mm diameter) for different periods of time (from 5 minutes to 4 hours). Formation of CaSO$_4$ was assessed quantitatively by XRD.

3.2. Formation of ye’elimite, C$_4$A$_3$$\overline{S}$

At ≈1200-1300 °C, C$_4$A$_3$$\overline{S}$ was formed in SO$_2$+O$_2$ atmospheres from 30 g mixes of CaCO$_3$ and Al$_2$O$_3$. Figure 2 shows the XRD pattern following 30 minutes reaction at 1220 °C, where the rates of SO$_2$ and air used were 0.105 and 0.2624 g/min, respectively, giving a SO$_2$:air ratio of 1:2.5. Such a high SO$_2$ concentration did not lead to high yields of ye’elimite: CaSO$_4$ forms, leaving unreacted Al$_2$O$_3$ and CaO coexisting with CA$_2$ and CA. The results cannot be in equilibrium as some phases are known to be incompatible, e.g. CaO and CA$_2$ (Galan et al. 2017). Re-introducing the sample for another 30 minutes in the furnace under the same conditions led to an increase in ye’elimite and a decrease in CaSO$_4$, leaving traces of CA$_2$ and Al$_2$O$_3$ still present. Further repetition of the same process led to total disappearance of CaO and Al$_2$O$_3$ and some increase both in the ye’elimite yield and reduction in the CaSO$_4$ with almost constant CA$_2$. After 7x30 minutes cycles, the XRD pattern did not change and it was considered that the sample reached its final state.

Rates of SO$_2$ and air of 0.0525 and 1.3122 g/min, respectively (ratio SO$_2$:air of 1:25) were used for tests of 60 minutes duration. Figure 3 shows the result of this synthesis, performed using the same amount of raw materials (stoichiometric amounts of CaCO$_3$ and Al$_2$O$_3$ to form C$_4$A$_3$$\overline{S}$) and same temperature (1220 °C) as the previous ones, for 60 minutes. As it can be seen, lower SO$_2$ partial pressure (10 times dilution) led to higher yields of C$_4$A$_3$$\overline{S}$, no unreacted raw materials and only small amounts of CaSO$_4$ and CA remaining. These experiments suggest the existence of a threshold in the SO$_2$ concentration which, if exceeded, favours reaction of SO$_3$ with lime to give CaSO$_4$, inhibiting formation of ye’elimite.

3.3. Formation of ternesite, C$_5$S$_2$$\overline{S}$

In a similar fashion to the methods used in section 4.2, the formation of C$_5$S$_2$$\overline{S}$ was investigated. A mix of CaCO$_3$ and SiO$_2$ (quartz) was prepared and placed in a boat and reacted at 1220°C for 60 minutes. As with the C$_4$A$_3$$\overline{S}$ experiments, the reactive sulfur containing atmosphere was left running for the duration of the experiment. Flow-rates of 0.25 g/min air and 0.1 g/min SO$_2$ were...
used in the initial high SO$_2$ partial pressure experiment to give a ratio SO$_2$:air 1:2.5. Figure 4 shows that the experiment did not form ternesite and instead produced a mixture of belite, anhydrite and unreacted material. The temperature, reaction time and cooling rates of the reaction were altered in attempts to form ternesite but, at this partial pressure, these experiments proved unsuccessful.

As calculation suggested that the SO$_2$ partial pressure was too high, another experiment was conducted, where the partial pressure of the SO$_2$ component of the atmosphere was lowered, similar to what was done in section 4.2: flow-rates of 0.1 g/min SO$_2$ and 2.5 g/min air were used to give a ratio air:SO$_2$ of 25:1. As shown in Figure 5, ternesite was successfully formed at 1075 °C in the sulfur containing atmosphere for the first time, in the presence of belite, anhydrite and unreacted lime. The temperature was chosen based on previous work (Pliego-Cuervo, Glasser 1978), who synthesized ternesite in sealed systems using belite and calcium sulfate as reactants. These experiments show the combined influence of temperature and SO$_2$ partial pressure on the stability of sulfur-containing phases. The field of stability of ternesite has subsequently been mapped by Hanein et al. (Hanein et al. 2017) who show quantitatively the necessity of controlling the partial pressures of gas species if ternesite is the desired product.

3.4. Synthesis of clinkers using laboratory grade reactants

At 1300 °C clinkers containing ye’elimite, belite and anhydrite were synthesized from mixes of CaCO$_3$, SiO$_2$, Al$_2$O$_3$ and Fe$_2$O$_3$ using both mixes of reactants in powder form and by pressing these same mixes in the form of 13 mm diameter pellets. The thickness of the pellets was ≈ 2 mm. Three different mixes were used in order to obtain different proportions of the phases in the final product. Targeted compositions are given in Table 2. Figure 6 and Figure 7 show the pellets corresponding to target compositions 1 and 2, respectively. In both cases the pellets were coherent and did not show cracking. However, the pellets with target composition 3, high in silica, crumbled during cooling and only powder could be retrieved.

The results from Rietveld refinement of the XRD patterns of the pellets are shown in Table 5. Mixes 1 and 2 led to formation of mainly four phases: ye’elimite, belite, anhydrite and gehlenite (C$_2$AS). In both cases, crystalline ferrite was almost absent. The presence of undesired C$_5$ and...
C\(_2\)AS can be attributed to kinetic effects but also to the SO\(_2\) partial pressure used which may have favoured their formation.

Mix 3 gave very different mineralogy: in this case, both \(\beta\)-C\(_2\)S and \(\gamma\)-C\(_2\)S were present, as well as ferrite and tricalcium aluminate. CaSO\(_4\) was absent and C\(_4\)A\(_3\)S and C\(_2\)AS only appeared in very low percentages. The physical decomposition of pellets, termed ‘dusting’, is attributed to the volume expansion arising from spontaneous conversion of the high temperature belite phases to \(\gamma\)-C\(_2\)S in the course of cooling.

Table 6 shows the results obtained from Rietveld analysis for the clinkers synthesized using lab grade reactants including CaSO\(_4\) (conditions shown in Table 3).

At a constant temperature of 1280 °C, a drastic effect is observed when diluting the SO\(_2\) from SO\(_2\):air ratio of 1:2.5 to 1:25 (reactions 1 and 2, respectively, in Table 6), not only in the formation of ye’elimite but also on the belite. High concentrations of SO\(_2\) shifted the equilibrium away from belite to mixtures of C\(_S\) and C\(_2\)AS. Further reduction of the SO\(_2\) partial pressure (ratios SO\(_2\):air 1:50 and 1:100 in reactions 3 and 4 in Table 6) did not lead to significant changes in the final compositions. The remaining % of C\(_2\)AS and C\(_S\) are attributed to kinetic effects: once C\(_2\)AS and C\(_S\) formed in quantity, 120 minutes does not seem to be sufficient to completely shift compositions towards C\(_2\)S and C\(_4\)A\(_3\)S.

Lower temperatures also have an impact in the final compositions, especially at the lower SO\(_2\) partial pressure conditions (experiment 5 in Table 6) at 1230 °C and 1:50 SO\(_2\):air ratio, making it even more difficult to reach the target compositions by reacting C\(_S\) and C\(_2\)AS.

The effect of the gas flow rate is also shown in experiments 2 and 9. Similar temperature (1280 and 1270 °C, respectively) and partial pressure (SO\(_2\):air ratio 1:25) but different gas flow rate (SO\(_2\):air rates 0.105:2.63 and 0.088:2.204 g/min, respectively) led to different results. In this case, lower rates promoted formation of C\(_4\)A\(_3\)S and C\(_2\)S: the faster the gases passed over the solid reactants the more this reaction was suppressed.

Compositions with higher ye’elimite content, around 60%, could be achieved at temperatures as low as 1200 °C (experiment 10 in Table 6); increasing the temperature to 1250 °C led to an increase in both ye’elimite and belite contents (experiment 11 in Table 6).
The absence of ferrite in some clinkers could be attributed to the poorly crystalline ferrite, not ‘visible’ by XRD, the possible inclusion of some iron, probably not exceeding a few wt. %, in ye’elimite (Touzo, Scrivener & Glasser 2013), and the limitations of the XRD to detect small amounts of phases.

3.5. Synthesis of clinkers using commercial grade reactants

Table 7 and Table 8 show results of Rietveld analysis and thermodynamic modelling output, respectively, of clinkers made with commercial grade raw materials (conditions shown in Table 4).

In the experiments with raw materials dilution of the SO₂ from SO₂:air ratios of 1:25 (experiments 1 and 2 in Table 7) to 1:100 (experiments 3 and 4 in Table 7) led to a significant increase in ye’elimite and belite. Also, the yield at 1300 °C is notably higher than at 1250 °C (experiments 1-4 in Table 7).

These experiments indirectly show the effect of the presence of impurities in the raw materials which affect stability and formation of the phases giving different results and different effect of temperature and SO₂ partial pressure. The mineralogical evolution with time can be observed in experiments 5-7 in Table 7: at 1300 °C and 1:100 SO₂:air ratio, equilibrium seems to shift towards formation of ye’elimite and belite with slow disappearance of gehlenite and calcium sulfate.

According to the model predictions, the conditions used in experiments 2, 4 and 5-7 would lead to the target compositions. The reasons why these were not achieved are likely due to kinetic limitations, the ferrite not being ‘visible’ with XRD and possibly the cooling rate which may have favoured formation of anhydrite and gehlenite as opposed to ye’elimite and belite. It must also be noted that the model does not account for solid solutions (or liquid solutions) and can therefore not predict the formation of entropy stabilised phases such as ye’elimite with iron substitution or various aluminoferrite compositions.

The formation of ternesite is predicted in four of the compositions (2, 3, 8 and 9 in Table 8) but only detected experimentally in two (3 and 8 in Table 7). This can be understood by looking at the temperatures and partial pressures which were used. Comparing experiments 2 and 3 from
Table 4, both were carried out at SO_2-air 1:100, but at different temperature. While in the experiment at 1250 °C ternesite could be seen, 1300 °C seems to be too high for ternesite to stabilise. In experiments 8 and 9 from Table 4, both performed at 1275 °C, the lower SO_2 partial pressure, 1:100 SO_2-air ratio, favoured formation and stabilisation of ternesite as opposed to 1:50. Even though under ideal conditions ternesite would form in all cases, in reality too high temperatures and too high partial pressures make it more difficult for it to be stabilised.

4. Discussion

At present, designing and implementing an “optimum” C₅A clinker is arguably more difficult than producing a PC clinker. Firstly, we do not at present know the “optimum” clinker mineralogy. Should ternesite be present, and if so how much? Can we control the polymorphism of belite so as to reproduce a reactive clinker with fast strength gain? And how are the economics of the raw materials associated with the clinker mineralogy? How do the clinker phases react with water and with each other to produce dense and durable matrices? Many questions remain unanswered.

But another complication arises: the presence of an important sulfur cycle in the course of clinkering which can affect mineralogy. These dependencies, weak for PC cements, become crucial in making C₅A cement. The concept of using a reactive atmosphere to facilitate reaction kinetics and control the quantitative clinker mineralogy is crucial but has not been well explored in respect of C₅A cement clinkering.

It is known that gas-solid reactions are important to a range of problems, as for example, in Portland cement clinkering, where the cycle of alkali circulation via the vapour phase may lead to condensation in cooler zones of (K, Na) sulfates on the clinker and these in turn, affect early hydration and set. However, the main oxide components of Portland cement are relatively involatile and the vapour phase composition relatively unimportant to the circulation of the main oxides. But cycles involving transfer of sulfur species assume much greater importance in the course of clinkering C₅A formulations where they control mass and energy balances. Both CaAs_3S and CsS_3S have definite limits of thermodynamic stability which need to be formulated in terms of composition, temperatures and fugacities of both SO_2 and O_2. Our approach to process development and optimisation, combining thermodynamic calculation with experimentally -
derived data, is being brought to maturity to guide and enhance clinker process development
quantitatively to control clinker mineralogy.

Many commentators have expressed doubts that gas fugacities (which we equate with partial
pressures) can be controlled in a rotary kiln. While this may be true as a general case, special
circumstances arise in the formation of calcium sulfoaluminate clinkers which make control
relatively easy to achieve. For example, conventional kilns consume the oxygen components of
air with the result that the atmosphere in the burning zone has ca 1-4% free oxygen: typically an
order of magnitude less than air. If the oxygen pressure is allowed to drop below that range,
locally reducing conditions are generated which affect clinker quality: for example, ferric iron is
reduced to ferrous. Moreover, sulfur, if present, is chemically reduced to sulfide and CO
increasingly appears in exit gases. These processes are undesirable, so free oxygen is always
present in excess in combustion gas. On the other hand, if oxygen partial pressures are allowed
to rise, the thermal economy decreases as excess air is unnecessarily heated. Even if oxygen
enriched gas is used, the same set of restrictions apply. Broadly, we assume that these
considerations will also apply to C₅₆₇₆₇₈₉ production. Thus, we assume that the oxygen partial
pressure will lie within a narrow range to optimise the clinkering process.

The sulfur species at elevated temperatures are dominated by SO₂ and its partial pressure is
fixed by temperature and by the sulfur content of the raw meal and fuel. As an approximation,
the vapour pressure of SO₂ in equilibrium with the clinker phases, e.g. anhydrite and ye’elimite,
can be used to fix the minimum numerical value of the partial pressures necessary to stabilise
these phases against evaporation. However, the actual pressure may significantly exceed that
minimum, as for example is likely to occur in the course of combusting sulfur- rich fuels, or when
elemental sulfur is injected into the kiln to supply part of the thermal energy.

Thus, we can distinguish three regimes in clinkering C₅₆₇₆₇₈₉ compositions: (i) a regime with low
partial pressure of SO₂ in which the raw meal loses sulfur in order to saturate the kiln
atmosphere, (ii) a regime which is essentially neutral and no significant loss or gain of sulfur
occurs between solid and atmosphere and finally (iii), a regime mainly of higher SO₂ pressures
in which sulfur, effectively as “SO₃”, is transferred from the atmosphere to the solid. In order for
regime (iii) to operate, excess oxygen has to be present because, as noted, the transfer of sulfur
from vapour to solid also involves an oxidation of the sulfur from S(IV) to S(VI). However, this condition is readily achieved by an excess of oxygen in the kiln atmosphere.

Despite the limitations of the experimental set-up, it was successfully proven that the transfer of SO₂ and O₂ gas to the clinkering solids to form C₅₅Å clinkers occurs rapidly and efficiently under normal operating conditions. It is also shown that clinkering temperatures tend to fall within a narrow range. At temperatures below ≈1230 °C, reaction kinetics are too slow to achieve complete reaction in the normal residence time in the hot zone, ca 20-60 minutes. On the other hand, if it is desired to produce ternesite, which decomposes above an estimated 1298 °C (Gutt, Smith 1967), clinkering temperatures cannot exceed this limit and the sulfur pressures need to be maintained within limits determined by Hanein, et al (Hanein et al. 2017). If the limits are observed, ternesite rich clinkers can be made in a single stage operation. However, ternesite can only be considered as a desirable clinker mineral if, in clinker, its reactions with other minerals and water leads to rapid strength gain: at present, this is not fully assured.

Ye’elimite containing clinkers have similar restrictive ranges where kinetics and equilibrium allow it to form stably, but these limits are in general somewhat less restrictive than those of ternesite. Above ≈ 1320 °C extensive melting occurs, so, depending on the target mineralogy, clinkering temperatures will also lie in a narrow band between about 1250 and 1320 °C. The other key variable, the partial pressure of SO₂, greatly affects the mineralogy of the clinkers: at a given temperature (around 1250-1300) a threshold in SO₂ partial pressure exists above which C₅₅ and C₅₅ÅS are more favourable to form than C₅₅ÅS and C₅₅S.

What is under less good control are the rates of sulfur transfer and their relation to the state or condition of the gas- solid surface available for exchange. These are functions of, amongst other factors, kiln size, gas flow rates and countercurrent solid flow rates, as well as total mass of transferrable components. As such these factors are probably specific to specific equipment and are not readily calculated without process data.

In this way, by combining technical and thermodynamic limits, it is possible to control the kiln atmosphere simply by controlling the sulfur content of the fuel and raw mix and ensuring an excess of oxygen.
The knowledge gained from these experiments and calculations, that is, the influence of temperature and partial pressures of the gaseous components informed the pilot plants trials at Ibuteo, Weimar, Germany, reported in (Hanein et al. 2016). Another important aspect of this work, controlling the polymorphism and reactivity of belite, is still work in progress (Elhoweris, Galan & Glasser 2017). And, of course, hydration studies are needed to determine the properties of the resulting binders at all ages. The correlation of clinker mineralogy with cementing properties is under investigation (Jen et al. 2017).

5. Conclusions

Experiments show that SO₂ and oxygen in the vapour are readily transferred to calcium aluminates and silicates thereby combining much of the sulfur. Understanding the physical chemistry of the process enables control over clinker phase composition and avoids production of free lime, arising from decomposition of anhydrite and aluminates. The method emphasises mass gains as opposed to more usual mass losses, which give greater freedom to design CSA clinkers with optimised properties and utilise sulfur containing fuel whose heat of combustion enables decrease consumption of hydrocarbon fuel and lowered CO₂ emissions. Thermodynamic modelling has proven to be an invaluable tool with which to simulate, evaluate and optimise novel cement compositions.

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Gulf Organization for Research and Development (GORD), Qatar through University of Aberdeen research grant number ENG016RGG11757.

References

Colville, A.A. & Geller, S. 1971, "The crystal structure of brownmillerite, Ca$_2$FeAlO$_5$", *Acta Crystallographica Section B*, pp. 2311.

Gartner, E. 2004, "Industrially interesting approaches to "low-CO$_2" cements", *Concrete Research*, vol. 34, no. 9, pp. 1489-1498.
Gartner, E. & Hirao, H. 2015, "A review of alternative approaches to the reduction of CO$_2$ emissions associated with the manufacture of the binder phase in concrete", *Cement and Concrete Research*, vol. 78, pp. 126-142.

Louisnathan, S.J. 1971, "Refinement of the crystal structure of a natural gehlenite, Ca$_2$Al(Al,Si)$_2$O$_7$", *Canadian Mineralogist*, vol. 10, pp. 822-837.

Touzo, B., Scrivener, K.L. & Glasser, F.P. 2013, "Phase compositions and equilibria in the CaO-
Al₂O₃-Fe₂O₃-SO₃ system, for assemblages containing ye’elimite and ferrite Ca₂(Al,Fe)O₅",
Cement and Concrete Research, vol. 54, pp. 77-86.

Figure captions

Figure 1. Furnace used for the experiments where sulfur was transferred from the gas to the
solid phase. The entire unit is housed in a ventilated enclosure 2400 mm width x 640 mm depth.

Figure 2. Synthesis of ye’elimite from CaCO₃ and Al₂O₃ in an atmosphere of SO₂+air (ratio
SO₂:air of 1:2.5) at 1220 °C. Result after 30 minutes reaction.

Figure 3. Synthesis of ye’elimite from CaCO₃ and Al₂O₃ in an atmosphere of SO₂+air (ratio
SO₂:air of 1:25) at 1220 °C for 60 minutes.

Figure 4. Attempt to synthesize calcium sulfo-silicate in an atmosphere of SO₂+air (ratio SO₂:air
of 1:2.5) at 1220 °C for 60 minutes.

Figure 5. Formation of calcium sulfo-silicate from C₂S and C₅ in an atmosphere of SO₂+air (ratio
SO₂:air of 1:2.5) at 1075 °C for 60 minutes.

Figure 6. Pellets with target composition 1 (Table 2) after firing at 1300 °C for 30 minutes under
SO₂+air atmosphere (ratio SO₂:air of 1:2.5). Pellets are 13 mm diameter.

Figure 7. Pellets with target composition 2 (Table 2) after firing at 1300 °C for 30 minutes under
SO₂+air atmosphere (ratio SO₂:air of 1:2.5). Pellets are 13 mm diameter.

Table captions

Table 1. Oxide composition of raw materials used for the experiments. XRF measurements of
bauxite and clay were performed at Edinburgh University at the School of Geosciences. Oxide
composition of limestone was provided by the supplier (Samin).
Table 2. Experimental conditions used for clinkers made with mixes of CaCO₃, SiO₂, Al₂O₃ and Fe₂O₃.

Table 3. Experimental conditions used for clinkers made with mixes of CaCO₃, SiO₂, Al₂O₃, and Fe₂O₃ and CaSO₄.

Table 4. Experimental conditions used for clinkers made with commercial grade raw materials.

Table 5. Rietveld analysis results of clinkers synthesized from laboratory grades of CaCO₃, SiO₂, Al₂O₃ and Fe₂O₃: experimental conditions shown in Table 2. Note the polymorphs of C₄A₃S̅ and C₂S are included in the corresponding boxes. O and C stand for orthorhombic and cubic ye’elimite, and α’, β and γ are the three polymorphs of C₂S. wRp stands for weighted-profile R factor.

Table 6. Rietveld analysis results of clinkers synthesized from laboratory grades of CaCO₃, SiO₂, Al₂O₃, Fe₂O₃ and CaSO₄: experimental conditions shown in Table 3. Note the polymorphs of C₄A₃S̅, orthorhombic (O) and cubic (C), are included in the corresponding box. All C₂S formed in these experiments was β-C₂S.

Table 7. Rietveld analysis results of clinkers synthesized from commercial grade raw materials clay, bauxite and limestone: experimental conditions shown in Table 4. Note the polymorphs of C₄A₃S̅ and C₂S are included in the corresponding boxes. O and C stand for orthorhombic and cubic ye’elimite, and α’ and β for the polymorphs of C₂S.

Table 8. Model predictions for the clinker compositions made with commercial grade raw materials: clay, bauxite and limestone. Temperature and gas atmosphere used for the simulations are detailed in Table 4.
Y: C_4A_3ʃ
M: CA
C: Cʃ
D: CA₂
L: CaO
A: Al₂O₃
Figure
Y: C_4A_3;
M: CA
C: C$
B: C_2S
S: SiO_2
C: C$\$
L: CaO
W: CS
B: C_2S
S: SiO_2
C: $C\$$
L: CaO
T: $C_5S_2\$$
Table 1. Oxide composition of raw materials used for the experiments. XRF measurements of bauxite and clay were performed at Edinburgh University at the School of Geosciences. Oxide composition of limestone was provided by the supplier (Samin).

<table>
<thead>
<tr>
<th>% Oxides</th>
<th>Bauxite</th>
<th>Clay</th>
<th>Limestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>11.52</td>
<td>39.24</td>
<td>0.1</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>69.32</td>
<td>38.18</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.21</td>
<td>5.98</td>
<td>0.009</td>
</tr>
<tr>
<td>MgO</td>
<td>0.00</td>
<td>0.06</td>
<td>0.26</td>
</tr>
<tr>
<td>CaO</td>
<td>0.16</td>
<td>0.87</td>
<td>55.70</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.455</td>
<td>0.624</td>
<td>0.00</td>
</tr>
<tr>
<td>TiO₂</td>
<td>3.409</td>
<td>1.773</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.000</td>
<td>0.001</td>
<td>0.00</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.081</td>
<td>0.088</td>
<td>0.00</td>
</tr>
<tr>
<td>LOI</td>
<td>13.44</td>
<td>13.08</td>
<td>44.00</td>
</tr>
</tbody>
</table>
Table 2. Experimental conditions used for clinkers made with mixes of CaCO$_3$, SiO$_2$, Al$_2$O$_3$ and Fe$_2$O$_3$.

<table>
<thead>
<tr>
<th></th>
<th>Target mineralogy (weight %)</th>
<th>Input (weight % solids)</th>
<th>Mass flow rates SO$_2$:air (g/min)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60% Ca$_4$S $,$ 20% C$_3$S $,$ 20% Ca$_3$F</td>
<td>48.1% CaO $,$ 7.6% SiO$_2$ $,$ 37.2% Al$_2$O$_3$ $,$ 7.1% Fe$_2$O$_3$</td>
<td>0.04:0.1 (1:2.5)</td>
<td>1300</td>
</tr>
<tr>
<td>2</td>
<td>40% Ca$_4$S $,$ 40% C$_3$S $,$ 20% Ca$_3$F</td>
<td>52.7% CaO $,$ 14.7% SiO$_2$ $,$ 25.6% Al$_2$O$_3$ $,$ 6.9% Fe$_2$O$_3$</td>
<td>0.04:0.1 (1:2.5)</td>
<td>1300</td>
</tr>
<tr>
<td>3</td>
<td>20% Ca$_4$S $,$ 60% C$_3$S $,$ 20% Ca$_3$F</td>
<td>57.1% CaO $,$ 21.5% SiO$_2$ $,$ 14.6% Al$_2$O$_3$ $,$ 6.8% Fe$_2$O$_3$</td>
<td>0.04:0.1 (1:2.5)</td>
<td>1300</td>
</tr>
</tbody>
</table>
Table 3. Experimental conditions used for clinkers made with mixes of CaCO$_3$, SiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$ and CaSO$_4$.

<table>
<thead>
<tr>
<th>Target mineralogy (weight %)</th>
<th>Input (weight %)</th>
<th>Mass flow rates SO$_2$:air (g/min)</th>
<th>T (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1.05:2.63 (1:2.5)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.105:2.63 (1:25)</td>
<td>1280</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.15 (1:50)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30% Ca$_3$S</td>
<td>52.1% CaO</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>60% C$_3$S</td>
<td>20.9% SiO$_2$</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10% Ca$_3$F</td>
<td>6.7% CaSO$_4$</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.04:2 (1:50)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.04:1 (1:25)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0.088:2.204 (1:25)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0.04:2 (1:50)</td>
<td>1200</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0.088:2.204 (1:25)</td>
<td>1250</td>
</tr>
<tr>
<td></td>
<td>60% Ca$_3$S</td>
<td>40.9% CaO</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>30% C$_3$S</td>
<td>10.5% SiO$_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10% Ca$_3$F</td>
<td>13.4% CaSO$_4$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33.0% Al$_2$O$_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.3% Fe$_2$O$_3$</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Experimental conditions used for clinkers made with commercial grade raw materials.

<table>
<thead>
<tr>
<th>Target mineralogy (weight %)</th>
<th>Input (weight %)</th>
<th>Flow rates SO$_2$:air (g/min)</th>
<th>Temperature (°C)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 36% C$_3$A$+$</td>
<td>12.2% bauxite</td>
<td>0.04:1 (1:25)</td>
<td>1250</td>
<td>120</td>
</tr>
<tr>
<td>2 32% C$_3$S</td>
<td>68.4% limestone</td>
<td>0.04:4 (1:100)</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td>3 9% C$_4$AF</td>
<td>19.5% clay</td>
<td>0.04:4 (1:100)</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>4 23% C$_S$</td>
<td></td>
<td>0.04:4 (1:100)</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>5 34% C$_3$A$+$</td>
<td>6.6% bauxite</td>
<td>0.04:4 (1:100)</td>
<td>1300</td>
<td>120</td>
</tr>
<tr>
<td>6 42% C$_3$S</td>
<td>67.3% limestone</td>
<td>0.04:4 (1:100)</td>
<td>1300</td>
<td>60</td>
</tr>
<tr>
<td>7 11% C$_4$AF</td>
<td>26.1% clay</td>
<td>0.04:2 (1:50)</td>
<td>1275</td>
<td>120</td>
</tr>
<tr>
<td>8 13% C$_S$</td>
<td></td>
<td>0.04:2 (1:50)</td>
<td>1275</td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Rietveld analysis results of clinkers synthesized from laboratory grades of CaCO$_3$, SiO$_2$, Al$_2$O$_3$ and Fe$_2$O$_3$: experimental conditions shown in Table 2. Note the polymorphs of C$_4$A$_3$$_$ and C$_2$S are included in the corresponding boxes. O and C stand for orthorhombic and cubic ye’elimite, and α', β and γ are the three polymorphs of C$_2$S. wRp stands for weighted-profile R factor.

<table>
<thead>
<tr>
<th>Target mineralogy (weight %)</th>
<th>Output mineralogy (weight %)</th>
<th>wRp (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_4$A$_3$$_$</td>
<td>C$_2$S</td>
<td>C$_$</td>
</tr>
<tr>
<td>1 60% C$_4$A$_3$$_$</td>
<td>O 20</td>
<td>α' 1</td>
</tr>
<tr>
<td>20% C$_2$S</td>
<td>C 28</td>
<td>β 2</td>
</tr>
<tr>
<td>20% C$_4$A$_3$$_$C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 40% C$_4$A$_3$$_$</td>
<td>O 15</td>
<td>α' 2</td>
</tr>
<tr>
<td>40% C$_2$S</td>
<td>C 23</td>
<td>β 19</td>
</tr>
<tr>
<td>20% C$_4$A$_3$$_$C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 20% C$_4$A$_3$$_$</td>
<td>O 2</td>
<td>β 25</td>
</tr>
<tr>
<td>60% C$_2$S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20% C$_4$A$_3$$_$C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6. Rietveld analysis results of clinkers synthesized from laboratory grades of CaCO$_3$, SiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$ and CaSO$_4$; experimental conditions shown in Table 3. Note the polymorphs of C$_4$A$_3$S, orthorhombic (O) and cubic (C), are included in the corresponding box. All C$_2$S formed in these experiments was β-C$_2$S.

<table>
<thead>
<tr>
<th>Target mineralogy (weight %)</th>
<th>Output mineralogy (weight %)</th>
<th>wRp (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C$_4$A$_3$S</td>
<td>β-C$_2$S</td>
</tr>
<tr>
<td>1</td>
<td>O 1</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>O 17</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>O 19</td>
<td>37</td>
</tr>
<tr>
<td>4</td>
<td>O 15</td>
<td>33</td>
</tr>
<tr>
<td>5 30% C$_4$A$_3$S 60% C$_2$S</td>
<td>O 9</td>
<td>13</td>
</tr>
<tr>
<td>6 10% C$_4$A$_3$F</td>
<td>O 24</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>O 23</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>O 15</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>O 27</td>
<td>40</td>
</tr>
<tr>
<td>10 60% C$_4$A$_3$S 30% C$_2$S</td>
<td>O 43</td>
<td>8</td>
</tr>
<tr>
<td>11 10% C$_4$A$_3$F</td>
<td>O 63</td>
<td>14</td>
</tr>
</tbody>
</table>
Table 7. Rietveld analysis results of clinkers synthesized from commercial grade raw materials clay, bauxite and limestone: experimental conditions shown in Table 4. Note the polymorphs of C_4A_3S and C_2S are included in the corresponding boxes. O and C stand for orthorhombic and cubic ye’elimite, and α' and β for the polymorphs of C_2S.

<table>
<thead>
<tr>
<th>Target mineralogy (weight %)</th>
<th>Output mineralogy (weight %)</th>
<th>wRp (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_4A_3S</td>
<td>C_2S</td>
</tr>
<tr>
<td>1</td>
<td>O 1</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>C 4</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>O 8</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>C 13</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>C 17</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>C 16</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>C 15</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>C 14</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>C 13</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C_4A_3S</th>
<th>C_2S</th>
<th>C_S</th>
<th>C_4AF</th>
<th>CT</th>
<th>C_5S_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O 2</td>
<td>31</td>
<td>64</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C 3</td>
<td>31</td>
<td>64</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>O 4</td>
<td>31</td>
<td>64</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C 5</td>
<td>31</td>
<td>64</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C 6</td>
<td>31</td>
<td>64</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C 7</td>
<td>31</td>
<td>64</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C 8</td>
<td>31</td>
<td>64</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>C 9</td>
<td>31</td>
<td>64</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>C 10</td>
<td>31</td>
<td>64</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8. Model predictions for the clinker compositions made with commercial grade raw materials: clay, bauxite and limestone. Temperature and gas atmosphere used for the simulations are detailed in Table 4.

<table>
<thead>
<tr>
<th>Model Output (weight %) using raw materials</th>
<th>C₃A</th>
<th>C₃S</th>
<th>C₅S</th>
<th>C₆AF</th>
<th>C₃S₂S</th>
<th>CT</th>
<th>CF (L)</th>
<th>MgO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.7</td>
<td>-</td>
<td>12.8</td>
<td>44.5</td>
<td>1.6</td>
<td>2.2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>37.2</td>
<td>32.4</td>
<td>23.5</td>
<td>5.0</td>
<td>-</td>
<td>1.6</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>37.2</td>
<td>-</td>
<td>10.7</td>
<td>5.0</td>
<td>45.2</td>
<td>1.6</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>37.2</td>
<td>32.4</td>
<td>23.5</td>
<td>5.0</td>
<td>-</td>
<td>1.6</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>35.6</td>
<td>42.0</td>
<td>14.0</td>
<td>6.6</td>
<td>1.5</td>
<td>-</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>35.6</td>
<td>42.0</td>
<td>14.0</td>
<td>6.6</td>
<td>1.5</td>
<td>-</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>35.6</td>
<td>42.0</td>
<td>14.0</td>
<td>6.6</td>
<td>1.5</td>
<td>-</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>35.6</td>
<td>6.4</td>
<td>-</td>
<td>6.6</td>
<td>49.6</td>
<td>1.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>9</td>
<td>35.6</td>
<td>6.4</td>
<td>-</td>
<td>6.6</td>
<td>49.6</td>
<td>1.5</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Journal Publishing Agreement

It is our policy to ask authors to assign the copyright of articles accepted for publication to the Publisher. Exceptions are possible for reasons of national rules or funding. Please tick the relevant options below.

In assigning copyright to us, you retain all proprietary rights including patent rights, and the right to make personal (non-commercial) use of the article, subject to acknowledgement of the journal as the original source of publication.

By signing this agreement, you are confirming that you have obtained permission from any co-authors and advised them of this copyright transfer. Kindly note that copyright transfer is not applicable to authors who are opting to publish their papers as Open Access. Open Access authors retain copyright of their published paper.

Please complete the form below and return an electronic copy to your ICE Publishing contact:
(http://www.icevirtuallibrary.com/info/submit).

Journal name: ADVANCES IN CEMENT RESEARCH
Article title: ADVANCES IN CEMENT TECHNOLOGY OF CALCIUM SULFOSALICYNATE CEMENT
Manuscript reference number: ACR-D-17-00028
Authors: I. GALAN, A. ELLOUZERIS, I. HAMEL, M. BANNERMAN, F. P. GLASSER
Your name: I. GALAN
Signature and date: [Signature] 28 April 2017

Please tick either one option from part A or one option from part B. Please complete part C.

A. Copyright

☐ I hereby assign and transfer the copyright of this paper to Thomas Telford Ltd.
☐ British Crown Copyright: I hereby assign a non-exclusive licence to publish to Thomas Telford Ltd.
☐ I am a US Government employee: employed by (name of agency)
☐ I am subject to the national rules of (country) and confirm that I meet their requirements for copyright transfer or reproduction (please delete as appropriate)

B. Authors with open access funding requirements. Please specify the Creative Commons license version required.

☐ CC-BY (for full details click here Creative Commons Attribution (CC BY) 4.0 International License)
☐ CC-BY-NC-ND (for full details click here Creative Commons Attribution Non Commercial No-derivatives (CC BY NC ND) 4.0 International License)

C. Please confirm that you have obtained permission from the original copyright holder. For ICE Publishing’s copyright policy, please click here. ICE Publishing is a signatory to the STM Guidelines.

☐ I have obtained permission from the original copyright holder for the use of all subsidiary material included in this paper (E.g. for borrowed figures or tables).

Thomas Telford Ltd is wholly owned by the Institution of Civil Engineers
ICE Publishing, 1 Great George Street, Westminster, London, SW1P 3AA, UK
Telephone: +44 (0)20 7665 2242 | Fax: +44 (0)20 7665 2189 | Web: www.icevirtuallibrary.com
To the editor and referees,

Enclosed is a manuscript to be considered for publication in “Advances in Cement Research”, entitled ‘Advances in clinkering technology of calcium sulfoaluminate cement’.

The manuscript describes a new process to produce cement. The main highlight of the process is the use of sulfur, in gas phase, as a raw material to produce calcium sulfoaluminate clinkers. The method presents important advantages in terms of CO2 and energy savings. The experimental design to develop the new method is described. The experimental and thermodynamic modelling results presented here lead to the completion of pilot plant trials (published in ACR vol 28, 2016).

We appreciate your consideration and look forward to its publication.

Yours sincerely,

Isabel Galan, Ammar Elhoweris, Theodore Hanein, Marcus Bannerman, Fredrik P. Glasser