A self-help diet and physical activity intervention with dietetic support for weight management in men treated for prostate cancer: pilot study of the PRO-MAN randomised controlled trial.

Mohamad H, Ntessalen M, Craig LCA, Clark J, Fielding S, N’Dow J, Heys SD, McNeill G.

Institute of Applied Health Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.

Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.

NHS Grampian Department of Nutrition and Dietetics, Aberdeen, UK

Medical Statistics Team, Institute of Applied Health Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.

Academic Urology Unit, Institute of Applied Health Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.

School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.

Running title: Weight loss in men with prostate cancer

Keywords: Prostate cancer, diet, physical activity, overweight, obesity, weight loss, pilot study, randomised controlled trial.

Author for correspondence: Dr Leone Craig, University Medical School, Foresterhill, Aberdeen AB25 2ZD, UK. email l.craig@abdn.ac.uk
Unstructured abstract

Overweight and obesity may increase risk of disease progression in men with prostate cancer but there have been few studies of weight loss interventions in this patient group. Based on existing literature and patient preferences we designed a self-help diet and physical activity intervention with telephone-based dietitian support. Men treated for prostate cancer who were overweight or obese were randomised to intervention or wait-list mini-intervention groups. The intervention group had an initial group meeting, a supporting letter from their urological consultant, three telephone dietitian consultations at 4 week intervals, a pedometer and access to web-based diet and physical activity resources. At 12 weeks, men in both groups were given digital scales for providing follow-up weight measurements and the wait-list group received a mini-intervention of the supporting letter, a pedometer and access to the web-based resources. Sixty-two men were randomised; 54 completed baseline and 12 week measurements and 51 and 27 provided measurements at 6 and 12 months respectively. In a repeated measures model, mean (95% CI) difference in weight change between groups (wait-list mini-intervention minus intervention) at 12 weeks was -2.13 (-3.44, -0.82) kg (p=0.002). At 12 months the corresponding value was -2.43 (-4.50, -0.37) kg (p=0.022). Mean (95% CI) difference in global QoL score change between groups at 12 weeks was 12.3 (4.93, 19.7) (p=0.002); at 12 months there were no significant differences between groups. Results suggest the potential of self-help diet and physical activity intervention with trained support for modest but sustained weight loss in this patient group.

Introduction

Prostate cancer is now the second most common cancer in men worldwide: an estimated 1.1 million men were diagnosed with prostate cancer in 2012, accounting for 15% of all cancers
in men\(^1\). In the UK, the lifetime risk of a diagnosis of prostate cancer for men is 1 in 8, with 47,151 new cases in 2015 and 11,631 deaths in 2016\(^2\). Excess body weight has been associated with an increased risk of diagnosis of more aggressive forms of prostate cancer and of recurrence and prostate cancer mortality\(^{3-6}\), although a recent umbrella review of the evidence suggests that these associations may be modest and the strength of evidence ‘suggestive’ rather than ‘convincing’\(^7\). One study found that weight gain following diagnosis was associated with an increased rate of prostate cancer-specific mortality\(^8\), suggesting that weight loss in those with excess weight could have beneficial outcomes, but to date there are no published studies on the influence of intentional weight loss on prostate cancer progression.

While weight loss can be achieved by caloric restriction alone, physical activity may bring other health benefits such as reduced fatigue, increased muscle strength and improved cardio-metabolic health. For men with prostate cancer who receive androgen deprivation therapy, physical activity may help to prevent the loss of lean tissue mass\(^9\). One study of a 6-month diet and exercise intervention for men with prostate cancer receiving androgen deprivation therapy found beneficial effects on weight and fat mass as well as physical functioning\(^{10}\) but specific evidence-based physical activity guidelines for cancer survivors are lacking\(^{11}\). There is a lack of studies including physical activity combined with diet intervention for weight loss in prostate cancer patients, despite the evidence showing the additional benefits in terms of maintenance of lean tissue mass and other health benefits. From a systematic review of 20 randomised controlled trials (RCTs) of diet and exercise interventions in men treated for prostate cancer we concluded that low-fat or low-calorie diets could lead to weight loss but that exercise could have other benefits such as improvement in quality of life (QoL)\(^{12}\). This review revealed some gaps in the evidence including a lack of information on weight change in the trials of exercise and the optimum design of diet or exercise interventions which would
encourage adherence in this group. Many of the studies combining diet and prescribed
exercise have found poor retention and adherence rates and a recent study by Focht et al
suggested that a more personalised, self-directed weight loss intervention in prostate cancer
patients rather than more supervised exercise and dietary advice, showed promise for
promoting adherence to independent lifestyle behaviour change(9). To be applicable at scale,
interventions need to be not only effective but also cost-effective, which supports the
investigation of self-help resources such as internet and mobile-phone-delivered programmes.

A systematic review of 23 studies of self-help interventions for weight loss found a mean
difference in weight loss of 1.85 (95% CI 0.83, 2.86) kg at 6 months in favour of the
intervention group though the difference was no longer significant at 12 months(13). The same
review found evidence of greater weight loss with more interactive programmes but less
weight loss on self-help programmes in more socio-economically disadvantaged groups. The
RENEW study of a home-based diet and exercise intervention in overweight or obese
survivors of colorectal, breast and prostate cancer survivors aged over 65y in the USA found
weight loss and preservation of physical function following the intervention(14). In this paper,
we report the results of a pilot RCT of a 12-week self-help diet and physical activity
intervention on body weight and QoL in overweight and obese men treated for prostate
cancer.

Methods

The PRO-MAN study was conducted in NE Scotland between October 2013 and April 2015.
Recruitment was carried out through the Urological Cancer (UCAN) database, which covers
all urology cancer patients in Grampian, Orkney and Shetland regions.
Intervention design

To tailor the intervention to the needs and preferences of men with prostate cancer we carried out a questionnaire survey in 265 men. Thirty-four of these men also took part in focus group discussions, with 14 men being accompanied by their partners. The questionnaire results indicated that the majority (58%) would prefer to do exercise on their own rather than in a group, with walking, cycling and swimming being considered suitable forms of exercise for 79%, 35% and 25% of men respectively. For the majority of respondents the partners carried out most of the food purchasing (62%) and preparation (66%); in the focus group discussions it emerged that these men and their partners would like information on specific foods to eat or avoid and control of appetite and portion size, ideally delivered in a one-to-one rather than group setting (Mohamad H, PhD thesis, University of Aberdeen).

Based on this information and literature which suggested that support from a clinician can promote adherence to behaviour change programmes\(^{(15)}\) we designed a self-help intervention package which included an initial group meeting, a letter of recommendation from the hospital consultant, a pedometer, telephone-based diet advice and access to online diet and physical activity resources. At the beginning of the 12-week programme, there was a 1 hour group session with the two dietitians (HM and JC) to give an overview of the study including the duration of the study and frequency of contact and a demonstration of how to access the web-based self-help resources. Three groups were held in the evening at the CLAN local cancer support charity centre and one group was held in the UCAN centre at Aberdeen Royal Infirmary during the daytime. Each participant was given a pedometer as a self-monitoring tool to encourage walking according to his own personal goals and a letter from their individual urological consultant to encourage them to comply with dietary modification and to engage in regular physical activity. The letter included the link and password to the web-based self-help resources in UCAN website which provided additional written resources on
appropriate diet and physical activity such as World Cancer Research Fund and other advice sheets and recipes. All participants and their partners where requested, received their own username and password to access the resources.

Within a week of baseline measurement, each participant was contacted by one of the dietitians. A 24 hour diet recall was undertaken to facilitate discussion around current food and drink intake and to allow the dietitian to give individually tailored dietary advice. The advice related to caloric reduction through decreasing portion sizes, reducing high calorie, high fat, high sugar foods, reducing alcohol, and encouraging higher consumption of fruits, vegetables and whole grains. Physical activity advice was based on individual capability and preferences, based on the discussion and self-monitoring of walking from the pedometer.

Participants were asked to provide a pedometer reading at the two follow-up telephone calls to guide the advice provided.

At the end of the telephone call, each participant set personal diet and activity goals for the following four weeks, in discussion with the dietitian. A written summary of the goals set was sent out by mail to each participant. Following the initial phone call, two further calls were made at 4 and 8 weeks follow-up. These calls reviewed the goals and re-set new goals if required. The telephone calls were recorded and used to summarize the goals set.

Participants

Recruitment was carried out between October and December 2013. Inclusion criteria were age 16 years or over, a diagnosis of localised or locally advanced prostate cancer within the last 36 months and overweight or obesity, which was defined as BMI ≥ 25 kg/m². In men aged 70 years or over only those with BMI ≥ 30 kg/m² were included to avoid adverse effects of weight loss on mortality reported in overweight adults in this age group\(^{(16)}\). Exclusion criteria were evidence of distant metastases or current involvement with any weight
management programme or other research study. Potentially eligible participants were
selected from the UCAN database. As the UCAN database did not contain information on
BMI, men who were eligible on the basis of age and clinical stage were sent a letter of
invitation to participate in the study and a reply slip which also asked for self-reported height
and weight. Those who met the BMI inclusion criteria on the basis of self-reported height and
weight were invited to attend a baseline meeting at which height and weight were measured
by one of the dietitians. Those who met the BMI criteria on the basis of measured height and
weight and who agreed to participate were randomised to either intervention or wait-list mini-
intervention group using a minimisation program based on age, time since diagnosis and
BMI.

Intervention group

Men in the intervention group received all components of the intervention described above.
At 12 weeks, they attended individual appointments with one of the dietitians in the UCAN
centre at which weight was measured.

Wait-list mini-intervention group

Men in the wait-list mini-intervention group were seen individually at the UCAN centre for
measurement of baseline height and weight. They were not given any instruction on diet and
physical activity at this point but were asked to attend a second meeting at the UCAN centre
at 12 weeks, at which point weight was measured and they were provided with a pedometer, a
recommendation letter from their consultant and a password for the web-based self-help
resources.

Measurement of outcomes

The primary outcomes were differences between groups in change in body weight at 12
weeks and 12 months, which was measured to the nearest 0.1 kg using calibrated digital
scales (SECA, Model 803, Hamburg, Germany). At baseline and 12 weeks, the measurements were made by one of the dietitians. At the 12 week meeting, each participant was given a set of the same digital weighing scales along with written instructions on how to take measurements of weight at later time-points. Around 6 and 12 months, a record sheet for providing weight measurement was mailed to each participant.

The secondary outcome was health-related QoL which was measured at baseline, 12 weeks and 6 and 12 months using the EORTC QLQ-C30 for assessing the generic aspects of QoL, together with EORTC QLQ-PR25 which is specific for prostate cancer\(^{(17)}\). The questionnaire was mailed to the participants before the baseline and 12 week meetings and with the follow-up weight record sheet at around 6 and 12 months along with a FREEPOST envelope to return the completed questionnaire. All of the scales and single-item measures were linearly transformed to a 0–100 score using the scoring procedure described by Fayers\(^{(18)}\).

The feasibility and acceptability of the intervention were assessed using a questionnaire and auto-generated data on website use. The questionnaire collected information on participants’ views of the setting, content and delivery of the intervention, using a 5-point response scale to statements from strongly agree to strongly disagree, with an open text box at the end for any other comments. Participants in the intervention group completed this at the end of the 12 weeks and the wait-list mini-intervention group at the 6 month follow-up. Website use was tracked from baseline to 12 weeks for the intervention and 12 weeks to 6 months in the wait-list mini-intervention group.

Data analysis

Baseline characteristics were summarised as mean and standard deviation (SD) or median and interquartile range (IQR) in each randomised group and overall. Analysis of the repeated measures of weight and QoL up to 12 months was carried out using SAS, version 9.3 (SAS
A linear mixed model with unstructured covariance matrix was fitted to assess fixed effects of time, group, and time*group, adjusting for BMI, age at baseline and years since diagnosis. All tests were two-tailed and an alpha level of 0.05 was applied as the criterion for statistical significance. Estimates of difference in weight change and the 95% confidence interval (CI) are reported from the mixed model for each treatment group (baseline to 12 weeks, baseline to 6 months and baseline to 12 months). In addition the difference between the treatment groups is presented. All men with baseline measurement were included in the analysis as the mixed model approach allows for missing data as long as one observed outcome (at any follow-up) is available. Analysis was intention to treat, for all men who attended baseline assessment (n=54).

Statistical power

As sample size was limited by feasibility of recruitment, the minimal effect size was calculated. For weight change at 12 weeks the minimal detectable difference between the two groups (n= 26 and n=28) with 90% power at the 5% significance level was 2.24 kg (assuming SD = 2.49), and for weight change at 12 months the minimum detectable difference between the two groups was 5.56 kg (assuming SD = 4.21, n = 16 and n=11).

Ethical committee approval

This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all procedures involving human subjects were approved by the North of Scotland Research Ethics Service (NoSRES). The initial study protocol, which included measurements up to 6 months, was approved by NoSRES on 9 August 2013 (REC Ref: 12/NS/0126) and subsequently approved by NHS R&D on 16 September 2013 (Ref: 2012ON019). A study amendment to allow postal follow up at 12 months was approved by NoSRES on 20 February 2015. Written informed consent was obtained from all subjects.
Trial registration

The study was registered in Current Controlled Trials; registration number ISRCTN46025196, https://doi.org/10.1186/ISRCTN46025196.

Results

Recruitment and retention

Of the 313 men on the UCAN database, 286 potentially suitable participants were approached. Ninety-two (32%) expressed an interest in participation, 3 (1%) declined participation and 191 (67%) did not respond (Figure 1). Of those who expressed an interest in the study, 29 were below the minimum BMI according to their age group and one man decided not to continue due to lack of time. The remaining 62 men were randomised to the intervention (n=31) and wait-list mini-intervention (n=31) groups. Four men randomised to the intervention group could not attend any of the group sessions and another man withdrew as he was scheduled to undergo prostatectomy, leaving 26 men who attended for baseline measurements. Three men randomised to wait-list mini-intervention group were not willing to travel to the study location for baseline data collection as they lived too far away, leaving 28 who attended for baseline measurements.

Four group sessions were arranged for men in the intervention group. The group sessions consisted of four to nine participants; five partners also attended the groups. Following this meeting, the dietitians telephoned participants at 1, 4 and 8 weeks. Two men in the intervention group withdrew; one man changed his mind and another man withdrew due to an unrelated health problem (coronary artery bypass). Twenty-one participants completed all
three planned telephone calls; three completed two out of three telephone calls due to work commitments and being away from home.

Twenty-four of the 26 men in the intervention group and all 28 men in the wait-list mini-intervention group completed the outcome measurements at 12 weeks. At 6 months one participant from the wait-list mini-intervention group did not complete the weight and QoL measures as he had undergone a hip replacement. At 12 months, 11 men in the intervention group and 16 in the wait-list mini-intervention group provided data on their weight and completed QoL questionnaires.

Baseline characteristics

The age range of participants was from 48 to 81 years with a mean of 65.5 (SD 5.6) years. Two-thirds were aged over 65 years. With regard to time since prostate cancer diagnosis, most (70%) had been diagnosed for more than a year. Mean weight, height and BMI were 88.9 kg, 1.73 m and 29.6 kg/m² respectively (Table 1). The groups were balanced at baseline.

Quality of life assessed by EORTC modules composed of functional scales, symptom scales and a global health status scale. The baseline median score for global QoL of the participants was 83.3 with the most high/good level of functioning in physical functioning and the lowest level of functioning in sexual activity.

Change in weight

The mean (95% CI) weight change in the intervention group at 12 weeks was −1.89 (−2.85, −0.93) kg (p<0.001) and in the wait-list mini-intervention group it was 0.24 (−0.65, 1.13) kg (p=0.592) which was significantly different from the intervention group (p=0.002) as shown in Table 2.
Fifty-one (24 intervention and 27 wait-list mini-intervention) and twenty-seven (11 intervention and 16 wait-list mini-intervention) men provided weight measurements at 6 and 12 months respectively. Both intervention and wait-list mini-intervention groups lost a significant amount of weight between baseline and 6 months, but there was no significant difference in the change between baseline and 6 months between intervention and wait-list mini-intervention. At 12 months the average weight change was -3.75 kg (95% CI -5.31, -2.18); p<0.001 in the intervention group and -1.31 kg (95% CI −2.66, 0.03); p=0.055 in the wait-list mini-intervention group, with a significantly greater change of on average -2.43 kg (p=0.022) in the intervention group.

Four of the 11 participants in the intervention group and one of the 16 participants in the wait-list mini-intervention group achieved clinically important ≥5% weight loss at the 12 month follow-up.

Change in QoL

The average global QoL score significantly increased in the intervention group and significantly decreased in the wait-list mini-intervention group between baseline and 12 weeks. There was no significant change in global QoL in either group at 6 or 12 months. At both 12 weeks and 6 months there was a significant difference in the changes in global QoL scores between the 2 groups because the intervention group’s scores improved whereas the wait-list mini-intervention group’s scores decreased from the baseline measurements (Table 3).

There was no significant change in the symptoms QoL scale in either group at any of the timepoints. The functional QoL scale significantly improved in the intervention group between baseline and 12 weeks but there was no change in the wait-list mini-intervention
group leading to a significant difference between the groups at this timepoint. However, there was no significant change in functional QoL in either group at 6 or 12 months.

Adverse events

No adverse events were reported during the intervention.

Website use

Fifteen (58%) of the 24 participants in the intervention group and 13 (46%) of the 28 participants in the wait-list mini-intervention group accessed the online resources during the 12 weeks of monitoring. The median (IQR) number of visits to the website was 5.0 (3.0, 15.0) for the intervention group and 8.0 (3.5, 15.5) for the wait-list mini-intervention. The median (IQR) time spent on the website was 7.7 (1.1, 49.7) minutes for the intervention group and 18.0 (8.4, 31.2) for the wait-list mini-intervention group. There were no significant differences between the groups in either the median number of visits nor the time spent on the website.

Discussion

Research on weight management in men with prostate cancer is relatively new, and despite many potential benefits of lifestyle change in cancer survivors, this population is under-researched. Given the mean age of the patients with prostate cancer, tailored self-help programmes with low intensity physical activity deserve investigation, because many may have side-effects of treatments such as urinary incontinence as well as co-morbidities such as orthopaedic problems.
In this study, we found relatively modest weight loss of 1.89 kg at 12 weeks in the intervention group, but by 12 months, the mean weight loss had increased to 3.75 kg, while in the mini-intervention group mean weight loss at 12 months was 1.31 kg. Two other community-based weight loss trials involving men in the UK reported fairly similar results. The Lighten Up trial in overweight and obese men and women recruited through primary care used 8 different 12-week programmes and found a range of mean weight loss (either objectively measured by the programme providers or researchers, or self-reported (40%)) from 1.37 to 4.43 kg at 12 weeks and 1.13 to 4.45 kg at 12 months, with greatest weight loss seen with commercial weight loss programmes\(^{(19)}\). The proportion of participants in each arm of the Lighten Up trial who achieved 5% weight loss at 12 months ranged from 14 to 31%, comparable with 36% of the intervention arm participants in our study. The 12-week Football Fans In Training (FFIT) intervention in overweight or obese male football supporters in Scotland achieved greater weight loss of on average 5.80 kg at 12 weeks and 5.56 kg at 1 year\(^{(20)}\), but the intervention was more intensive as it involved weekly group exercise and lifestyle sessions lasting 90 mins and weight was measured by the researchers. However, the proportion of participants who achieved 5% weight loss in the intervention arm was 39%, comparable with 36% of the intervention arm in our study. These interventions were more intensive than that used in the present study: a better comparison is with data from a lifestyle intervention with motivational interviewing, telephone counselling and weighing scales in overweight or obese patients with colorectal adenoma in Scotland which reported weight loss measured by the researchers of 3.50 kg in the intervention group and a difference of 2.69 kg between intervention and control groups at 12 months\(^{(21)}\), similar to the corresponding values of 3.75 kg and 2.43 kg respectively in this study. The proportion of those in the intervention group who achieved 5% weight loss was 36% which was the same as in our study. The US-based RENEW study of self-directed weight management in overweight and obese survivors
of breast, colorectal and prostate cancer, which involved mailed self-help materials and telephone counselling, reported a (self-reported) weight loss of approximately 2.46 kg in the intervention arms and 1.46 kg in the delayed intervention arms over the relevant 12 month intervention periods (14).

In this study, we found few consistent differences in QoL over the study. This may be a true finding or could reflect the fact that the EORTC questionnaire is more suited to patients undergoing active treatment than those who have largely recovered from any side-effects of treatment and can lead more normal lives. Alternative measures of well-being could be explored in future studies.

A strength of the PRO-MAN intervention was the incorporation of the preferences of men treated for prostate cancer. The fact that walking was a realistic physical activity for the majority probably contributed to the popularity of the pedometers which allowed goal-setting and self-monitoring and may have increased adherence compared to higher intensity or gym-based exercise. Pedometers were also found to be popular and motivational for many participants in the FFIT trial (22). Although men and their partners requested advice on specific foods to include or avoid, the fact that the telephone consultations and materials were able to focus on caloric control and general healthy eating could indicate that reassurance that ‘superfoods’ were not specifically required for secondary prevention of cancer may have been helpful.

Another strength of the study was the low cost of the intervention package: the cost of the pedometer, dietitians’ time and travel to the group meeting in the intervention group was approximately £90 per patient (€103). The provision of weighing scales added approximately £30 (€34) per person to these costs: although the scales were provided for provision of weight data it cannot be ruled out that they contributed to the longer-term results in both groups. The
most expensive component of the intervention was the dietetic input for the initial group meeting and telephone support, but the superiority of the 12-month results in the intervention group suggest that this may have been important for sustained effects, consistent with the conclusions of a systematic review\[^{13}\]. The least expensive component of the intervention were the consultant’s letter and the web-based materials. Web-site usage data showed that the internet-based resources were not accessed frequently by the majority of participants, though this may have been because the materials were downloaded and subsequently used in print form.

The study also had some significant limitations. Only 32% of those invited to participate agreed to do so, though the lack of recent weight data for the men on the UCAN database meant that we could not exclude those who were not above the BMI cut-offs in the initial mailing and do not know how many men believed themselves to be normal weight and may not have responded to the invitation letter for this reason. Future studies should consider ways to obtain pre-recruitment weight and to tackle other factors which could contribute to low recruitment such as time and travel burden. The Grampian region has low population density beyond the city of Aberdeen so providing group meetings at a wider range of locations and collecting follow-up data e.g. in GP clinics could be considered. The fact that the wait-list mini-intervention group received a sub-set of the intervention package and were given this at 12 weeks makes it more difficult to compare results at 6 months, though at 12 months both groups had had no face-to-face or telephone contact since 12 weeks so the results at 12 months can be used to compare the different intervention packages. However, the 12 month results should be interpreted with caution as only 27 men recorded data at 12 months, raising the possibility of selective loss to follow up of those who had not lost weight subsequently overestimating the weight loss. The retention was much higher at 6 months which may reflect the fact that the 12 month follow-up was not part of the original protocol.
Although we provided accurate scales and clear instructions for weighing to participants ensuring consistency of equipment and its use, the use of self-recorded weight measurements at 6 and 12 months raises the possibility of reporting bias due to social desirability or demand characteristics, as participants may report lower weights leading to an overestimate of the weight loss. However, Demark-Wahnefried et al (23) found high levels of agreement between self-reported and clinically assessed BMIs in cancer survivors aged 65 years and over and Jolly et al (19) found that those who self-reported their weight had a smaller weight loss than those whose weight was objectively measured and therefore this did not appear to be overestimating weight loss. In addition, we did not record the energy intake or pedometer readings of participants, however, this may have changed the nature of and the response to the intervention by adding more self-monitoring. The study included all men with a diagnosis of localised or locally advanced prostate cancer within the last 36 months: we did not limit inclusion by stage or type of treatment but also did not record additional details about cancer stage, grade and treatments, and therefore other than time since diagnosis were unable to take these into account in the analysis. Lack of these details, in particular of those taking hormonal therapy or who changed treatments over the course of the study may have affected the outcomes as androgen deprivation therapy is known to affect body composition with increases in weight and body fat in parallel with decreases in muscle mass (9). Conversely, active treatment of another form or cancer progression may have induced weight loss. In addition to affecting weight, QoL outcomes may also have been influenced by treatment side-effects or cancer progression. Finally, the measurement of outcome data and the statistical analysis was not blind to the allocation of participants. Future studies could consider alternative designs and outcome measures to overcome these issues.

The results suggest the potential of a self-help diet and physical activity intervention with trained support for modest but sustained weight loss in this patient group.
Acknowledgements: We thank the Urology consultants at Aberdeen Royal Infirmary and staff of the UCAN centre, especially Paul Mannion, for support with the conduct of the study and the CLAN centre staff for hosting intervention group meetings.

Funding: HM carried out this work while in receipt of a PhD scholarship from the Government of Malaysia. We thank Cancer Research in Aberdeen and NE Scotland (CRANES) for financial support for the pedometers and weighing scales. LCAC and GMcN acknowledge support from the RESAS programme of the Scottish Government.

Authors’ contributions: HM, JC, LCAC, JN’D, SDH and GMcN contributed to the design of the initial study. HM and JC delivered the interventions and collected outcome data up to 6 months. MN designed and led the data collection at 12 months with support from LCAC and GMcN. SF carried out the statistical analysis and all authors read and critically reviewed the final manuscript which was drafted by HM, LCAC and GMcN.

Conflict of interest: none declared.

Consent for publication: All authors declare that this material has not been published elsewhere and give consent to publication.
References

Figure 1 CONSORT diagram of main study recruitment and retention

Separate file
Table 1 Physical and socio-demographic characteristics of participants

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total (n=54)</th>
<th>Intervention (n=26)</th>
<th>Wait-list mini-intervention (n=28)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SD</td>
<td>Mean SD</td>
<td>Mean SD</td>
</tr>
<tr>
<td>Age (years)</td>
<td>65.5 5.6</td>
<td>65.5 4.7</td>
<td>65.4 6.4</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>88.9 11.7</td>
<td>89.6 11.8</td>
<td>88.2 11.8</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.73 0.07</td>
<td>1.73 0.07</td>
<td>1.73 0.07</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>29.6 2.9</td>
<td>29.8 3.1</td>
<td>29.4 2.6</td>
</tr>
<tr>
<td>Global QoL score</td>
<td>Median IQR</td>
<td>Median IQR</td>
<td>Median IQR</td>
</tr>
<tr>
<td></td>
<td>83.3 66.7, 91.7</td>
<td>79.2 66.7, 83.3</td>
<td>83.3 66.7, 97.9</td>
</tr>
<tr>
<td>Functional QoL score</td>
<td>91.1 79.4, 97.8</td>
<td>91.1 81.1, 97.8</td>
<td>93.3 76.7, 97.8</td>
</tr>
<tr>
<td>Symptoms QoL score</td>
<td>7.7 2.6, 16.0</td>
<td>7.7 2.6, 10.9</td>
<td>7.7 2.6, 21.8</td>
</tr>
</tbody>
</table>
Table 2 Estimates of weight change (kg) from linear mixed effects model, adjusted for baseline age, BMI and time since diagnosis

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini-intervention: baseline to 12 weeks</td>
<td>0.24</td>
<td>(-0.65, 1.13)</td>
<td>0.592</td>
</tr>
<tr>
<td>Mini-intervention: baseline to 6 months</td>
<td>-2.12</td>
<td>(-3.44, -0.79)</td>
<td>0.002</td>
</tr>
<tr>
<td>Mini-intervention: baseline to 12 months</td>
<td>-1.31</td>
<td>(-2.66, 0.03)</td>
<td>0.055</td>
</tr>
<tr>
<td>Intervention: baseline to 12 weeks</td>
<td>-1.89</td>
<td>(-2.85, -0.93)</td>
<td><0.001</td>
</tr>
<tr>
<td>Intervention: baseline to 6 months</td>
<td>-3.40</td>
<td>(-4.81, -1.99)</td>
<td><0.001</td>
</tr>
<tr>
<td>Intervention: baseline to 12 months</td>
<td>-3.75</td>
<td>(-5.31, -2.18)</td>
<td><0.001</td>
</tr>
<tr>
<td>Difference at 12 weeks (mini-intervention-intervention)</td>
<td>-2.13</td>
<td>(-3.44, -0.82)</td>
<td>0.002</td>
</tr>
<tr>
<td>Difference at 6m (mini-intervention-intervention)</td>
<td>-1.28</td>
<td>(-3.22, 0.65)</td>
<td>0.189</td>
</tr>
<tr>
<td>Difference at 12m (mini-intervention-intervention)</td>
<td>-2.43</td>
<td>(-4.50, -0.37)</td>
<td>0.022</td>
</tr>
</tbody>
</table>
Table 3: Estimates of change in Quality of Life from linear mixed effects model, adjusted for baseline age, BMI and time since diagnosis

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mini-intervention: baseline to 12 weeks</td>
<td>-5.06</td>
<td>(-10.1, -0.02)</td>
<td>0.049</td>
</tr>
<tr>
<td>Mini-intervention: baseline to 6 months</td>
<td>-5.14</td>
<td>(-10.5, 0.26)</td>
<td>0.062</td>
</tr>
<tr>
<td>Mini-intervention: baseline to 12 months</td>
<td>-0.98</td>
<td>(-7.00, 5.04)</td>
<td>0.742</td>
</tr>
<tr>
<td>Intervention: baseline to 12 weeks</td>
<td>7.23</td>
<td>(-1.86, 12.6)</td>
<td>0.009</td>
</tr>
<tr>
<td>Intervention: baseline to 6 months</td>
<td>4.29</td>
<td>(-1.42, 10.0)</td>
<td>0.137</td>
</tr>
<tr>
<td>Intervention: baseline to 12 months</td>
<td>-0.77</td>
<td>(-7.61, 6.07)</td>
<td>0.821</td>
</tr>
<tr>
<td>Difference at 12 weeks (mini-intervention-intervention)</td>
<td>12.3</td>
<td>(4.93, 19.7)</td>
<td>0.002</td>
</tr>
<tr>
<td>Difference at 6m (mini-intervention-intervention)</td>
<td>9.43</td>
<td>(1.57, 17.3)</td>
<td>0.020</td>
</tr>
<tr>
<td>Difference at 12m (mini-intervention-intervention)</td>
<td>0.22</td>
<td>(-8.89, 9.33)</td>
<td>0.962</td>
</tr>
<tr>
<td>Functional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mini-intervention: baseline to 12 weeks</td>
<td>-1.27</td>
<td>(-4.55, 2.01)</td>
<td>0.440</td>
</tr>
<tr>
<td>Mini-intervention: baseline to 6 months</td>
<td>-1.72</td>
<td>(-5.51, 2.07)</td>
<td>0.367</td>
</tr>
<tr>
<td>Mini-intervention: baseline to 12 months</td>
<td>2.08</td>
<td>(-0.99, 5.16)</td>
<td>0.177</td>
</tr>
<tr>
<td>Intervention: baseline to 12 weeks</td>
<td>3.97</td>
<td>(0.44, 7.50)</td>
<td>0.028</td>
</tr>
<tr>
<td>Intervention: baseline to 6 months</td>
<td>-0.21</td>
<td>(-4.25, 3.83)</td>
<td>0.916</td>
</tr>
<tr>
<td>Intervention: baseline to 12 months</td>
<td>2.65</td>
<td>(-0.85, 6.14)</td>
<td>0.133</td>
</tr>
<tr>
<td>Difference at 12 weeks (mini-intervention-intervention)</td>
<td>5.24</td>
<td>(0.42, 10.1)</td>
<td>0.033</td>
</tr>
<tr>
<td>Difference at 6m (mini-intervention-intervention)</td>
<td>1.50</td>
<td>(-4.03, 7.04)</td>
<td>0.588</td>
</tr>
<tr>
<td>Difference at 12m (mini-intervention-intervention)</td>
<td>0.56</td>
<td>(-4.08, 5.21)</td>
<td>0.807</td>
</tr>
<tr>
<td>Symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mini-intervention: baseline to 12 weeks</td>
<td>0.73</td>
<td>(-1.11, 2.57)</td>
<td>0.429</td>
</tr>
<tr>
<td>Intervention: baseline to 6 months</td>
<td>1.00</td>
<td>(-1.38, 3.39)</td>
<td>0.399</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>Mini-intervention: baseline to 12 months</td>
<td>-2.46</td>
<td>(-5.60, 0.67)</td>
<td>0.118</td>
</tr>
<tr>
<td>Intervention: baseline to 12 weeks</td>
<td>-0.83</td>
<td>(-2.83, 1.16)</td>
<td>0.404</td>
</tr>
<tr>
<td>Intervention: baseline to 6 months</td>
<td>-0.03</td>
<td>(-2.55, 2.50)</td>
<td>0.983</td>
</tr>
<tr>
<td>Intervention: baseline to 12 months</td>
<td>-1.36</td>
<td>(-4.93, 2.22)</td>
<td>0.444</td>
</tr>
<tr>
<td>Difference at 12 weeks (mini-intervention-intervention)</td>
<td>-1.57</td>
<td>(-4.28, 1.15)</td>
<td>0.252</td>
</tr>
<tr>
<td>Difference at 6m (mini-intervention-intervention)</td>
<td>-1.03</td>
<td>(-4.50, 2.44)</td>
<td>0.552</td>
</tr>
<tr>
<td>Difference at 12m (mini-intervention-intervention)</td>
<td>1.11</td>
<td>(-3.64, 5.85)</td>
<td>0.637</td>
</tr>
</tbody>
</table>
Enrollment

Screened prior to eligibility assessment (n=286)

Assessed for eligibility (n=92)

Excluded (n=194)
- Declined invitation (n=3)
- Did not respond (n=191)

Excluded (n=30)
- BMI outwith range (n=29)
- Decided not to continue

Randomised (n=62)

Allocated to intervention group (n=31)
- Received allocated intervention (n=26)
- Did not receive allocated intervention (n=5)
 - Could not attend group meeting (n=4)
 - Scheduled for prostatectomy (n=1)

Allocated to wait-list control group (n=31)
- Received allocated intervention (n=28)
- Did not receive allocated intervention (n=3)
 - Withdrew (unwilling to travel to baseline meeting) (n=3)

Baseline

Weight and QoL measured (n=26)

Weight and QoL measured (n=28)

12 weeks

Weight and QoL measured (n=24)
- Discontinued intervention (n=2)
- Lost to follow-up (n=0)

Weight and QoL measured (n=27)
- Discontinued intervention (n=1)
- Lost to follow-up (n=0)

6 months

Weight and QoL measured (n=11)
- Discontinued intervention (n=1)
- Lost to follow-up (n=12)

Weight and QoL measured (n=16)
- Discontinued intervention (n=3)
- Lost to follow-up (n=8)

12 months