Title: Igneous Intrusions in the Faroe Shetland Basin and their Implications for Hydrocarbon Exploration; New Insights from Well and Seismic Data

Article Type: Full Length Article

Keywords: igneous intrusions; seismic imaging; drilling; Atlantic Margin

Abstract: Igneous sills and dykes that intrude pervasively into prospective sedimentary basins are a common occurrence in volcanic margins, impacting the petroleum system and causing geological and technical drilling challenges during hydrocarbon exploration. The Faroe-Shetland Basin (FSB), NE Atlantic Margin, has been the focus of exploration for over 45 years, with many wells penetrating igneous intrusions. Utilising 29 FSB wells (with 251 intrusions) and 3D seismic data, this study presents new insights into the impacts that igneous intrusions have on hydrocarbon exploration. Examination of cores reveals additional igneous material in individual wells, compared to estimates using seismic or petrophysical data alone, leading to potential underestimation of the volume of the igneous component in a basin. Furthermore, analysis of petrophysical data shows that within the FSB there are silicic intrusions such as diorite and rhyolite in addition to the commonly encountered mafic intrusions. These silicic intrusions are difficult to recognise in seismic and petrophysical data due to their low density and compressional velocity and have historically been misidentified on seismic reflection data as exploration targets. Drilling data acquired through intrusions provide valuable insight into the problems exploration wells can encounter, often unexpectedly, many of which can be detrimental to safe drilling practice and result in prolonged non-productive time.
Dear Editors,

RE: Submission of Manuscript: “Igneous Intrusions in the Faroe Shetland Basin and their Implications for Hydrocarbon Exploration; New Insights from Well and Seismic Data” by Niall Mark, Nick Schofield, Stefano Pugliese, et al.

We are pleased to submit the above manuscript for consideration for publication in Marine and Petroleum Geology. We believe this manuscript will be of great interest to the readership of Marine and Petroleum Geology.

This manuscript examines igneous intrusions in the Faroe-Shetland Basin located on the North Atlantic Margin. The manuscript investigates the subsurface characteristics of igneous intrusions and in particular focusses on the various drilling issues that can arise if intrusions are encountered in the subsurface. This research has utilised 3D seismic data and commercial well logs which has provided us the framework for characterising intrusions in the subsurface and highlighting the challenges they present for hydrocarbon exploration.

Our results have important implications for hydrocarbon exploration along the Atlantic Margin (and other basins globally) as it identifies various drilling issues associated with intrusions such as low rates of penetration, fluid losses and high pore pressures associated with the intrusions. These drilling challenges can result in costly non-productive drilling time, incurring greater costs during exploration. Identification of previously ambiguous felsic intrusions has shown that these can be misidentified as exploration targets based on observations from exploration wells and seismic data. This manuscript also builds on recent work by Schofield et al., 2015 regarding the scale of investigation and highlights that numerous igneous intrusions are not being identified in the subsurface.

We are confident that our paper will be of broad interest to a wide spectrum of geoscientists including volcanologists and petroleum geologists. In particular, the paper is timely, and will be highly relevant to industrial geoscientists currently working in the Faroe-Shetland Basin, where significant oil and gas discoveries occur close to igneous intrusions. This study also presents unpublished results from an exploration well drilled in 2016 in the Faroe-Shetland Basin, which had problems related to igneous intrusions, highlighting the importance of the research and its relevance to current exploration along the Atlantic Margin and other volcanic rifted margins worldwide.

We thank you for considering this manuscript and look forward to hearing from you.

Sincerely,

Niall James Mark and Co-Author
Highlights:

- Mafic intrusions have characteristic subsurface properties making them easily identifiable in the subsurface.

- Thin igneous intrusions may be missed in seismic and well log data resulting in low estimations of the volume of igneous material in a sedimentary basin.

- Silicic igneous intrusions with compositions similar to granite can image poorly in seismic data and be misidentified as exploration targets.

- Igneous intrusions can cause challenges for drilling operations, including loss of drilling fluids, low rates of penetration, rapid drill bit wear and abnormal pore pressures.
Igneous Intrusions in the Faroe Shetland Basin and their Implications for Hydrocarbon Exploration; New Insights from Well and Seismic Data

N.J. MARK1*, N. SCHOFIELD1, S. PUGLIESE2, D. WATSON1, S. HOLFORD3, D. MUIRHEAD1, R. BROWN4, D. HEALY1

1Department of Geology and Petroleum Geology, University of Aberdeen, Aberdeen AB24 3UE, UK
2Chrysaor E&P Services Ltd, South Brettenham House, Lancaster Place, London WC2E 7EN
3Australian School of Petroleum, Santos Petroleum Engineering Building, University of Adelaide, SA 5005, Australia
4Department of Earth Sciences, Durham University, Durham DH1 3LE, UK.

*Corresponding author (e-mail: niall.mark@abdn.ac.uk)

ABSTRACT

Igneous sills and dykes that intrude pervasively into prospective sedimentary basins are a common occurrence in volcanic margins, impacting the petroleum system and causing geological and technical drilling challenges during hydrocarbon exploration. The Faroe-Shetland Basin (FSB), NE Atlantic Margin, has been the focus of exploration for over 45 years, with many wells penetrating igneous intrusions. Utilising 29 FSB wells (with 251 intrusions) and 3D seismic data, this study presents new insights into the impacts that igneous intrusions have on hydrocarbon exploration. Examination of cores reveals additional igneous material in individual wells, compared to estimates using seismic or petrophysical data alone, leading to potential underestimation of the volume of the igneous component in a basin. Furthermore, analysis of petrophysical data shows that within the FSB there are silicic intrusions such as diorite and rhyolite, in addition to the commonly encountered mafic intrusions. These silicic intrusions are difficult to recognise in seismic and petrophysical data due to their low density and compressional velocity and have historically been misidentified on seismic reflection data as exploration targets. Drilling data acquired through intrusions provide valuable insight into the problems exploration wells can encounter, often unexpectedly, many of which can be detrimental to safe drilling practice and result in prolonged non-productive time.

Keywords: igneous intrusions, seismic imaging, drilling, Atlantic Margin
INTRODUCTION

Igneous intrusions within petroliferous sedimentary basins have been the focus of recent research due to the importance of understanding how intrusions affect hydrocarbon exploration and the impact they have on the petroleum system, such as reduced reservoir quality and source rock maturation (Bishop & Abbott, 1993; Schutter, 2003; Holford et al., 2013; Rateau et al., 2013; Schofield et al., 2015; Muirhead et al., 2017; Senger et al., 2017). Analysis of exploration wells and 3D seismic data acquired by the petroleum industry has resulted in a greater understanding of igneous intrusions in the subsurface (Smallwood & Maresh, 2002; Thomson and Hutton, 2004; Planke et al., 2005; Archer et al., 2005; Hansen and Cartwright, 2006; Schofield et al. 2012a; Schofield et al., 2015). Specifically, 3D seismic data has resulted in a better understanding of the morphologies, emplacement mechanisms and interconnectivity of intrusions in rifted margin sedimentary basins (Gibb & Kanaris-Sotiriou, 1988; Bell & Butcher, 2002; Archer et al., 2005; Thomson & Schofield, 2008; Schofield et al., 2015). Although previous work addresses the scientific applications, such as intrusion morphologies and emplacement mechanisms, the significance of the research in relation to hydrocarbon exploration is often overlooked. Seismic data has provided valuable insights into magma plumbing systems, though such data typically only resolves intrusions larger than 40 m in thickness (Schofield et al., 2015) and thus the role of thinner/smaller intrusions is less well understood. Furthermore, most 3D seismic data is acquired in sedimentary basins where magmatism is predominantly mafic. Hence there is less knowledge about the seismic and petrophysical expression of silicic intrusions such as rhyolitic or dioritic compositions. Thorough characterisation of the variable intrusion compositions and the prediction of the amount of missed igneous material in the subsurface is essential, as failure to understand this can result in important impacts on drilling, including poor hole condition, low rates of penetration and non-productive time.

Specifically, this paper will address three main elements. Firstly, how data bias and resolution limits result in fewer intrusions being identified. Secondly, how identification of silicic igneous rocks within the subsurface present a challenge for seismic imaging and petrophysical characterisation. Finally, the drilling complications resulting from penetrating intrusions highlights how they directly
impact drilling operations, potentially incurring safety and environmental risks in addition to costly
downtime.

Despite the analysis focusing on the FSB, the themes and ideas explored in this paper are
applicable to igneous prone sedimentary basins worldwide and may help mitigate the risk of similar
issues presented in this study occurring during future exploration in other volcanic margins.

GEOLOGICAL HISTORY

The Faroe-Shetland Basin (FSB) is located between the Shetland and Faroe Islands on the NE
Atlantic Margin (Fig. 1). The basin can be sub divided into a series of SW-NE trending sub-basins and
is contiguous with the Møre Basin to the north-east and the Rockall Trough to the south-west
(Hitchen & Ritchie, 1987). The sub-basins consist of Mesozoic to Recent sediments bound by
basement highs comprised of Precambrian crystalline rocks capped by Paleozoic and Mesozoic
sediments (Lamers & Carmichael, 1999). The FSB has undergone several stages of rifting between
the Devonian and Paleocene, followed by Late Paleocene and Mid-Miocene inversion (Smallwood &
Maresh, 2002; Sorensen, 2003; Ritchie et al., 2011).

The FSB, along with the NE Atlantic Margin, underwent considerable igneous activity during
the Late Paleocene-Early Eocene as a result of the impinging proto-Icelandic plume and the eventual
continental break-up between Greenland and Northwest Europe (White & Mckenzie, 1989). This
igneous activity caused eruption of thick extrusive basaltic sequences and the emplacement of a
pervasive suite of sills and dykes, the majority of which are of mafic composition and intrude mainly
into the Cretaceous sediments (Gibb & Kanaris-Sotriou, 1998, Bell & Butcher, 2002, Thomson &
Schofield, 2008, Schofield et al., 2015, Schofield et al., 2017). The intrusions, collectively termed the
Faroe-Shetland Sill Complex (FSSC), are identified throughout the FSB with their areal extent
following the SW-NE basin trend, extending northwards into the Møre basin and south into the
Rockall Trough (Ritchie et al., 2011; Schofield et al., 2017) (Fig. 1).
DATA AND METHODOLOGY

The data used within this study consists of the Faroe-Shetland PGS MegaSurvey Plus, a 3D seismic dataset (Fig. 1), which covers an area of 24,000 km². The data has undergone substantial reprocessing leading to improved imaging of the FSSC (Schofield et al., 2015). The well data includes all the released exploration and appraisal wells drilled in the FSB, which were analysed to identify igneous intrusions. Within this dataset, 29 wells encountered intrusions, the locations of which are highlighted in Fig. 1b. For these wells, all wireline data (e.g. p-wave compressional velocity, gamma ray), composite logs, drilling data (e.g. rate of penetration, weight on bit) and available core was interpreted and synthesised. It should be noted that as the offshore exploration and drilling industry utilises substantial forms of terminology and abbreviations, we have included a table to allow for appropriate terminology descriptions and clarity (Table 1, supplementary material).

IDENTIFICATION OF INTRUSIONS IN THE SUBSURFACE: SCALE AND DATA BIAS

Identification of Intrusions on Seismic Reflection Data and Seismic Resolution

The igneous intrusions seismically imaged in the FSSC are easily identifiable as bright, high amplitude reflectors that are laterally discontinuous and crosscut stratigraphy (Bell & Butcher, 2002; Smallwood & Maresh, 2002, Schofield et al., 2015) (Fig. 2). The high amplitude nature of the mafic intrusions results from their high acoustic impedance relative to the surrounding host rock sediments (Fig. 2), which is a product of their high density (2.8-3.0 g/cm³) and velocities (5500-6600 m/s) (Bell & Butcher, 2002; Smallwood & Maresh, 2002). The majority of igneous intrusions have a mafic composition (informed by geochemistry from cored intrusions Gibb & Kanaris-Sotriou, 1998).

Schofield et al., (2015) & (2017) discussed the issues regarding the vertical resolution of seismic data and how, depending on the seismic tuning thickness, intrusions may be poorly resolved or not detected at all, leading to a potential underestimation of intrusive volume within the Atlantic Margin Basins. Resolution is the ability to distinguish two features from one another whereas detectability is the ability to identify that a feature exists. Schofield et al., (2015) shows that for the Cretaceous succession in the FSB, where the majority of the intrusions of the FSSC are hosted, the
vertical resolution ranges from 54 m at the top Cretaceous to 81 m at the base of the Cretaceous with detectability ranging from 26 m to 40 m.

Identification of Intrusions on Wireline and Wireline Resolution

Mafic igneous intrusions have a characteristic wireline response making them distinguishable relative to the host sediments (Bell & Butcher, 2002: Smallwood & Maresh, 2002) (Fig. 3). Although, identification of mafic igneous intrusions is usually relatively simple from wireline log responses, it is important to understand the petrophysical properties of mafic rocks which lead to this response; this is particularly significant when understanding and contrasting the wireline response of other igneous rock types (e.g. silicic) within the subsurface.

Mafic magma is abundant in minerals such as olivine and pyroxene, which have p-wave compressional velocities of 8420 m/s and 7200 m/s respectively (Mavko et al., 2009; Rider & Kennedy, 2011). This leads to mafic igneous intrusions having high compressional p-wave sonic velocities that are much higher than surrounding sediments (host rock sediments can have variable properties due to factors such as compaction, fluid types and lithology) and are typically within the range of 5500-6600 m/s (which converts to 55-45 µs/ft which is the conventional unit of measurement for UK continental shelf wells) (Fig. 3). Shear wave sonic velocities for igneous intrusions are also much higher than surrounding sediments and are typically within the range 2400-3400 m/s (Fig. 3). Due to the typical uniform distribution of minerals through relatively thin igneous intrusions, the sonic wireline response is generally ‘blocky’ showing little to no variation through an intrusion (see Fig. 3).

In addition to possessing high seismic velocities, olivine and pyroxene also possess high relative bulk densities of 3.31 g/cm³ (olivine) and 3.3 g/cm³ (pyroxene) (Mavko et al., 2009; Rider & Kennedy, 2011), resulting in mafic igneous intrusions typically exhibiting bulk densities between 2.8-3.0 g/cm³ with a ‘blocky’ density response which is easily distinguishable from the background host rock sediments (Fig. 3).

The neutron porosity response for mafic igneous intrusions is typically lower than the surrounding host rock sediments with values in the range of 0.08-0.1pu (Fig. 3). The neutron log
essentially measures the hydrogen content of a formation and will generally be low for a crystalline igneous rock as there is often limited pore space to host water (Rider & Kennedy, 2011). The neutron-density separation for mafic igneous intrusions is typically a positive separation (neutron to left, density to the right) which is a larger positive separation than for shale sediments (Fig. 3).

As mafic magma generally contain few radioactive minerals (e.g. Potassium, Thorium and Uranium) the typical gamma response for mafic intrusions is very low, in the range of 9-30 API.

Mafic intrusions are significantly more electrically resistive than the surrounding host rock sediments (shales), as they have low porosity and permeability and contain little or no water compared with host rock sediments. The resistivity log for mafic intrusions commonly shows wrap-around (when measured values exceed the upper range on the scale) due to the resistivity being so high. The resistivity log response is less blocky compared to the sonic density and gamma logs with a more serrated response (Fig. 3). For some intrusions, the resistivity log can be chaotic and fluctuate significantly over a short distance which often reflects fracturing within the intrusions.

The caliper log measures the diameter of the borehole and therefore the rugosity of the hole (Smallwood & Maresh, 2002). Due to the mechanically resistive and competent nature of intrusions, the caliper log typically remains uniform through intrusions in the FSB, although if the intrusions are thin and fractured, they are more likely to collapse into the wellbore, causing deviations in the caliper log.

Although gamma ray logs record a sharp change when an intrusion is encountered, resistivity, p-wave sonic and neutron-density logs show a gradual variation (Fig. 3). Commonly this creates a bell shaped wireline response caused by the values ramping up or down in the host rock sediments directly above and below the intrusive contact (Fig. 3). This ramping up of the values in the host rock prior to encountering the intrusion is interpreted as representing the contact metamorphosed or hornfels zone (Smallwood & Maresh, 2002). This zone is where the host rock sediments have been altered by heating from the intrusions resulting in differing petrophysical characteristics compared to the unaltered host rock sediments (Smallwood & Maresh, 2002).
Despite wireline logs (e.g. Gamma, Neutron Porosity, Resistivity) often showing distinct log motifs upon recording igneous intrusions, wireline tools have limitations in terms of the vertical thickness of beds and bed properties the tools can actually resolve.

Table 1 lists the various wireline logs and their average vertical resolution, although this figure can vary depending on factors such as logging speed and formation properties. Over non-reservoir intervals which are of less commercial interest, logging speeds will be faster, and often with a reduced suite of tools, which can lead to reduced ability to distinguish individual bed boundaries. However, at best, intrusions which are <1m thick are unlikely to be distinguished using the common logging tools. Modern downhole well tools such as borehole imaging logs have a much greater vertical resolution (2 mm); however, due to cost, these are typically reserved for reservoir sections and are often not run across the full drilled section.

<table>
<thead>
<tr>
<th>Logs</th>
<th>Definition</th>
<th>Response in Mafic Intrusions</th>
<th>Vertical Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma</td>
<td>Measures the natural radioactivity of the formations</td>
<td>Sharp drop (9-30 API)</td>
<td>60-90cm</td>
</tr>
<tr>
<td>Resistivity</td>
<td>Measures the resistivity of the formations</td>
<td>High blocky response but can also be serrated with big fluctuations (250-2000 ohm.m).</td>
<td>Induction tools: 100cm</td>
</tr>
<tr>
<td>Neutron Porosity</td>
<td>Measures a formations water content</td>
<td>Lower than surrounding sediments and blocky response (0.08-0.1pu)</td>
<td>40-60cm</td>
</tr>
<tr>
<td>Bulk Density</td>
<td>Measures the overall density of the rock</td>
<td>Higher than surrounding sediments and blocky response (2.8-3.0 g/cm³)</td>
<td>40-60cm</td>
</tr>
</tbody>
</table>
Compressional Velocity

Table 1: General petrophysical response for different logging tools (Rider & Kennedy, 2011).

<table>
<thead>
<tr>
<th>Compressional Velocity</th>
<th>Formations interval transit time</th>
<th>Acoustically faster than surround sediments, blocky response (5500-6600 m/s)</th>
<th>60cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caliper</td>
<td>Measures the diameter of the well bore</td>
<td>Consistent but fractures can cause deviations</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Identification of Intrusions in Core & Cuttings

Well cuttings are a product of the drilling process and are small pieces (<0.5-10 mm) of rock that are broken away by the drill bit during the drilling process, are analysed at the rig site and are given a geological description (Cook et al., 2012). Cuttings are ideally sampled every 10ft, but this may depend on the well design and drilling performance, although sample rate often increases when the well reaches the progessed reservoir interval (Millet et al., 2016). Cuttings from intrusives are generally coarse grained, possess few vesicles and have a ‘fresh’ unweathered appearance (Millet et al., 2014).

If core is acquired during drilling, this is the only way to categorically define that an intrusion has been encountered. Visually, intrusions can be identified in the core as they differ in texture and appearance from the host rock sediments (Fig. 4b). Although core data is useful, it is usually only acquired for reservoir sections and any intrusions that are cored within the UKCS have often been done so serendipitously.

Core through intrusions allows the identification of intrusions which are < 10 cm in thickness, greater detection than would be possible with any of the common logging tools.

As an illustration of intrusion detectability in wireline and core, the original composite log for well 205/10-2B (Fig. 4a & b) only interpreted two intrusions at the base of the well. However,
this section was also cored and actually contains 15 thin intrusions ranging from 4-30 cm in thickness with a cumulative thickness of 2.5 m (Fig. 4b).

Drilling Data

Measurements recorded during drilling (MWD) such as rate of penetration (ROP), torque and weight on bit (WOB), can also be used to identify intrusions in the subsurface. These measurements are acquired whilst the well is being drilled and are measured continuously with no lag time, therefore they provide the first indication of the presence of an intrusion within the subsurface. Even logging measurements acquired whilst drilling (LWD), located downhole on the bottom hole assembly, possess a delay when compared to live drilling measurements as these tools are commonly located around 10 m from the drill bit, meaning that an intrusion could have already been penetrated before it is picked up on logs.

When drilling through intrusions, it is common for the ROP to drop to values as low as <1-2 m/hr, whereas shales have values around 5-20m/hr and sandstones typically have values 20-30m/hr. The ROP values for different sediments is highly variable due to factors such as weight on bit, drill bit type drilling depth, compaction and cementation; however, igneous material typically drills much slower than sediments due to the hardness of crystalline igneous lithologies (Fig. 5). Additionally, due to the hard nature of crystalline rocks, bit wear and degradation can be fast, increasing the possibility of needing to repeatedly withdraw the drill string to replace with a new bit, a process commonly called ‘tripping’.

The WOB measures the amount of downward force exerted on the bit during drilling. Due to the hardness of intrusions, ROP can drop significantly; to counteract this, the driller will increase the WOB to maintain high ROP (Fig. 5).

When drilling through an igneous intrusion if the WOB and rotations per minute (RPM) of the drill bit are not closely controlled, the drill head can become stuck and ‘lock-up’, resulting in increased torque on the drillstring. If torque on the drillstring continues to increase to critical levels, it can cause ‘twist off’ (breaking) of the drillstring in the well bore.
Igneous intrusions commonly contain primary cooling fractures, in addition, being brittle they are therefore susceptible to further secondary fracturing during later tectonic movements. These two aspects can lead to substantial issues with loss of drilling fluid into the primary and secondary fractures. Loss of drilling fluid is not only costly, but the mud is also crucial to maintaining stable downhole conditions, cuttings return and importantly, control of the potential influx of pressured fluids into and up the wellbore.

FSB INTRUSIONS STATISTICS

From statistical analysis of the intrusions encountered by wells in the FSB, it is possible to gather data about the intrusions and their various characteristics such as abundance and average thicknesses (Schofield et al., 2015). In total, 251 intrusions have been identified in the FSB wells based on log descriptions, petrophysical response and where possible, seismic to well ties.

It has been possible to determine the following about the FSSC:

- Average intrusion thickness: 14.9 m (minimum thickness of single intrusion: 6 cm and max thickness of single intrusion: 277 m)
- Median intrusions thickness: 6.1 m
- Average depth of intrusions: 3579 m true vertical depth subsea (TVDSS). (shallowest: 1709 m and deepest: 5755 m)
- Claystone is the most common host rock lithology with 245 of the 251 total intrusions emplaced into claystone/shale. The remaining intrusions are emplaced into sandstone and volcaniclastics
- 8% of intrusions encountered are silicic. Some of these silicic compositions range from diorite to rhyolite and have a higher silica content.
- 75% of intrusions encountered occur in Cretaceous sediments.
- 24% of intrusions encountered occur in Palaeocene sediments.
- 1% of intrusions encountered occur in Jurassic sediments (this figure is highly biased due to few wells penetrations in the Jurassic—see discussion below)
The above statistics, however, need to be taken in context of the data bias as exploration wells are typically situated away from areas that contain a large number of seismically resolvable intrusions. However, in terms of average thickness, when the well results are compared against wells which have accidentally targeted areas of high intrusion density (e.g. 164/7-1 in the Rockall Basin which encountered 76 intrusions over an 1800m thick interval; the average thickness is 11m Archer et al., 2005) the average thickness value of c. 15m in the FSB appears to be a reasonable estimate for offshore basins along the Atlantic Margin.

In terms of the stratigraphic successions which host the most intrusions, factors like total depth of the well will affect whether intrusions are present or not. From both well and seismic data, it is clear that intrusions are prevalent throughout the Cretaceous succession. However, well penetrations of older successions in basinal settings (e.g. Jurassic) are limited within the FSB (Fig. 1) and tend to be focused along the basin highs (e.g. Judd High and Erlend High) where there are fewer intrusions, therefore introducing a strong sampling bias. Despite this, the fact that intrusions have been sampled within the Jurassic, even on basin highs, suggests that the percentage of intrusions in basinal area of the Jurassic (and older strata) is likely to be much higher than the 1% based on the current well data.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Number of Exploration Wells that Encountered Intrusions</th>
<th>Total Number of Intrusions encountered by exploration wells</th>
<th>Average Thickness of Intrusions (m)</th>
<th>Depth to Shallowest Sill (mTVDSS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970-1985</td>
<td>15</td>
<td>190</td>
<td>14.8</td>
<td>1685</td>
</tr>
<tr>
<td>1986-2000</td>
<td>6</td>
<td>7</td>
<td>52.9</td>
<td>1719</td>
</tr>
<tr>
<td>2001-present</td>
<td>9</td>
<td>55</td>
<td>17.32</td>
<td>2438</td>
</tr>
</tbody>
</table>
Table 2: Intrusion statistics over time. The increase in the number of intrusions encountered during the 2001-present period is likely a result of companies targeting sub-basalt prospects, particularly in the Faroes sector (e.g. Brugdan) with the extrusive basalt making it difficult to image intrusions.

FSB EXPLORATION CASE STUDIES 1: ISSUES WITH SILICIC INTRUSIONS AND SEISMIC IMAGING

To understand the challenges caused by encountering igneous intrusions in the subsurface, it is important to summarise some of the key wells and the issues that occurred related to igneous intrusions. The summary below, of a number of key wells, was compiled from composite logs, drilling reports and seismic data.

Silicic Intrusions - Wells 205/10-2B and 205/10-5A

The majority of intrusions within the FSSC that have been encountered in drilling operations have a mafic composition and are described as tholeiitic olivine-dolerites (Gibb & Kanaris-Sotiriou, 1988; Ritchie et al., 2011). However, several of the exploration wells have also encountered silicic intrusions ranging from dioritic to rhyolitic compositions. Although some of the silicic intrusions were encountered close to igneous centres (e.g. Erlend Igneous Centre wells 209/03-1, 209/04-1A and 209/09-1A; Jolley & Bell, 2002), exploration wells that were drilled in more basinal locations away from known volcanic centres also encountered silicic intrusions (Fig. 1). Wells 205/10-2B drilled in 1984 by Britoil and 205/10-5A drilled in 1997 by Chevron located along the Flett Ridge (Fig. 1), encountered silicic intrusions with compositions varying from dacite to rhyolite.

The silicic intrusions in 205/10-2B occurred within a series of stacked mafic intrusions, whereas the silicic intrusion within 205/10-5A was the only intrusion encountered within that well. Figure 6 shows the log and seismic response for the silicic intrusions encountered within the 205/10-5A and 205/10-2B in comparison to the log response for a mafic intrusion encountered in 205/10-2B. Figure 6 illustrates the petrophysical and seismic imaging contrasts between silicic and mafic intrusions. Notably, the silicic intrusion in 205/10-2B is acoustically similar to the host rock shales...
and the density drops compared to the host rock shales (Fig 6b). The gamma response is lower than the surrounding shales but is not as low as the mafic intrusions encountered by 205/10-2B (Fig. 6a). Notably the silicic intrusion in 205/10-2B is not detectable in the seismic data (Fig. 6b). The silicic intrusion in 205/10-5A also has a lower density compared to the host rock shales (Fig. 6c), whereas the gamma ray log shows minimal changes between the host rock and the intrusion (Fig. 6b & c). The significance of these petrophysical differences and the issues of identification of silicic intrusions within the subsurface is discussed later.

False Exploration Targets - Well 207/01a-4/4Z

Well 207/01a-4 was drilled on the Rona Ridge in 1990 by Texaco Britain Ltd (Fig. 1). The reservoir targets were sediments deposited on the flanks of the Rona Ridge including Carboniferous/Devonian sandstones, Jurassic sandstones and Lower Cretaceous sandstones. These targets were not encountered during drilling; however, the top of a 213 m thick mafic intrusion was encountered at 1584 MDBRT (measured depth below rotary table), 25 m deeper than the first prognosed reservoir horizons were expected to occur (Fig. 7). Upon penetrating the intrusion, the decision was taken to core the intrusion to determine what the lithology was. A vertical seismic profile (VSP) look ahead was also conducted, to try and ascertain the total thickness of the intrusion, and showed that the intrusion was potentially 198 m thick. Based on the results of core and the VSP log, the decision was made to sidetrack the well at a depth of 618mBRT down dip to the SE (207/01a-4/4Z End of Well Report).

The 207/01a-4Z well drilled for a further 1369 m before encountering the intrusion again at a depth of 1987 MDBRT. The sidetracked well drilled the entire intrusion, which was 213 m thick. At the time of drilling, it is likely that the intrusion was poorly imaged on seismic data and the intrusion’s close proximity to the Rona Ridge would make it difficult to distinguish a high amplitude intrusion from a high amplitude basement reflector. Seismic data at the original well location reveals that the well penetrated the intrusion, and then the sidetracked well (207/01a-4Z) was drilled to avoid the intrusion but simply encountered the deeper wing of the intrusion (Fig. 7).
Upon entering the intrusion, ROP in both the original and sidetracked well dropped from 25m/hr to 2m/hr; additionally, there were issues with bit wear (207/01a-4/4Z Geological Report). In the case of the 207/01a-4/4Z sidetrack, this resulted in the drilling of an undergauge hole, that subsequently required reaming to prevent the drill string becoming stuck, resulting in further nonproductive time (NPT).

FSB EXPLORATION CASE STUDIES 2: DRILLING ISSUES ASSOCIATED WITH INTRUSIONS

Drilling Issues (Gas Kicks and Bit Wear) - Wells 214/28-1

Exploration well 214/28-1, drilled in 1984 by Esso Exploration and Production UK, encountered a total of nine intrusions between 3816 and 5020 m MDBRT in Lower Paleocene and Upper Cretaceous sediments (Tassone et al., 2014). These intrusions resulted in numerous drilling issues towards the lower half of the well, most notably the penetration of a series of gas charged intrusions between 4598-5014 m MDBRT, which led to the temporary loss of well control and drilling fluids being ejected out of the well onto the kelly bushing and rig floor (Fig. 8).

Well 214/28-1 also experienced problems with drill bit integrity and low ROP. Six drill bits were required to drill a 322 m section in the Middle Paleocene which contained four intrusions with a combined thickness of only 52 m, whereas a similar 400m sedimentary section with no intrusions in the nearby 214/27-1 offset well required only three drill bits. The additional drill bits needed would have meant that during drilling of the intruded section, in addition to the extra costs of additional bits, the well would have required twice as many trips to replace the damaged bits. Each trip out of the hole and back in to replace the bit typically takes 24 hrs resulting in further NPT.

The largest intrusion encountered in the 214/28-1 well occurred at 3992 m MDBRT and was 44 m thick. This intrusion had ROP of less than 1.5m/hr, whereas the host rock sandstones had ROP values of 3-6m/hr. Despite the thickness of this intrusion and the benefit of modern 3D seismic data, the intrusion is still extremely difficult to fully image (Fig. 8).
Intrusion number six encountered at 4596 m MDBRT was 6 m thick and was one of the two intrusions within the well that was gas charged and required drilling to be stopped whilst the well was circulated to bring the gas influx under control. During this process, the mud weight was raised from 10.7 pounds per gallon (ppg) to 13.2 ppg which brought the gas influx in the well to acceptable levels. In total, this intervention incurred 15 days of non-productive time (NPT) and also resulted in the premature setting of the 7” liner which meant drilling ahead in 6” hole and ultimately meant the well was unable to reach its intended TD (Fig. 8).

Intrusion number eight encountered at 4927m MDBRT was 10 m thick and resulted in extremely low ROPs which dropped from 2.5m/h through shales to 0.3m/hr through the intrusion. When the bit was pulled, it was found to be highly worn with a considerable amount of metal shavings found in the drilling mud (214/28-1 End of Well Report). A new bit was run in the hole, but slow ROP continued through the intrusion with only 13 m drilled in 34 hours (Fig. 8).

Intrusion nine encountered in the 214/28-1 well occurred at 5013m MDBRT and was 7.6 m thick. This intrusion was also found to be gas charged and the resulting influx of gas into the well bore resulted in mud flowing out over the kelly bushing. Drilling ceased and the well was shut in, whilst the mud weight was raised again, to 14.3 ppg. Although the mud weight was sufficient to control the pressure of the influxing gas, the high mud weight also led to mud losses. These losses were likely the result of induced fracturing of the surrounding host rock strata. This incident resulted in a total of seven days of NPT whilst the gas levels were monitored (Fig. 8).

In total on well 214/28-1, the issues with gas charged intrusions and drill bit integrity resulted in a combined NPT of 22 days on top of the slow drilling rates and time spent on trips for new bits (Fig. 8). The presence of intrusions was unexpected in the pre-drill scenario and the efforts to control the gas charged intrusions resulted in a premature termination of the well before it had reached its intended exploration target.

Loanan Case Study - Well 214/23-1
The Loanan prospect (214/23-1) was drilled in 2016 by JX Nippon Exploration & Production (U.K) Ltd (Fig. 9). The prognosis primary and secondary reservoir targets were Middle Paleocene turbidite reservoirs. Importantly, the closest offset well to Loanan is 214/28-1, which as described above, experienced significant problems whilst drilling due to the presence of igneous intrusions.

The Loanan primary target was within a structural closure, located at the edge of a forced fold (Schofield et al., 2015), and located 0.35s TWT (~600 m’s) above a large sill that was the continuation of the upper sills encountered in the 214/28-1 exploration well (Fig. 10). The secondary target was located 300m deeper, approx. 0.155s TWT (~260 m) from the imaged top of the sill.

During the well design process, concern had been expressed about encountering potentially overpressured intrusions, specifically in the secondary target, based on the offset well 214/28-1. Although the planned TD for the Loanan was located some 400 metres above the stratigraphic level containing intrusions which caused the drilling issues in 214/28-1, seismic data appeared to image a series of cross-cutting intrusions potentially connecting the ‘family’ of lower intrusions which caused problems in the 214/28-1 well to the upper intrusions in 214/28-1 which also sit below the Loanan secondary target. On close inspection of the seismic data, it appears that thin intrusions, below the tuning thickness, potentially intrude close to the secondary Loanan target and may even intrude the target (Fig. 11).

Given the historical risk in offset wells and the uncertainty in encountering intrusions, particularly towards the base of the well, the well design catered for the small, but not negligible risk of encountering an overpressured intrusion.

In line with pre-drill expectations, the Loanan well encountered no intrusions near the primary target. Importantly, in addition to this, the leak of test (LOT) taken below the 9 5/8” shoe (146 m above the top of the primary reservoir) was significantly lower than expected, suggesting that the rock formation at the shoe was weaker then prognosed in pre-drill estimates. Drilling continued after the primary target had been penetrated, a second LOT was conducted to assess whether drilling could safely proceed given the concern of encountering an overpressured intrusion. The
result of this LOT was 13.48 ppg equivalent mud weight (EMW), again significantly below pre-drill estimates and lower than the previous LOT conducted 147 m above the primary target. This low LOT was deemed insufficient to provide adequate kick tolerance and maintain sub-surface well integrity should an overpressured intrusion have been encountered deeper in the section towards TD. The decision was therefore taken to prematurely TD’d the well, short of the secondary target (Fig. 12) (214/23-1 End of Well Report).

Drilling Issues (Overpressure) - Well 209/04-1A

Well 209/04-1A drilled in 1985 by North Sea Sun Oil Co was drilled on the Erlend High near to the Erlend Volcanic Centre. This well encountered a series of silicic intrusions and also a series of mafic intrusions. At a depth of 3085 m MDBRT, a sudden lithology change from a thick rhyolitic intrusion to Upper Cretaceous claystone subsequently lead to an increase in the pore pressure. This increase in pore pressure required the mud weight to be raised from 8.7 ppg to 10.8 ppg to contain the pore pressure increase, although, like 214/28-1, this also resulted in mud losses (Fig. 13). The overpressure in 209/04-1A was observed during a sudden lithology change from a 270 m thick rhyolitic intrusion to Upper Cretaceous claystones at 3085 m MDBRT. It is possible that the impermeable intrusion prevented normal compaction and lead to disequilibrium compaction whereby pore fluids within the claystones were unable to escape. This results in the pore fluid pressure rising above hydrostatic (Osborne & Swarbrick, 1997). It was below this intrusion that the overpressure was encountered, resulting in the need to raise the mud weight to 10.8 ppg, resulting in mud losses. Prior to drilling into the claystone, a fracture integrity test was carried out in the intrusion giving a result of 13.4ppg EMW, indicating that a mud weight of 10.8 ppg would not fracture the formation. This misalignment between expected fracture integrity and the mud weight, which resulted in fracture of the formation, is caused by the fracture integrity test being carried out in the intrusion, which had much stronger mechanical strength compared to the overpressured claystone below (Fig. 13).
Drilling Issues (Mud Losses and Wireline Tool Running Issues) - Well 208/15-1A

Well 208/15-1A, drilled in 1979 by BP, encountered seven mafic intrusions in the Lower Paleocene succession between 1923 to 3123 m MDBRT, with a range between 2.5 m to 100 m in thickness. A 60 m thick intrusion encountered at 1935 m MDBRT incurred significant mud losses (Fig. 14). The losses within this single intrusion were classed as severe and ranged from 3m³/hr (18bbls/hr) to 20m³/hr (126bbls/hr) and eventually resulted in the total loss of circulation (208/15-1A End of Well Report). During this period, drilling was continued although the lithology log had to be determined based on ROP alone as there were no cuttings returned to the surface. In total, 23,000bbls (approx. 3.6 million litres) of mud were lost drilling the 1.2km section containing the seven intrusions, with losses as high as 60m³/hr (377bbls/hr) (208/15-1A End of Well Report). To maintain well control whilst drilling through the 60 m thick intrusion, seawater had to be pumped down the wellbore to maintain a static annulus, which resulted in a well which was under balance. In an attempt to deal with the mud losses, loss of circulation material (e.g. bark, mineral fibre, hair, mica flakes, plastic, coconut husk, limestone chippings), was pumped down the well, in an attempt to try and mitigate the losses but this had limited success.

This section with intrusions also had further issues when it came to logging runs, with problems running wireline tools. The tools were frequently held up on ledges (208/15-1A End of Well Report) (Fig. 14). In total, the logging and loss of circulation issues resulted in 12 days of NPT.

DISCUSSION

Underestimation of Intrusions on Seismic and Log Data

The histogram of intrusions encountered by FSB wells (Fig. 15) shows that the majority of intrusions are 5-40 m thick, with the number of intrusions less than a 1 m appearing to reduce in frequency. However, it is unlikely that this is a true representation of the intrusions in the subsurface but rather a function of the difficulty of resolving sub-metre thick intrusions in wireline or cuttings data. This interpretation is corroborated by core data from 205/10-2B, which retrieved a section of Cretaceous sediments intruded by 15 thin mafic intrusions ranging in thicknesses from 5-30cm, with a cumulative thickness of 2.5 m (Fig. 6). When the wireline data across this cored interval is
examined, no notable variations in the petrophysical response are observed. In the absence of core, it is unlikely that the intrusions would have been noticed (Fig. 6). Observations of intrusions in the field also indicate that there are numerous thin intrusions which propagate off larger intrusions (Eide et al., 2017) indicating that there is potential for many more intrusions in the FSB than well and seismic data alludes to (Fig. 6). The data is also biased towards intrusions ranging in thickness above 40 m, as intrusions thicker than this will generally be visible on seismic data and therefore likely to be avoided during drilling activities (Schofield et al., 2015) (Fig. 6). A further bias also exists based on the age of the well since increased knowledge about the basin through drilling activity and increased quality of seismic data, increases the chance of recognising igneous bodies within seismic data, and de-risks the likelihood of accidentally encountering them. These observations has important implications for assumptions regarding melt volumes in the FSB and other magmatically influenced basins worldwide as it is likely that the thin intrusions and thick intrusions are unrepresented in the data.

Previous work on intrusions on the Atlantic Margin has focussed on the readily imaged mafic sills (Gibb & Kanaris-Sotiriou, 1988; Bell & Butcher, 2002; Smallwood & Maresh, 2004; Archer et al., 2005; Thomson & Schofield, 2008; Schofield et al., 2012; Schofield et al., 2015). Schofield et al. (2015, 2017) demonstrates that the number (and total thickness) of mafic intrusions in seismic data along the Atlantic Margin is already likely underestimated. However, as detailed previously, silicic intrusions are particularly difficult to identify within seismic data and even if drilled serendipitously, their discovery would rely on the careful interpretation of petrophysical well logs combined with cuttings and core.

The above observations raise the likelihood that within the FSB and Atlantic Margin, that there are considerably more silicic intrusions than previously thought. As the observations from well 205/10-5A (Fig. 6) indicate, even a 90 m thick silicic intrusion is not easily identifiable seismically, on wireline data or indeed during drilling (205/10-5A Geological Report). From the work of Schofield et al. (2015), an intrusion of 90 m thick is statistically less common, with most intrusion thicknesses falling in a 0-40 m range. It may therefore be the case that within FSB wells and the wider Atlantic
Margin, silicic intrusions may have been penetrated but gone completely unrecorded in wells and simply classified as sandstones. The only indication that may corroborate the presence of a silicic igneous intrusion would be a drop in ROP and the presence of fresh crystalline rocks in cuttings. The difficulties identifying igneous intrusions in the subsurface demonstrates the importance of integrating datasets, but as Watson et al. (2017) highlight, the drive to cut costs in exploration often results in a reluctance to acquire core and run full wireline suites over non prospective intervals, intensifying the issue of misidentification of intrusions within sedimentary basins.

False Exploration Targets 1 – Mafic Intrusions vs Basement

The 207/01a-4&4Z exploration well (Fig. 8) targeted high amplitude reflectors which were believed to be sedimentary targets but turned out to be igneous intrusions. Despite the failure of these wells, they yield important lessons about exploration in continental margins with igneous intrusions.

The large intrusion encountered in 207/01a-4&4Z is an important consideration for future exploration along the Rona Ridge. Where intrusions have been emplaced along basement highs such as the Rona Ridge, it can be difficult to differentiate high amplitude reflectors which are associated with the top basement and high amplitude reflectors associated with igneous intrusions. In the example of 207/01a-4&4Z, 3D seismic data makes it possible to visualise along strike from the well location where the intrusion crosscuts stratigraphy and has morphologies indicative of an intrusion. The identification is aided by the fact that the intrusion is 213 m thick and easily resolvable.

However at the original location of 207/01a-4, the intrusion appears concordant with the Rona Ridge reflector and is not clearly identifiable as an igneous body (Fig. 8b North-South line). Future exploration along the Rona Ridge and particularly future development of the southern Clair Field, where there are abundant intrusions, may face challenges with differentiating intrusions from the basement horizon or any other acoustically hard boundaries.

False Exploration Targets 2 - Mafic vs Silicic in the FSB

The distinctly different petrophysical and seismic response between mafic intrusions and silicic intrusions (Fig. 6) was demonstrated in the 205/10-5A and 205/10-2B wells. These silicic intrusions
can be misidentified as exploration targets and in order to mitigate this in the future, it is important
to understand why the silicic intrusions have such different petrophysical characteristics.

Silicic intrusions differ considerably in petrophysical response to mafic intrusions due to
underlying differences in magma and mineral chemistry (Fig 16). In particular, silicic intrusions have
lower densities and lower compressional velocities compared to their mafic counterparts. The
lower compressional velocities and densities of the silicic intrusions (e.g. 205/10-5A) are due to the
intrusion mainly consisting of minerals with lower elastic properties such as quartz (compressional
velocity: 5880m/s, density: 2.65g/cm³) and orthoclase feldspar (compressional velocity: 4423m/s,
density 2.54g/cm³). The intrusion encountered by well 205/10-5A was also reported as containing
numerous amygdales filled with kaolinite (compressional velocity: 6200m/s, density 2.64g/cm³; Mavko
et al., 2009; Rider & Kennedy, 2011). The result of these differences manifests itself in substantial
contrasts in acoustic impedance between mafic and silicic intrusions and as a result, silicic intrusions
do not form a typical ‘high amplitude’ response that is often associated with mafic intrusions in
basins, and often appear indistinct from the surrounding host rock due to being constituted of a
similar mineralogy (e.g. Quartz and Feldspar)

Within well 205/10-5A, which penetrated a 90 m thick silicic intrusion, the dominant
frequency of the data, even at this relatively deep level in the contemporaneous basin fill, is 22Hz.
The average seismic velocity of the Paleocene interval in which the silicic intrusion occurs is 2819 ms
(Schofield et al., 2015), leading to a vertical seismic resolution of 32 m and a detectability thickness of
16m. However, despite relatively good vertical resolution of data, the intrusion, which is 90 m thick,
is difficult to image and is only visible as a weak seismic response with a chaotic seismic character
compared to the surrounding seismic data (Fig. 6). This weak seismic response is also corroborated
by synthetic modelling (Fig. 17). 205/10-2B, which is only 8 km from 205/10-5A, contains a 40 m
thick mafic intrusion at 3000mBRT which is clearly detectable although still tuned.

Silicic intrusions, particularly those reaching granitic in composition, have much higher
viscosities and therefore not thought to propagate considerable distances from their magma source
(Philpotts & Ague, 2009). The fact that they do not flow easily accounts for the observation that the
intrusion looks so different to the mafic intrusions nearby. The seismic morphology is chaotic (Fig. 18) and does not exhibit features like saucer shapes or magma lobes which are common in mafic intrusions elsewhere in the FSB (Schofield et al., 2012; Schofield et al., 2015). If it assumed that silicic intrusions typically do not travel far from the source of the magma, it may indicate that there are more silicic intrusions within that vicinity of the Flett Ridge other than the ones encountered in 205/10-2B and 205/10-5A.

Unfortunately, the substantial difference in seismic imaging between mafic and silicic intrusions led to the drilling of 205/10-5A, which was intended to target a mid-amplitude body that was interpreted to represent turbidite sandstones. Furthermore, the chaotic geometry of the intrusion created an amplitude anomaly with a fan-like geometry, making the target appear a likely reservoir (205/10-5A End of Well Report). The well target, which was perceived to be a turbidite fan lobe, turned out to be the 90 m silicic intrusion detailed previously. During drilling, the intrusive body was also cored, as the subsequent quartz-rich cuttings from the intrusion brought up along with the drilling mud was thought to represent the quartz rich sand of the turbidite (Fig. 18).

In a wider context, the volume of silicic magmatic bodies within the subsurface of the FSB is difficult to estimate. ODP drilling on the Atlantic Margin has identified silicic magmas (Eldholm et al., 1989). Silicic extrusives and intrusions have been identified in many of the wells drilled near the Erlend Volcanic Centre (Bell & Jolley, 2002). In the contiguous Rockall Basin to the south-west of the FSB, Morton et al. (1988) commented on the presence of more silicic magmatism (Dacites) identified in the 163/06-1A exploration well.

The onshore volcanic rocks of the British Tertiary Igneous Province contain many large silicic igneous centres, such as the Red Hills of Skye and the Arran granite. There are also minor intrusions such as the Drumadoon sill on Arran which is described as a quartz porphyry, similar in composition to the intrusion encountered in 205/10-5A. These examples of silicic magmatism identified in other basins are interpreted to be derived from crustal melting of sedimentary rocks by contact with a large body of high-temperature mafic melt (Morton et al., 1988, Eldholm et al., 1989). The Erlend wells (209/03-1, 209/04-1A and 209/09-1A), which encountered silicic magmatism, were
drilled near to the Erlend Volcanic Centre which would have likely acted as a heat source promoting crustal melting to generate silicic magmatism (Kanaris-Sotiriou et al., 1993).

However, wells 205/10-5A and 205/10-2B were not drilled near any known volcanic centres, although there are numerous large mafic intrusions imaged on seismic at depth (Fig. 19). These large mafic intrusions could have caused crustal melting of sedimentary rocks on the Flett Ridge to generate silicic intrusions seen in 205/10-5A and 205/10-2B (BGS Technical Report, The Nature and Origin of Igneous Rocks from Well 205/10-5A). The silicic intrusion in 205/10-5A was interpreted as being peraluminous (BGS Technical Report, The Nature and Origin of Igneous Rocks from Well 205/10-5A) and therefore potentially sourced from melting of clay rich sediments (Morton et al., 1988).

Although from well penetrations these intrusions are relatively rare, the difficulty in even seismicly resolving thick silicic intrusions (e.g. 90 m) at shallow stratigraphic levels, brings into question exactly how much silicic magmatism has occurred within the FSB and wider Atlantic Margin. Future exploration in the FSB and other rift basins should acknowledge the risk of encountering silicic intrusions, in particular the likelihood of them forming false exploration targets. In this context it’s encouraging that the seismic acoustic impedance, although only moderate amplitude, was still a hard kick, as most oil and gas fields are represented by soft seismic responses.

Drilling through Intrusions – Non-Productive Time & Health Safety and Environment

The drilling issues outlined above such as drill bit integrity, slow ROP, underage borehole and overpressured intrusions all resulted in additional NPT and in some cases, the premature TD of exploration wells. During hydrocarbon exploration, the biggest cost exposure to companies is drilling related and therefore, any subsurface scenario that leads to a loss of drilling efficiency, or missing of a target can have significant (multi-million) pound cost implications.

For the 214/28-1 and 208/15-1A case studies, the total NPT related to intrusions was 34 days. NPT whilst drilling adds additional expenditure to drilling costs and must be minimised. If we assume an average day rate for a drill rig (Semisubmersible >7,500ft: $190,000 (IHS Markit, 2017))
and apply this to the number of NPT days related to issues with intrusions this totals over $6,500,000. This estimate of additional cost is based on lost drilling time and does not include the extra costs associated with damaged bottom hole assembly (BHA), bit trips or mud losses. Furthermore, the total NPT detailed above only accounts for a quarter of the wells drilled in the FSB which encountered intrusions, so it is likely that this total number is much higher.

Importantly any issues during drilling which may result in Health, Safety and Environment (HSE) incidents are critical. For oil companies this is far more important than additional cost, so it is an important consideration especially in regards to well control and loss of circulation.

Overpressure and Connection of Deeper Pressure Regimes via Intrusions

Well 214/28-1 and the recent Loanan well (214/23-1) are examples of how analysis of the offset well data can inform companies about the potential drilling issues associated with intrusions and how to mitigate these issues in a pre-drill planning scenario. The Loanan well was prematurely aborted prior to reaching its target depth (total depth TD) due to concerns about encountering overpressured intrusions given the low LOTs (Fig. 12). In the case of the Loanan well, the planned TD for the well was <200m above the nearest, seismically imaged-intrusion (Fig. 11). Recent field work focused on intrusions in outcrop emphasises that it is common to see multiple thin splays or offshoot intrusions propagating away from large intrusions (Fig. 11); this effect is particularly pronounced in siliciclastic dominated intervals, which typically form hydrocarbon reservoirs (Eide et al., 2017). As the Loanan well approached the secondary reservoir target, the potential for encountering multiple thin splays off the large intrusion would be increased (Fig. 11). Inspection of the current seismic data appears to show thin reflectors intruding the base of the secondary target, possibly indicating an increased risk of hydraulic communication between the reservoir and intrusion (Fig. 11).

The origin of the overpressure associated with the intrusions in 214/28-1 is not fully understood. Within well 214/28-1, the overpressured intrusions encountered are part of a family of intrusions which connect down into the deepest parts of the basin, at around 4 km below the sea.
floor. Extensive mud losses that have been recorded in many of the igneous intrusions within the FSB indicate that they can have open fractures even at depths of 5000 mBRT (Rateau et al., 2013). Therefore, one possible explanation for the overpressure within well 214/28-1 is that the interconnected intrusions acted as fractured conduits, connecting a pressure regime from much deeper within the basin.

Other mechanisms for overpressure generation are related to gas generation (Osborne & Swarbrick, 1997). The abundance of intrusions around the 214/28-1 well location could have caused local thermal maturation of shale host rocks during emplacement generating gas (Svensen et al., 2004), which is a known cause of overpressure (Osborne & Swarbrick, 1997). However, with the repeated instances of loss of circulation events within intrusions in the FSB, implying an open fracture system, the risk that intrusions could act as conduits vertically through the basin connecting different pressure regimes needs to be considered.

For future exploration in the FSB, and particularly the Flett Sub-basin around well 214/28-1, a different approach with respect to wellbore design is needed in order to deal with issues related to overpressured sills and the eventuality of weaker than expected stratigraphic formations (which will affect the maximum mud weight that can be used).

CONCLUSIONS

This work illustrates the different seismic and petrophysical characteristics of igneous intrusions in the FSB and by using case studies from explorations wells, demonstrates their impact on hydrocarbon exploration. Exploration is ongoing in the FSB and due to the areal extent of the Faroe-Shetland Sill Complex and its proximity to oil and gas fields, it is important that the intrusions are studied and their implications for the petroleum system and drilling operations understood. The findings can be summarised as;

- Thin intrusions are difficult to identify in the subsurface due to seismic and logging tool limitations. The difficulty identifying intrusions in the subsurface means that it is likely that many more intrusions are present in basins. Combined with the difficulties associated with
identifying silicic intrusions, estimates of melt volumes in rift basins are likely to be underestimated.

- The FSSC has previously been identified as mainly comprising mafic intrusions but this study presents examples of silicic magmatic bodies.

- In contrast to mafic magma, the distinct petrophysical and seismic properties of the silicic intrusions make them difficult to identify in the subsurface and as a result, can be misidentified as moderate amplitude exploration targets.

- Where intrusions have been encountered in the subsurface, this has commonly resulted in issues such as low ROP, drill bit integrity, loss of circulation, cavings and overpressure.

- The 214/28-1 and Loanan (214/23-1) case study reveals the difficulties associated with targeting prospects close to intrusions, such as drilling issues or premature TD as a result of a low LOT and risk of encountering overpressured intrusions.

In summary this study shows that intrusions do have significant implications for hydrocarbon exploration. The West of Shetland igneous intrusive complex in the FSB extends into the contiguous Møre Basin to the north, and the Rockall Basin to the south therefore the knowledge gained from the FSB is transferable and will would be beneficial for future exploration in these regions and other volcanic margins globally.

ACKNOWLEDGEMENTS

The lead author’s PhD is funded by JX Nippon Exploration and Production (U.K.) Limited as part of the Volcanic Margin Research consortium Phase 2. PGS are thanked for allowing the author access to the MegaSurveyPlus data and for allowing permission to publish this work. Seismic interpretation was carried out using IHS Kingdom software. Well log analysis was carried out using Schlumberger Techlog software and Ikon RokDoc software. Mick Caulfield is thanked for useful comments. Alistair Maguire and Christian Eide are thanked for useful discussions and assistance. Stuart Archer is thanked for his comments which
greatly improved the revisions of this paper. Well data was obtained from the UK Oil and Gas Authority (OGA) Common Data Access (CDA). Core photographs were obtained from the BGS Offshore well database.

REFERENCES

BGS Technical Report. The Nature and Origin of Igneous Rocks from Well 205/10-5A

Holford, S.P., Schofield, N., Jackson, C.A.-L., Magee, C., Green, P.F. & Duddy, I.R. 2013. Impacts of igneous intrusions on source and reservoir potential in prospective sedimentary basins along the

SUPPLEMENTARY MATERIAL

<table>
<thead>
<tr>
<th>Drilling Acronym/Terminology</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROP (rate of penetration)</td>
<td>The speed at which the drill bit can break the rock to deepen the well bore.</td>
</tr>
<tr>
<td>WOB (weight on bit)</td>
<td>The amount of downward force exerted on the drill bit.</td>
</tr>
<tr>
<td>Drilling mud/ Equivalent Mud Weight</td>
<td>Drilling mud maintains the hydrostatic pressure within the wellbore and also transports drill cuttings to the surface.</td>
</tr>
<tr>
<td>BHA (bottom hole assembly)</td>
<td>Lowest part of the drill string. This contains the drill bit, drill collar, measurement-while-drilling tools (not always run).</td>
</tr>
<tr>
<td>Drill bit</td>
<td>The tool used to cut the rock.</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Drillstring</td>
<td>Combination of drillpipe, the bottom hole assembly.</td>
</tr>
<tr>
<td>NPT (non-productive time)</td>
<td>Time which is not spent drilling the hole.</td>
</tr>
<tr>
<td>RPM (revolutions per minute)</td>
<td>How quickly the drillstring rotates.</td>
</tr>
<tr>
<td>Casing</td>
<td>Casing is carried out every time the well drills to a new a certain depth and the wellbore diameter is changed. Casing prevents the formation caving into the wellbore and also controls formation fluids and pressures.</td>
</tr>
<tr>
<td>FIT (Fracture integrity test or formation integrity test)</td>
<td>Test of the strength and integrity of a new formation. Commonly occurs after a casing point to determine the suitable mud weight to contain the well.</td>
</tr>
<tr>
<td>LOT (Leak off test)</td>
<td>Similar to a FIT but this tests the formation to the point that it fractures. This allows the determination of the maximum mud weight which could be sustained before fracturing the formation. LOT measures the strength of the formation and informs what mud weight can be used before the formation will fracture and incur mud losses.</td>
</tr>
<tr>
<td>Overpressure</td>
<td>Subsurface pressure which is abnormally high and exceeds hydrostatic pressure.</td>
</tr>
<tr>
<td>Underbalanced drilling</td>
<td>The pressure in the wellbore is lower than the pressure of the formation being drilled, resulting in fluids flowing into the wellbore. Left unchecked, this can result in a potential blowout.</td>
</tr>
<tr>
<td>Overbalanced drilling</td>
<td>The pressure in the wellbore is higher than the formation pressure to prevent fluids flowing into the wellbore. If too high, this can lead to fracturing and damage of the formation being drilled through.</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Loss of circulation</td>
<td>Drilling mud is lost into the formation either through an open fracture network in the subsurface, or induced fractures due to the mud weight being too high.</td>
</tr>
<tr>
<td>Underguage</td>
<td>Undergauge hole occurs in abrasive formations when the well bit becomes worn, resulting in a smaller wellbore diameter. See ‘Reaming’ below.</td>
</tr>
<tr>
<td>Ledges</td>
<td>Ledges are coherent blocks/bodies which remain stable forming tight spots which are obstacles for wireline tools (Millet et al., 2016) corresponding to the intrusions.</td>
</tr>
<tr>
<td>TD (total depth)</td>
<td>The total depth that the well drills.</td>
</tr>
<tr>
<td>Reaming</td>
<td>Enlarging the wellbore to maintain wellbore diameter.</td>
</tr>
<tr>
<td>Twist off</td>
<td>Separation or breaking of the drillstring downhole. Can be caused by excessive torque.</td>
</tr>
<tr>
<td>Cavings/well bore instability</td>
<td>Pieces of rock that fall into the wellbore but are not a result of drilling action.</td>
</tr>
</tbody>
</table>

FIGURE CAPTIONS

Figure 1: a) Structural elements map of the Faroe-Shetland Basin, with mapped sill extent shown in purple. b) Outline of 3D seismic coverage and wells penetrating intrusions used in this study. Figure adapted from Ellis et al., 2009, Schofield et al., 2015 and Mudge, 2014.
Figure 2: Seismic line from the FSB showing the typical seismic response of mafic intrusions. Mafic intrusions form prominent laterally discontinuous hard kicks. Seismic data courtesy of PGS (FSB MegaSurvey Plus).

Figure 3: Characteristic petrophysical response of a mafic intrusion using the example of the 44 m thick intrusion encountered by the 205/10-2B well. Intrusion shown in composite log is same intrusion as shown in Fig. 2.

Figure 4: a) Composite log from 205/10-2B which shows the original lithology log and the revised lithology log which incorporates the 15 intrusions which are so thin they can only be identified in core. b) 2 m of Core run 2 from 205/10-2B which contains intrusions varying in thickness from 10-30 cm. The petrophysical response for this section of core is displayed alongside it emphasising that the intrusions are too thin to be resolved and therefore without the core data, would never have been recognised. Core image courtesy of BGS offshore database (BGS 2017).

Figure 5: Typical ROP and WOB response drilling through mafic igneous intrusions in the 214/28-1 well.

Figure 6: Petrophysical and seismic imaging contrasts between mafic intrusions and silicic intrusions. a) 47 m thick basaltic intrusion encountered in 205/10-2B. b) 30 m thick silicic intrusion encountered in 205/10-2B which isn’t detectable in the seismic data. c) 90 m thick silicic intrusion encountered in 205/10-5A. Seismic data courtesy of PGS (FSB MegaSurvey Plus).

Figure 7: a) Seismic crossline from West to East showing the intrusion encountered in the 207/01a-4 well. b) Seismic inline from South to North across the intrusion encountered in the 207/01a-4 well. In this line, the intrusion is less obvious and looks concordant with Rona Ridge high amplitude reflector. The West to East crossline illustrates how the sidetrack encountered the lower wing of the intrusion. Seismic data courtesy of PGS (FSB MegaSurvey Plus).

Figure 8: From left to right: composite log from 214/28-1 which encountered nine mafic intrusions; drilling chart from 214/28-1 showing the drilling issues encountered whilst drilling the sills; seismic line showing the amplitudes associated with the sills. Seismic data courtesy of PGS (FSB MegaSurvey Plus).

Figure 9: Semi-regional map showing the location of the Loanan prospect relative to 214/28-1 which encountered overpressured intrusions.

Figure 10: Arbitrary seismic line showing the Loanan target and its location relative to sills encountered in 214/28-1, which caused problems during drilling. Seismic data courtesy of PGS (FSB MegaSurvey Plus).

Figure 11: a) Seismic line showing the proximity of the Loanan target to the large sill beneath. Seismic line on the right shows the potential that there are small offset intrusions bifurcating from the large intrusion towards the Loanan secondary target. There could also be additional smaller intrusions which are not seismically resolvable. b) Small bifurcating intrusions emanating from a larger intrusion is seen in outcrop on Jameson Island, East Greenland (modified from Eide et al., 2017) and the San Rafael, Utah. Intrusions splays are a common feature in siliciclastic units (Eide et al., 2017). Seismic data courtesy of PGS (FSB MegaSurvey Plus).

Figure 12: Prognosed vs actual stratigraphy of the Loanan well. The well was prematurely TD’d as a result of the anomalously low LOT below the 9 5/8” and 7 5/8” shoe. Modified from 214/23-1 End of Well Report.
Figure 13: Pore pressure chart for the 209/04-1A well. The chart shows the sudden increase in pressure when drilling out of the silicic intrusions into the underlying claystones and the need to raise the ECD to mitigate this. However, raising the ECD resulted in mud losses.

Figure 14: Schematic illustrating the potential impacts intrusions can have on drilling operations including, loss of circulation fluids, wellbore instability and problems running wireline logs.

Figure 15: Histograms showing the thickness of intrusions vs frequency for exploration wells in the FSB that encountered intrusions. The histogram on the left has a 5 m bin spacing and shows that the majority of the intrusions are in the 5-40 m bins as they are identifiable by wireline tools but are at the limit of seismic resolution so are not identified pre-drill. The histogram on the right has a 0.5 m bin spacing and shows a similar relationship but demonstrates that the frequency of intrusions less than 1 m thick is less frequent as they are below the resolution of wireline tools.

a): majority of intrusions are in the 5-40 m bin as they are identifiable by wireline tools but are at the limit of seismic resolution so are not identified pre-drill. The two intrusions shown in 219/20-1 above are identifiable in wireline but would be below the resolution of seismic data.

b): frequency of intrusions which are >40 m thick drops off as these intrusions are so large that they are easily identified pre-drill and therefore avoided. The seismic line above shows an example of a thick intrusion which would be avoided pre-drill.

c): intrusions which are <1 m thick are less frequent and misrepresented as they are below the resolution of wireline tools. The core above from 205/10-2B (Core run 2 between: 5754.92-5757.67m) demonstrates this as it contains multiple thin intrusions which are below the resolution of wireline tools.

Figure 16: Density vs Compressional Velocity crossplot showing the different petrophysical properties of silicic vs mafic intrusions. The data is for mafic and silicic intrusions encountered in the 205/10-2B well.

Figure 17: Modelling the synthetic seismic response of the silicic intrusion in 205/10-5A to the mafic intrusion in 205/10-2B. a) The mafic intrusion resolves well as it has a high density and sonic velocity resulting in a high acoustic impedance. b) The silicic intrusion does not resolve well due to the lower density and sonic velocities resulting in a lower acoustic impedance. Seismic data courtesy of PGS (FSB MegaSurvey Plus). Synthetics created using a Ricker wavelet.

Figure 18: a): Seismic line across the silicic intrusion encountered in the 205/10-5A well. The intrusion is 90m thick but is poorly resolved in seismic data. The pre-drill prognosis for the amplitude anomaly was a turbidite fan lobe. b): A 2m long cored section of the 90 m thick silicic intrusion, core image courtesy of BGS offshore database (BGS 2017). Seismic data courtesy of PGS (FSB MegaSurvey Plus).

Figure 19: Seismic line showing the large mafic intrusions at depth which could potentially be the heat source causing crustal melting to generate silicic magmatism. There are no large igneous centres near this location. Seismic data courtesy of PGS (FSB MegaSurvey Plus).
205/10-2B Composite Log: (3280m-3390m)

<table>
<thead>
<tr>
<th>Reference: (m)</th>
<th>Scale: 1:500</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>API</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Lithology

<table>
<thead>
<tr>
<th>RMED</th>
<th>OHMM</th>
<th>RHOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>2000</td>
<td>1.95</td>
</tr>
<tr>
<td>0.2</td>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>

NEUT

<table>
<thead>
<tr>
<th>pu</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.15</td>
</tr>
</tbody>
</table>

DT

| 140 |
| US/F |
| 40 |

Legend:
- Pink: Igneous Intrusions
- Gray: Claystone
Figure
Click here to download high resolution image
Figure
Click here to download high resolution image
Figure

Click here to download high resolution image
Potential source of silicic magmatism

Silicic intrusions
Basaltic intrusions
Exploration well