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Abstract

It has become commonly accepted that systems approaches to biology are of outstanding impor-
tance to gain understanding from the vast amount of data which is presently being generated by
advancing high-throughput technologies. The diversity of methods to model pathways and networks
has significantly expanded over the past two decades. Modern and traditional approaches are equally
important and recent activities aim at integrating the advantages of both. This integration is of partic-
ular importance since most available methods are specialised to particular systems or problems. The
rapid progress of the field of theoretical systems biology, however, demonstrates how our fundamental
theoretical understanding of biology is gaining momentum. The scientific community has apparently
accepted the challenge to truly understand the principles of life.

Keywords systems biology; mathematicalmodel; metabolism; dynamic systems; genome-scale networks;
constraint-based modelling

1 Introduction

The advent of high-throughput technologies in the
past decades has drastically changed the nature of
the biological sciences. It is now possible to moni-
tor thousands of cellular components, such as tran-
scripts, proteins or metabolites simultaneously, al-
lowing to describe the status of a cell in unprece-
dented precision for a myriad of conditions or genetic
backgrounds. This vast amount of new information
is contrasted by a lack of theoretical understand-
ing, confronting us with the problem to convert the
gathered knowledge into true understanding of the
underlying biological processes. The great challenge
for biology in the coming decades will be to develop
unifying theories of general validity which will allow
to place and interpret the data within an overarch-
ing theoretical framework.
The first steps towards developing these theories are
taken by the emerging field of systems biology. By
describing an investigated biological system with a
mathematical model, a theoretical framework is es-

tablished within which data from many experimen-
tal conditions can be interpreted. Every model is by
definition a simplified representation of reality. The
process of model building itself, in which a biological
system is simplified to its essential components and
cast into the language of mathematics, is of particu-
lar importance, because it allows to discover under-
lying principles according to which a system func-
tions.
Theoretical approaches to biology are too plentiful
to be covered in a single review. Because of its
central importance for the functioning of any cell,
we place our focus here on metabolic systems and
we deliberately omit the numerous graph theoretical
approaches to study networks (for a recent review,
see Amigó et al. [1]). The purpose of this review is
to give a summarising overview of several important
traditional and modern techniques to model path-
ways and networks. Instead of aiming at complete-
ness, we present the reader a variety of different ap-
proaches and outline their basic concepts and goals
and also stress the limitations of their applicability.
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2 Dynamic, differential
equations-based models

The description of biological processes by systems
of differential equations has a long standing his-
tory. This approach is suitable to describe dynamic
changes in which the particle numbers are not too
low and fluctuations can be neglected. If this is not
the case, stochastic simulations, often based on an
approach introduced by Gillespie [2], are applied.
We will not cover this important field here but rather
refer to a recent review by Ullah and Wolkenhauer
[3].
Differential equations define the rate of change of
the variable components in a system (e.g. chemical
species in a metabolic system, mRNA and proteins
in a gene regulatory system or population sizes in
an ecosystem). These equations are usually non-
linear and highly coupled which means that the ex-
pressions defining the rate of change of one variable
depend on other variables. In population dynam-
ics, this approach dates back well into the 19th cen-
tury, with the logistic growth equation derived by
Verhulst in 1838 [4] being a prominent example of
a simple model explaining the growth of a popu-
lation (see Fig. 1A). This model is still widely ap-
plied to simulate processes as diverse as the change
in languages [5] and the increase in fluorescence dur-
ing a quantitative PCR measurement [6]. The pe-
riodic increase and decline of populations in sim-
ple predator-prey systems were independently inves-
tigated by Lotka [7] and Volterra [8] and the fa-
mous Lotka-Volterra equations still form the basis
for many ecosystem models (see e.g. [9, 10]). The
equations and their typical behaviour are illustrated
in Fig. 1B.
The fundamental Michaelis-Menten rate law is
an early example how theoretical considerations
promote the understanding of underlying mecha-
nisms [11] in biochemical systems and modern dy-
namic models of metabolism would be unthinkable
without this pioneering work. Before the invention
of computers, theoretical analyses were restricted
to relatively simple systems which are analytically
tractable. The complexity of dynamical systems in-
creases greatly with increasing system size and it is
therefore evident that only the accessibility to fast
computers allowing for numerical integration of a
large number of coupled differential equations en-
abled a theoretical investigation of more complex
metabolic systems. A landmark in the computa-
tional analysis of biochemical systems was set by the
early work of Garfinkel and Hess [12], who developed
a detailed model of the glycolytic pathway.
Numerous mathematical models based on differen-
tial equations for the simulation of metabolic path-
ways, gene regulatory circuits and signalling cas-
cades have since been developed. A major goal of

this class of models is to verify existing hypotheses
and make new quantitative predictions. If a model
based on existing knowledge is capable of qualita-
tively reproducing time resolved data, then this is
a good indicator that the assumptions about the
underlying molecular mechanisms are correct. The
model can then be used to predict the behaviour of
the system when subjected to perturbations, such
as gene knock-out or overexpression, application of
inhibitors or other drugs. Agreement with exper-
iments further consolidates the existing knowledge
and falsification leads to the development of new
hypotheses which again feed back to improve the
model description. An illustrative example how this
mutual stepwise improvement of models and exper-
iments led to the discovery of new genes involved in
the plant circadian clock is found in Locke et al. [13].
Interestingly, often the most simplistic models pro-
vide the most fundamental understanding into the
underlying mechanisms of an observed mode of be-
haviour. Rapoport et al. [14] have explained with a
simple model of the glycolytic pathway how demand
feedback regulation generates ATP homeostasis. A
drastically reduced model is still able to reproduce
the most essential feature of the system, namely its
ability to maintain approximately constant levels of
ATP for a large range of external ATP consumption
rates (see Fig. 2). Homeostasis is generated even
if all reactions are modelled as simple mass-action
kinetics. Homeostasis is an intrinsic feature of the
system: Increased ATP consumption directly leads
to reduced ATP levels which automatically increases
the level of ADP. Because ADP is a substrate of the
ATP producing reactions (reaction v3 in Fig. 2A),
the rate of ATP production increases and the in-
creased consumption is counteracted. Other promi-
nent examples of extremely simple but highly in-
sightful models are the Sel’kov oscillator [15], which
explains observed metabolic oscillations by a sim-
ple positive feedback loop, and the Goodwin oscilla-
tor [16], providing an explanation how oscillations
can be produced by an inhibitory feedback loop.
These two models are still widely employed and form
the basis for many dynamic models for oscillatory
biological rhythms including the circadian rhythmic
gene expression found in many organisms.
If simple models are those generating most under-
standing, then how will we ever be able to bridge the
gap between such a reductionist approach and the
enormous amount of data produced by our modern
experimental equipment? One way to involve a large
fraction of the available data into our analysis are
metabolic networks. The structure of a metabolic
network of arbitrary size is conveniently described
by the stoichiometry matrix, denoted N. If there are
m metabolites connected by r reactions, this matrix
has m rows and r columns with an entry nij de-
noting the stoichiometric coefficient of metabolite i
in reaction j. nij is negative if this metabolite is
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Figure 1: A The logistic growth model is determined by two parameters. The maximal growth rate for
small population sizes is r and the maximal carrying capacity of the environment is K. The growth ex-
hibits three phases. For small population sizes, growth is approximately exponential (see dotted line). This
phase is followed by a period in which growth is approximately linear before growth becomes saturated
and the population approaches its maximal size, determined by the parameter K. B The Lotka-Volterra
equations describe oscillations in a simple ecosystem of one predator and one prey species. The parameter
r1 denotes the relative growth rate of the prey in the absence of predators, r2 denotes the death rate of the
predators. The parameters C1 and C2 describe the interaction of predators and prey. C1 indicates the rate
of reduction of prey individuals while C2 describes the resulting rate of increase of predator individuals.

consumed, positive if it is produced and zero if its
concentration does not change through reaction j.
The dynamics of the network is characterised by the
differential equation system

dS
dt

= N · v(S,p), (1)

where S is the vector of metabolite concentrations,
v is the vector of reaction rates and p contains the
system parameters.
However, a simple up-scaling of this modelling ap-
proach to genome-scale is impracticable, despite the
fact that modern PCs could easily integrate such
systems of thousands of differential equations. The
first reason is the lack of knowledge of most en-
zymatic parameters. But even if for all enzymes
these parameters had been determined in vitro, un-
certainty in enzyme concentrations and their post-
translational modifications remains. The second
reason lies in the difficulty of simultaneously fitting
many parameters to noisy high-throughput data. It
is hard to ensure that the model is fitted to the ac-
tual data and not to the noise - a process called over-
fitting. The third, and maybe most fundamental,
reason is that a thorough analysis of such a model
is hardly possible considering the multitude of de-
grees of freedom, leaving the unsolved question what
would actually be learnt about the biological system
with such an immensely complicated model.

3 Metabolic Control Analysis

The analysis of large-scale systems is greatly simpli-
fied by only considering stationary conditions. For

metabolic systems, stationarity is often a realistic
assumption because biochemical reactions are fast
compared to changes in protein or gene expression
levels. Assuming stationarity simplifies Eq. (1) to

N · v(S,p) = 0. (2)

A systematic analysis of how the possible stationary
concentrations and fluxes are restricted by this con-
dition has lead to a theory which has become to be
known as Metabolic Control Analysis (MCA). The
conceptual framework has been independently de-
veloped by Kacser and Burns [17] and Heinrich and
Rapoport [18]. A central component of this the-
ory are quantities called Control Coefficients which
describe the relative change of steady-state values
upon small perturbation of system parameters (for
an illustration see Fig. 3). Unfortunately, control co-
efficients are difficult to determine experimentally,
making a direct application of MCA often hard.
Nevertheless, the theory provides fundamental in-
sights which are applicable to systems of arbitrary
size. The summation and connectivity theorems are
rare examples where properties of biological systems
can be rigorously deducted by a mathematical proof
(for their derivation, see e.g. Heinrich and Schus-
ter [19]). The fact that flux control coefficients for
one particular flux sum up to one explains why of-
ten one rate limiting step is observed, namely if one
control coefficient is close to one while the others
are near zero. However, it also demonstrates that
there is no inherent reason why this should be the
case and that, more generally, the control is dis-
tributed. Concentration control coefficients sum to
zero, showing that control on a particular metabolite
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Stoichiometry matrix:

R1 R2 R3 R4

N =

 +2 −1 −1 0
−1 0 +1 −1
+1 0 −1 +1

 X
ATP
ADP

Dynamic equations:

d

dt

 X
ATP
ADP

 = N ·


v1

v2

v3

v4


Conserved moieties: C ·N = 0

C = (0 1 1) ⇔ d

dt
(ATP + ADP ) = 0

⇔ ATP + ADP = A = const.

Steady state flux distributions: N ·K = 0

K = (v1 v2), v1 =


1
1
1
0

 , v2 =


1
0
2
1


Figure 2: A simple model of glycolysis can explain ATP homeostasis. A Schematic representation of the
model. The upper part of glycolysis is represented by a single reaction (v1) in which one molecule of ATP
is consumed per substrate molecule (S, corresponding to glucose). Reaction v2 takes into account con-
sumption of the intermediate X (corresponding to triose phosphates) for biosynthesis pathways. Reaction
v3 lumps the lower part of glycolysis into one reaction producing one molecule of ATP per intermediate X.
The reaction v4 comprises all ATP consuming processes. B The stationary ATP concentration varies only
slightly for changed ATP consumption rates. All reaction rates have been assumed to follow mass-action
kinetics: v1 = k1 · ATP , v2 = k2X, v3 = k3X · ADP , v4 = k4 · ATP . The circle indicates the operation
point of many tissues in vivo. In this region, the curve has a small negative slope, meaning that increased
ATP consumption will lead to a small reduction of the stationary ATP level while reduced consumption
will lead to a small increase. C A stoichiometric analysis of this model illustrates how the dynamic equa-
tions and stoichiometry matrix N are connected. Conserved moieties can be calculated from the left-sided
kernel of N, the possible flux distributions are determined by the nullspace of N.

concentration must be distributed with positive and
negative contributions balancing each other. Most
importantly, control is determined by the network
as a whole and can often not easily be explained
by considering the single isolated steps. For exam-
ple, the observation that upon perturbation a sub-
strate of a particular enzyme is downregulated while
its product is simultaneously upregulated may intu-
itively seem to entail that this enzyme must be un-
der allosteric regulation. However, metabolic con-
trol theory shows us that this view is too simplistic.
Numerous counter-examples for which this so-called
Crossover Theorem is invalid are given in Heinrich
and Rapoport [20]. Remarkably, and possibly be-
cause control coefficients are not directly measur-
able, this over 30 year-old knowledge is not yet es-

tablished in experimental research and the straight-
forward but flawed conjecture is still often found
when metabolomics data are interpreted.

4 Nullspace Analysis

Eq. (2) implicitly determines the steady-state con-
centrations as functions of the parameters. Deter-
mination of S requires detailed knowledge of all en-
zymatic rate laws and closed expressions can usually
not be derived. However, possible solutions for the
vector v of flux distributions are simply obtained by
solving the equation

N · v = 0 , (3)
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In steady state: N · v(S,p). This condition
implicitly defines the dependence of steady-
state concentrations S = S(p) and fluxes J =
J(p) = v(S(p),p) on the parameter values.
Control coefficients quantify how these values
change upon parameter perturbation. Concen-
tration and flux control coefficients are defined
as

CS
ij =

vj

Si

∂Si

∂vj
and CJ

ik =
vk

Ji

∂Ji

∂vk
.

Elasticities are enzyme properties and inde-
pendent on the network. They quantify how
changes in metabolite concentrations affect en-
zymatic rates:

εij =
Sj

vi

∂vi

∂Sj

.

The Summation Theorems assert that∑
j

CS
ij = 0 and

∑
k

CJ
ik = 1.

The Connectivity Theorems connect control
coefficients and elasticities by∑

j

CS
ijεjk = −δik and

∑
j

CJ
ijεjk = 0,

where δik = 1 for i = k and zero otherwise.

Figure 3: A Metabolic Control Analysis in a nutshell. B The stationary ATP level of the simple glycolytic
model in Fig. 2 is plotted in dependence of the parameters k1 and k3. The dot indicates the reference
state from Fig. 2B. The black lines indicate the change of a single parameter. The control coefficients can
be interpreted as the slope of these lines at the reference point. Here: CATP

v1
= 1/12 and CATP

v3
= 1/9. C

The stationary flux through reaction 4 (ATP consumption rate) is plotted as function of the parameters
k2 and k4. The same reference state as in panel B is indicated. Again, the control coefficients correspond
to the slopes of the black lines at this point. Here: CJ4

v2
= −1/9 and CJ4

v4
= 11/12.

which depends only on the structure of the metabolic
network, encoded by the stoichiometry matrix, and
not on any additional information. As illustrated in
the Box of Fig. 2, the (right) nullspace of N con-
tains all solution vectors v. Similarly, by calculat-
ing the left nullspace all conserved moieties can be
determined [21]. For these calculations efficient al-
gorithms are abundant, making them feasible even
for genome-scale networks.

Mathematically, the nullspace is characterised by
the kernel matrix K containing as columns all lin-
early independent solution vectors v satisfying con-
dition (3). If the kernel matrix contains (up to a
scalar factor) identical rows (each row corresponds
to a particular reaction) then this means that the
fluxes through these reactions always have a fixed
ratio, regardless of the exact flux distribution. Such

sets of reactions (or the set of enzymes catalysing
these reactrions) are called Enzyme Subsets [22].

This concept is generalised by the Reaction Cor-
relation Coefficients, introduced by Poolman et al.
in 2007. Instead of identifying only strictly iden-
tical row vectors (up to a multiplicative constant),
similarity of vectors is determined. This similarity
can reveal highly correlated reactions which could
be missed if only enzyme subsets are considered.
The problem that the kernel matrix is not unique
is solved by replacing the column vectors v by vec-
tors of an orthogonal basis of the nullspace. This
basis is also not unique but the angle between the
row vectors is independent on the specific choice.
The reaction correlation coefficient of two reactions
is defined as the cosine of the angle between the cor-
responding two row vectors. If this value is 1 or -1
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the reactions belong to an enzyme subset, if it is
zero, the fluxes are maximally uncorrelated. This
method was employed to search for closely related
reactions in Escherichia coli and Streptomyces coeli-
color [23].

5 Pathway Identification

The analysis outlined above does not take into ac-
count that due to thermodynamic constraints some
reactions are practically irreversible. Mathemati-
cally the irreversibility of reactions imposes a further
constraint on the solution vectors v of the steady
state condition (3). Only those vectors for which
the entries corresponding to irreversible reactions
are non-negative are of biological relevance,

N · v = 0 with vi ≥ 0 for i ∈ I, (4)

where I denotes the subset of irreversible reactions.
A systematic description of this more complicated
solution space is provided by the concept of Ele-
mentary Flux Modes (EFM) [24, 25]. An EFM is a
flux distribution which fulfils the steady-state condi-
tion (4) and is minimal in the sense that no reaction
carrying a flux can be removed without violating
this condition. Furthermore the elementarity refers
to the property that no EFM may contain another
EFM. EFMs can be interpreted as the most elemen-
tary pathways of a metabolic system. They provide
concise information about the metabolic network be-
cause they describe the possible modes of operation
of the system.
The sometimes counter-intuitive results of EFM
analysis have been shown by de Figueiredo et al.
[26]. A model of the glycolytic pathway and the
Krebs cycle has been tested for the ability to produce
sugars from fatty acids. A stripped-down version
of this pathway, together with its EFM are shown
in Fig. 4 and Tab. 1. Intuitively one might guess
that acetyl-CoA (AcCoA), the breakdown product
of fatty acids, can be converted by this pathway to
Glucose 6-phosphate (G6P). EFM analysis demon-
strates that this is only possible if the glyoxylate
shunt is present, explaining why plants can convert
fat to sugars, while animals cannot. The glyoxylate
shunt bypasses the CO2-releasing steps in the citric
acid cycle. Without it, both carbons of the acetyl
group are lost as CO2 and thus no net-flux to sugars
is possible.
A related concept to EFMs are Extreme Pathways
(EP) [27, 28]. For the calculation of EPs it is as-
sumed that all reactions are irreversible. To ac-
count for reversible reactions, these are represented
as two reactions operating in opposite directions.
The mathematical advantage is that the solution
space containing all feasible flux vectors is now re-
stricted to vectors with non-negative entries only,

the disadvantage is an increased number of reac-
tions. EPs represent a convex linearly independent
generating set of the solution space, meaning that all
feasible flux distributions can uniquely be described
as a non-negative linear combination of EPs. A
good overview over mathematical properties of both
EFMs and EPs was recently published by Jevre-
movic et al. [29].

A complementary concept to EFMs are Minimal Cut
Sets (MCS) introduced by Klamt and Gilles [30].
Whereas EFMs are minimal pathways, an MCS is
a minimal set of reactions that need to be removed
to inactivate a specified target reaction. An MCS
is minimal in the sense that removing any subset
of it from the network is not sufficient to inactivate
the target reaction. MCSs are useful to predict sets
of genes which should be knocked out in order to
inactivate a particular metabolic route. Klamt [31]
could show that MCS are a dual representation of
EFMs, i.e. all MCS can be uniquely determined from
the EFMs and vice versa. Both theories are thus
representing the same mathematical problem with
different applications in biology.

EFMs, EPs and MCSs provide a useful and illustra-
tive way to characterise the properties of a metabolic
network, based on the stoichiometry of the net-
work alone. The main limitation is a combinato-
rial explosion of their numbers for large network
sizes [32]. For genome-scale metabolic networks mil-
lions of EFMs would be expected. This leads to
a computational problem for algorithms calculating
all EFMs and EPs simultaneously from the stoi-
chiometry matrix [27, 22, 33]. To overcome this,
de Figueiredo et al. recently developed an alterna-
tive method using constraint-based linear program-
ming to determine “k-shortest” EFMs [34]. This
method calculates EFMs in an iterative fashion to
compute subsets of the full set of EFMs. The gen-
erated sets can be restricted to include only EFMs
containing specified reactions.

Table 1: Elementary flux modes of the model illus-
trated in Fig. 4 with glyoxylate shunt.
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Figure 4: Glycolysis and Krebs cycle. A A visual inspection of the model might intuitively suggest
that acetyl-CoA can be transformed to glucose 6-phosphate even in the absence of the glyoxylate shunt
(R12, R13). B The only elementary flux mode of this system with net consumption of acetyl-CoA: Two
molecules CO2 are released, no sugars can be produced. C The only other EFM respires sugars, converting
one molecule glucose 6-phosphate into 6 CO2. D With the glyoxylate shunt present, there exists one EFM
with a net consumption of 4 acetyl-CoA, releasing two bicarbonates and producing one molecule glucose
6-phosphate. Conversion of fat to sugars is possible.

Reaction EFM Enzyme
1 2 3 4 5 subset

R1 0 -1 -1 1 0

1
R2 0 1 1 -1 0
R3 0 -1 -1 1 0
R4 0 -1 -1 1 0
R5 0 2 2 -2 0
R10 0 0 -2 -2 -1 2R12 0 0 2 2 1
R13 0 0 2 2 1
R8 1 2 0 0 0 3R9 1 2 0 0 0
R6 0 2 4 0 1 noneR7 1 2 2 2 1
R11 1 0 0 4 1
Turnover
CO2 2 6 4 0 1
HCO3 0 0 2 2 1
AcCoAex -1 0 0 -4 -1
G6Pex 0 -1 -1 1 0
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The reactions are grouped by enzyme subsets. The ratios of

the fluxes through reactions in an enzyme subset are always

fixed. The lower part of the Table indicates the net turnover

of external metabolites for each EFM.

6 Constraint-based Models

Only a small fraction of all possible flux distributions
will actually be realised in vivo. Instead of aiming
at a complete characterisation of the solution space,
it is plausible to search for those flux distributions
which perform optimally with respect to a certain
criterion. This goal is pursued by Constraint-Based
Modelling (CBM), also called Flux Balance Analysis
(FBA), a general approach in which sensible con-
straints to reduce the number of possible flux distri-
butions are defined and those solutions optimising
a specified objective function are identified. The ir-
reversibility conditions in Eq. 4 are generalised to
include lower and upper bounds for every involved
reaction:

N · v = 0 with vi
low ≤ vi ≤ vi

up. (5)

These bounds may represent minimal and maximal
enzymatic rates or can be used to restrict the flux
solutions to those which comply with experimentally
measured fluxes, such as nutrient uptake rates. Fur-
ther, some objective function Z = Z(v) is defined
and the optimisation problem

maximise/minimise Z under the constraints (5)
(6)

is solved. Since this strategy has recently been thor-
oughly reviewed by Gianchandani et al. [35] and
Ruppin et al. [36], we will only give a brief account
on the most essential ideas.
If the function Z is a linear function of all fluxes
v, the optimal solution can efficiently be identi-
fied with linear programming [37]. While the com-
putation of an optimal flux distribution is rather
straight-forward, it is by no means apparent which
objective function should be employed, because it
is unknown according to which optimality principles
fluxes are arranged in vivo. Often those fluxes are
identified which optimise biomass yield [38]. This
approach leads to a remarkably accurate prediction
of fluxes in Escherichia coli for various external con-
straints and can distinguish between genes essential
and not essential for growth in most growth condi-
tions [38]. While E. coli might indeed have opti-
mised its growth rate, this assumption is apparently
unrealistic for other, especially multi-cellular, organ-
isms (for a review on the biomass objective func-
tion, see [39]). Other plausible objective functions
consider finding fluxes maximising ATP produc-
tion [40, 41, 42], minimising the overall flux through
enzymatic reactions [43] or minimising a set of fluxes
given partial experimental flux data [44, 45]. Every

particular objective represents a different assump-
tion about the metabolic network and different ob-
jective functions will in general yield different opti-
mal flux distributions. However, optimised flux dis-
tributions are very informative to characterise the
general abilities of the underlying network. Further,
if a certain objective function produces realistic flux
distributions, the hypothesis is supported that the
corresponding organism has indeed evolved to opti-
mise this function. Solving the optimisation prob-
lem (6) results in a single solution, but several so-
lutions may exist which exhibit identical or almost
identical values of the objective function Z. To iden-
tify alternative optimal solutions, approaches based
on mixed integer linear programming (MILP) [46]
have been developed [47, 48].
A conceptual problem with CBM is that con-
straints (5) do not consider cellular growth. Find-
ing a flux distribution balancing all intermediates
does not guarantee that the intermediates can ac-
tually be replenished when diluted during growth.
This problem was first addressed by Kruse and
Ebenhöh [49] and the notion of sustainable metabo-
lites was introduced to describe that a net produc-
tion of a metabolite is possible under constant dilu-
tion. To account for dilution, Benyamini et al. [50]
proposed Metabolic Dilution Flux Balance Analysis
(MD-FBA). In MD-FBA each metabolite produced
in any flux carrying reaction will have an associated
positive dilution value which is incorporated into the
steady state assumption. The method was shown to
improve gene essentiality prediction especially be-
cause it identifies genes involved in the biosynthesis
of cofactors as essential, which are not predicted by
normal FBA approaches.
An interesting application of CBMs is the attempt
to predict changes in flux distributions upon gene
knock-out. A gene knock-out is simulated simply
by forcing all reactions which are catalysed by pro-
teins coded by the respective gene to zero. Segrè
et al. [51] propose the method of Minimisation Of
Metabolic Adjustment (MOMA), which is based on
the assumption that an organism will initially try
to adjust to a knockout with the minimum possible
effort and that consequently the metabolic fluxes in
the perturbed system are as close as possible to the
original flux distribution. Regulatory On/Off Min-
imisation (ROOM) [52] pursues a similar goal by as-
suming that the number of significant flux changes
(on/off) is minimal. Interestingly, MOMA is very
successful in predicting the adapted fluxes a short
time after genetic perturbations while ROOM yields
better predictions for long-term adaptations.
The ability to predict knockouts maximising the pro-
duction rates of particular metabolites is of interest
for biotechnological applications. The OptKnock
algorithm [53] assumes that after gene knock-out
metabolic fluxes are rearranged to optimise biomass
accumulation under the perturbed conditions. It

8



then employs MILP to identify sets of genes whose
knock-out results in a maximal production rate of a
product of interest. Tepper and Shlomi argued that
the assumption of maximal biomass production for
modified organisms is not necessarily justified and
proposed the RobustKnock strategy [54] which iden-
tifies sets of genes that upon knock-out lead to a so-
lution space containing no solutions without a pro-
duction of the target metabolite. In this way it is
ensured that the reduced networks will always pro-
duce some amounts of this target, regardless of the
actual flux distribution that is realised.

7 Thermodynamic constraints

Flux predictions based on the structure of the
metabolic network alone ignore that biochemical
fluxes must obey fundamental laws of thermody-
namics. As a consequence, the identified solution
spaces contain fluxes which are thermodynamically
unfeasible. An attempt to incorporate thermody-
namic constraints was introduced by Beard et al. [55]
as the concept of Energy Balance Analysis (EBA).
While the mass-balance constraint as defined by
Eq. (3) is a chemical analogon to Kirchhoff’s cur-
rent law in electric circuits, EBA imposes additional
constraints which essentially follow from the second
law of thermodynamics and are a chemical analogon
to Kirchhoff’s loop law. This approach identifies flux
distributions which are thermodynamically unfeasi-
ble as a result of the network structure alone and in
particular rules out series of cyclic reactions with-
out net conversion. A disadvantage is that the ad-
ditional constraints are non-linear and therefore the
calculation becomes computationally challenging for
large networks.
To restrict the solution space even further, ad-
ditional information is required. The idea of
Thermodynamics-Based Metabolic Flux Analysis
(TMFA) [56] incorporates thermodynamic con-
straints as additional linear constraints and depends
on the knowledge of standard enthalpies of reac-
tions. The formulation of the problem as MILP
includes the metabolic activities as new variables
which underlie the optimisation procedure. Essen-
tially, metabolite ranges are identified which are in
accordance with thermodynamic constraints under
the condition of maximal bacterial growth. Simi-
lar thermodynamic constraints are applied in Hoppe
et al. [57] with the important difference that, in-
stead of maximising biomass accumulation, a fea-
sible flux distribution is determined for which the
metabolite concentrations deviate minimally from
set-point values defined by biochemical knowledge
and simultaneously the overall flux is minimal. This
approach outlines a possible route how experimen-
tally determined metabolite concentrations can be
incorporated in CBM: If absolute concentrations for

a large number of metabolites are known, these can
be used to define further constraints.
A promising approach which integrates steady-state
mass conservation, energy conservation, the second
law of thermodynamics and reversible enzyme ki-
netics into a single set of equalities and inequali-
ties has been proposed by Fleming et al. [58]. Here,
the changes of chemical potentials are derived from
the elementary steps of the enzymatic kinetics, and
forward and backward reactions are treated indi-
vidually. The method includes in a very general
approach fluxes, kinetic parameters, enzyme and
metabolite concentrations. It has been shown that
in principle this Integrated stoichiometric, thermo-
dynamic and kinetic constraint-based modelling ap-
proach is applicable to networks of moderate size.
However, the application to larger systems is still in
its infancy.

8 Integrative approaches

The discussion above of the existing methods to in-
vestigate genome-scale metabolic networks and to
predict and understand their metabolic functions re-
veals the difficulty in integrating different sources
of data. Some of the thermodynamic approaches
clearly show the potential to include metabolite data
to further constrain the solution space containing all
possible flux distributions. But how can the mul-
titude of other high-throughput data, in particular
transcriptomic and proteomic profiles be included to
increase our understanding of metabolic networks?
An innovative approach to tackle this problem
was taken by Yizhak et al. [59]. The introduced
method, termed Integrative Omics-Metabolic Analy-
sis (IOMA), represents a further development of the
thermodynamic approaches discussed above and in-
cludes available proteomics and metabolomics data,
while allowing for missing information. It is formu-
lated as a quadratic programming (QP) problem in
which steady-state flux distributions are identified
that display the highest possible agreement with ex-
perimental proteomics and metabolomics data and
kinetically derived flux estimations. It has been ap-
plied to predict the metabolic state of human ery-
throcytes upon genetic alterations and the compar-
ison with kinetic model results has shown excellent
agreement. The application to a genome-scale net-
work of E. coli knock-out lines for which proteomic
and metabolomic data were available has shown a
considerable improvement of the quality of the pre-
dictions when compared to MOMA or the straight-
forward flux balance approach which assumes opti-
mised growth rates.
For most applications of CBM, a genome-scale
metabolic network model can be used and is com-
monly derived from annotations of the genome se-
quence. However, it is obvious that under different

9



conditions different parts of this network are acti-
vated. Especially in a multicellular organism, the
active parts of the network may be drastically differ-
ent for different tissues. A possibility to exploit tran-
scriptomic and proteomic data to infer the active
subnetworks has recently been proposed in Jerby
et al. [60]. Their constraint-based method is for-
mulated as a MILP which optimises the activity
pattern of the network such that it resembles the
experimental observations as accurate as possible,
while obeying the constraint that the active net-
work is consistent in the sense that biomass can be
produced and all reactions may be activated under
steady-state conditions. By this strategy, the al-
gorithm was able to automatically generate tissue-
specific subnetworks based on high-throughput data
for different tissues of the human body.

9 Network Expansion

The success of the computational methods for the in-
vestigation of genome-scale metabolic network mod-
els is apparent. For a review on over 60 papers
published on genome-scale models of E. coli alone,
see Feist and Palsson [61]. A bottleneck for the ap-
plication to a wider spectrum of organisms is that
all constraint-based approaches require highly accu-
rate and well-curated networks. This process still
involves a large amount of manual labour and the
construction of a consistent network model from the
genome sequence easily takes several months despite
the fact that many steps can be performed in a semi-
automated fashion [62]. This labour-intensive gen-
eration of network models explains why the numbers
of sequenced genomes, with over 1600 completed and
over 8000 ongoing [63], is in stark contrast with an
estimated 50 published genome-scale models [59].
An alternative approach to study functional and
structural properties of large-scale metabolic net-
works is the so-called Method of Network Expan-
sion [64, 65]. The method determines which
metabolites are in principle producible by the
metabolic network. Given a predefined set of
metabolites, the seed, the underlying algorithm gen-
erates a series of expanding networks by stepwise
adding all reactions for which all substrates are ei-
ther present in the seed or are products of previously
added reactions. The process ends when no further
reactions can be added. The set of metabolites con-
tained in the final network is called the scope of
the seed. Due to the simplicity of the underlying
algorithm, this method is computationally highly
efficient. In contrast to constraint-based models
this method can only produce qualitative predic-
tions regarding the principle capacity of a network to
produce metabolites. Another disadvantage of this
method is the fact that metabolites that are required
for their own production (such as ATP in glycolysis)

cannot be handled in a straight-forward way. This
problem is overcome by the introduction of an ad-
ditional mechanism based on the observation that
many of these self-depending compounds are cofac-
tors. These cofactors mostly occur in pairs on both
sides of a reaction equation and donate or take up a
chemical group (e.g. ATP - ADP for the transfer of
phosphate groups or NADH - NAD+ for the transfer
of electrons). These pairs are either known by bio-
chemical knowledge or can be identified with heuris-
tics. These cofactors are then added to the seed in
a way which ensures that they can only act in their
role as cofactors and that no metabolite can be cre-
ated from nothing. The strength of this method is
that it is far more error-tolerant against inaccuracies
of the underlying network and yields stable results
for networks which are retrieved from databases such
as KEGG [66] or MetaCyc [67] and subsequently cu-
rated only moderately in an automated process [68].
The applicability to database-derived networks
makes this method a good choice to systematically
compare hundreds of networks. In Ebenhöh and
Handorf [69], the concept of Carbon Utilisation Spec-
tra was introduced to to characterise the biosyn-
thetic capabilities for over 400 organism-specific net-
works if only one carbon source but abundant inor-
ganic material is available. This analysis has re-
vealed that it is to a certain extent possible to infer
the lifestyle of an organism from its metabolic net-
work structure alone.
The fast computational power can be exploited to
perform thousands or even millions of scope calcula-
tions on a simple PC. In Handorf et al. [70], a greedy
search algorithm was employed to identify minimal
combinations of nutrients which must be supplied
to a network such that it can produce all essen-
tial biomass precursors. The large number of so-
lutions were restricted to biologically relevant com-
binations by applying heuristics which ensure that
small metabolites and those for which transporters
have been characterised are preferentially included
in a solution. The systematic comparison of pre-
dicted nutrient types revealed that it is possible to
distinguish between generalist and specialist species.
An approach to integrate genomic, proteomic and
metabolomic data was developed in Christian et al.
[71] to identify and fill gaps in metabolic networks.
For this, a draft network derived from a genome se-
quence is embedded in a reference network derived
from MetaCyc. Subsequently, minimal sets of reac-
tions are identified which have to be added to the
draft network to make it consistent with experimen-
tal observations. Consistency is assumed if the net-
work is capable of producing all required biomass
precursors as well as all experimentally identified
metabolites from the applied growth medium. This
approach led to an improved genome annotation
of the green alga Chlamydomonas reinhardtii [72].
Similar attempts to automatically identify missing
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reactions were also developed based on CBM, see
e.g. Reed et al. [73]. However, for their successful
application both the draft and the reference network
need already be cleaned from all stoichiometric in-
consistencies.
The method of network expansion has also been
applied to gain insights about the evolution of
metabolic pathways. In Raymond and Segrè [74] the
effect of the appearance of oxygen in earth’s atmo-
sphere on the complexity of biochemical networks
was investigated and it was found that all organ-
isms can be classified into four groups of increasing
metabolic complexity. A modified expansion algo-
rithm was employed in Schütte et al. [75]. Here,
the expansion proceeds by single reactions only and
preferably those were attached to the network for
which the protein sequences show the greatest sim-
ilarity to sequences already present in the network.
This study provided computational evidence for a
punctuated equilibrium in molecular evolution, in-
dicating that the evolution of new enzymes rather
occurred in short periods in which the rate of inven-
tion was high with intermittent long silent intervals
than in a gradual fashion.

10 Future Challenges

We have discussed a number of methods to analyse
and interpret pathways and networks and demon-
strated how the application of traditional as well as
newly developed theoretical methods can consider-
ably advance our understanding of biological sys-
tems. Evidently, we are still far from the goal of
reaching a truly systemic understanding of a cellular
system as a whole. However, the concepts discussed
here may well be the seed for the development of
unifying biological theories to answer the question
’What is life?’ [76].
The grand challenge for the coming years and
decades will be to unify these methods in order to
allow for a seamless description across scales, from
molecules to whole-systemic behaviour. A prereq-
uisite which needs to be addressed urgently is the
definition of standardised descriptors within mod-
els. While the Systems Biology Markup Language
(SBML) [77] was developed as a standard model
format with the aim to allow for an easy exchange
of models, it does not solve the problem of unique
identifiers for metabolites or proteins. Even though
there has been effort to generate links between dif-
ferent databases by defining minimal information
that annotations of biochemical models should con-
tain [e.g. MIRIAM, 78], it can still be labori-
ous to combine different models based on different
databases. In particular models which contain non
standardized compounds or proteins inferred from
local experiments are often hard to handle.
A conceptual challenge will be the integration of

different levels of biological networks. Obviously,
the metabolic state of a cell is controlled through
gene regulatory networks and, in turn, the metabolic
state influences the activities of genes. Recent pub-
lications show that this problem is addressed on
various scales. A classical, dynamical systems ap-
proach is followed by Baldazzi et al. [79], where
metabolism is treated as a quasi stationary sub-
system and, for small systems, the signs of indi-
rect regulations could be analytically calculated, but
the applicability to large-scale systems is difficult.
Simulating the gene regulatory network of E. coli
metabolism by a Boolean network [80] indicated
a high degree of flexibility and the method seems
suitable to be integrated with network expansion
to investigate biosynthetic capabilities for different
regulatory states. The strict boolean on/off condi-
tions are relaxed in the recently presented method
called Probabilistic Regulation of Metabolism [81]
by which transcription regulatory networks and
genome-scale metabolic models can be integrated
with high-throughput data.
Despite the impressive existing repertoire of math-
ematical methods, it is clear that existing theories
are still far from providing a unifying description of
the phenomenon ’life’. The rapid recent develop-
ment of modelling approaches demonstrates, how-
ever, that the systems biology research community
has accepted the great challenge and has embarked
on the quest to understand the principles of life.

Summary key points:

1. Theoretical deliberations are the key to con-
vert biological knowledge in understanding.

2. For different system sizes and different biologi-
cal problems, numerous modelling approaches
exist. Dynamic differential equations-based
models are useful for the investigation of
systems of relatively small size. To study
genome-scale metabolic networks, constraint-
based models have been developed which omit
the dynamic component by assuming a sta-
tionary state.

3. It will be a key challenge to integrate these ap-
proaches to arrive at a seamless description of
biological processes across scales. The rapid
development of systems approaches to biology
give rise to optimisim that the scientific com-
munity is on the right track to develop a thor-
ough understanding of the phenomenon life.
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