Methane and nitrous oxide fluxes from the tropical Andes

Y. A. Teh¹,* T. Diem¹, S. Jones², L. P. Huaraca Quispe³, E. Baggs⁴, N. Morley⁴, M. Richards⁴, P. Smith⁴, and P. Meir²,⁵

¹Department of Earth and Environmental Sciences, University of St Andrews, Scotland, UK
²School of Geosciences, University of Edinburgh, Scotland, UK
³Universidad Nacional de San Antonio Abad del Cusco, Peru
⁴Institute of Biological and Environmental Sciences, University of Aberdeen, Scotland, UK
⁵Research School of Biology, Australian National University, Canberra, Australia

*now at: Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, Scotland, UK

Received: 30 September 2013 – Accepted: 14 October 2013 – Published: 5 November 2013
Correspondence to: Y. A. Teh (yateh@abdn.ac.uk)
Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Remote sensing and inverse modelling studies indicate that the tropics emit more CH$_4$ and N$_2$O than predicted by bottom-up emissions inventories, suggesting that terrestrial sources are stronger or more numerous than previously thought. Tropical uplands are a potentially large and important source of CH$_4$ and N$_2$O often overlooked by past empirical and modelling studies. To address this knowledge gap, we investigated spatial, temporal and environmental trends in CH$_4$ and N$_2$O fluxes across a long elevation gradient (600–3700 m.a.s.l.) in the Kosñipata Valley, in the southern Peruvian Andes that experiences seasonal fluctuations in rainfall. The aim of this work was to produce preliminary estimates of CH$_4$ and N$_2$O fluxes from representative habitats within this region, and to identify the proximate controls on soil CH$_4$ and N$_2$O dynamics. Ecosystems across this altitudinal gradient were both atmospheric sources and sinks of CH$_4$ on an annual basis. Montane grasslands (or, puna; 3200–3700 m.a.s.l.) were strong atmospheric sources, emitting 56.94 ± 7.81 kg CH$_4$ – C ha$^{-1}$ yr$^{-1}$. Upper montane forest (2200–3200 m.a.s.l.) and lower montane forest (1200–2200 m.a.s.l.) were net atmospheric sinks (−2.99 ± 0.29 kg CH$_4$ – C ha$^{-1}$ yr$^{-1}$ and −2.34 ± 0.29 kg CH$_4$ – C ha$^{-1}$ yr$^{-1}$, respectively); while premontane forests (600–1200 m.a.s.l.) fluctuated between source or sink depending on the season (wet season: 1.86 ± 1.50 kg CH$_4$ – C ha$^{-1}$ yr$^{-1}$; dry season: −1.17 ± 0.40 kg CH$_4$ – C ha$^{-1}$ yr$^{-1}$). Analysis of spatial, temporal and environmental trends in CH$_4$ flux across the study site suggest that soil redox was a dominant control on net CH$_4$ flux. CH$_4$ emissions were greatest from elevations, landforms and during times of year when soils were sub-oxic, and CH$_4$ efflux was inversely correlated with soil O$_2$ concentration ($r^2 = 0.82$, $F_{1,125} = 588.41$, $P < 0.0001$). Ecosystems across the region were net atmospheric N$_2$O sources. N$_2$O fluxes declined with increasing elevation; N$_2$O emissions from premontane forest, lower montane forest, upper montane forest and montane grasslands averaged 2.23 ± 1.31 kg N$_2$O – N ha$^{-1}$ yr$^{-1}$, 1.68 ± 0.44 kg N$_2$O – N ha$^{-1}$ yr$^{-1}$, 0.44 ± 0.47 kg N$_2$O – N ha$^{-1}$ yr$^{-1}$ and 0.15 ± 1.10 kg N$_2$O – N ha$^{-1}$ yr$^{-1}$, respectively. N$_2$O fluxes from premontane and lower montane forests exceeded prior
model predictions for the region. Comprehensive investigation of field and laboratory data collected in this study suggest that N$_2$O fluxes from this region were primarily driven by denitrification; that nitrate (NO$_3^-$) availability was the principal constraint on N$_2$O fluxes; and that soil moisture and water-filled porosity played a secondary role in modulating N$_2$O emissions. Any current and future changes in N management or anthropogenic N deposition may cause shifts in net N$_2$O fluxes from these tropical montane ecosystems, further enhancing this emission source.

1 Introduction

Recent remote sensing and inverse modelling studies indicate that the tropics emit more methane (CH$_4$) and nitrous oxide (N$_2$O) than estimated from prior bottom-up emissions inventories, suggesting that tropical sources are stronger or more numerous than previously thought (Frankenberg et al., 2005, 2008; Bergamaschi et al., 2009; Fletcher et al., 2004a, b; Hirsch et al., 2006; Huang et al., 2008; Kort et al., 2011). Recent speculation over discrepancies in the global tropical CH$_4$ budget have focussed on the potential role of seasonally flooded wetlands (Melack et al., 2004; Bergamaschi et al., 2009) or vegetation in accounting for budgetary gaps; the latter acting either as abiotic producers (Bergamaschi et al., 2007) or conduits for atmospheric egress from anoxic soils (Gauci et al., 2010; Terazawa et al., 2007). Parallel debates over tropical N$_2$O budgets have invoked rising agricultural emissions or atmospheric transport processes as possible causes for discrepancies between top-down and bottom-up budgets (Nevison et al., 2007, 2011; Kort et al., 2011).

One potentially important source of CH$_4$ and N$_2$O overlooked both by bottom-up inventories or top-down studies are fluxes from tropical uplands (Spahni et al., 2011), because attention has historically focussed on seasonally inundated wetlands (e.g. várzea in Brazil) (Fung et al., 1991; Bergamaschi et al., 2009; Melack et al., 2004; Werner et al., 2007), lowland forests, savannas, or pastures (Hall and Matson, 1999; Silver et al., 1999; Teh et al., 2005; Werner et al., 2007; Keller et al., 1986, 1993;
Verchot et al., 2000; Keller and Reiners, 1994). However, upland ecosystems account for a substantial fraction of land cover in the tropics; in South America alone, upland ecosystems (> 500 m a.s.l.) represent more than 8% of total continental land cover (Eva et al., 2004), while in mountainous countries, such as Peru or other Andean states, upland ecosystems may account for upwards of 80% of total land cover (Feeley and Silman, 2010). Measurements from tropical uplands in Australia (Breuer et al., 2000), Ecuador (Wolf et al., 2011, 2012), Hawaii (Hall and Matson, 1999, von Fischer and Hedin, 2002, 2007), Puerto Rico (Silver et al., 1999; Teh et al., 2005) and Sulawesi (Veldkamp et al., 2008; Purbopuspito et al., 2006) indicate that CH$_4$ and N$_2$O fluxes from these environments are comparable or greater than those from tropical lowlands, and may therefore be quantitatively important in regional and global atmospheric budgets, particularly if these ecosystems function as regional “hotspots” of gas production or consumption (Teh et al., 2011; Waddington and Roulet, 1996). CH$_4$ fluxes in tropical uplands are particularly intriguing because they show no clear regional patterns or trends; while some ecosystems function as net atmospheric sources, others operate as net atmospheric sinks (Wolf et al., 2011, 2012; Silver et al., 1999; Teh et al., 2005, von Fischer and Hedin, 2002; Veldkamp et al., 2008). N$_2$O fluxes are more predictable but are still poorly constrained (Werner et al., 2007); upland ecosystems, like their lowland counterparts, act as net N$_2$O sources, with emission rates modulated by factors such as soil moisture, water-filled pore space, soil oxygen content, redox potential, C availability, inorganic N availability (NH$_4^+$, NO$_3^-$), or competition for NO$_3^-$ among different soil sinks (Hall and Matson, 1999; Silver et al., 1999, 2001; Veldkamp et al., 2008; Wolf et al., 2011, 2012; Firestone and Davidson, 1989).

In the Neotropics, data on upland CH$_4$ and N$_2$O fluxes are particularly scarce, with field observations only from Puerto Rico (Silver et al., 1999; Teh et al., 2005) and Ecuador (Wolf et al., 2011, 2012). Because of the limited spatial coverage and aseasonality of these two regions, it is difficult to draw wider conclusions about the source or sink strength of Neotropical uplands for CH$_4$ and N$_2$O, particularly for areas that experience marked seasonality in rainfall or temperature. To address these knowledge
gaps, we performed a preliminary study of CH\textsubscript{4} and N\textsubscript{2}O cycling across a long elevation gradient (600–3700 m a.s.l.) in the Peruvian Andes that experiences seasonal variations in rainfall, and include a wide range of habitats stretching from premontane forests to wet montane grasslands. Our principal objectives were to:

1. Quantify spatial (elevation, topography or landform) and temporal (seasonal, month-to-month) trends in CH\textsubscript{4} and N\textsubscript{2}O fluxes

2. Evaluate the role of environmental variables in modulating CH\textsubscript{4} and N\textsubscript{2}O dynamics

Findings from this research will provide the basis for future more detailed and integrative studies of soil trace gas dynamics in seasonal montane tropical ecosystems; and will also enable us to identify the proximate controls on CH\textsubscript{4} and N\textsubscript{2}O fluxes in these diverse environments.

2 Methods and materials

2.1 Study site

Measurements were conducted on the eastern slope of the Andes in the Kosñipata Valley, Manu National Park, Peru (Malhi et al., 2010). This 3.02 × 106 ha (30,200 km2) region has been the subject of intensive ecological, biogeochemical and climatological studies since 2003 by the Andes Biodiversity and Ecosystem Research Group (or, ABERG; http://www.andesconservation.org), and contains a series of long-term permanent plots across a 200–3700 m a.s.l. elevation gradient stretching from the western Amazon to the Andes (Malhi et al., 2010; Feeley and Silman, 2010). This part of the Andes experiences pronounced seasonality in rainfall but not in air temperature; the dry season extends from May to September and the wet season from October to April (Girardin et al., 2010; Zimmermann et al., 2010a). Thirteen sampling plots (approximately 20 m × 20 m each) were established at four different elevations across a gradi-
ent spanning 600–3700 m a.s.l., including premontane forest (600–1200 m a.s.l.; \(n = 3 \) plots), lower montane forest (1200–2200 m a.s.l.; \(n = 3 \) plots), upper montane forest (2200–3200 m a.s.l.; \(n = 3 \) plots), and montane grasslands (3200–3700 m a.s.l.; \(n = 4 \) plots; hereafter referred to as “puna”). In premontane forest, new sampling plots were established in Hacienda Villa Carmen, a 3,065 ha biological reserve operated by the Amazon Conservation Association (ACA), containing a mixture of old-growth forest, secondary forest and agricultural plots. Sampling for gas fluxes was concentrated in the old-growth portions of the reserve. For lower montane and upper montane forests, sampling plots were established adjacent to or within existing 1 ha permanent sampling plots established by ABERG. New sampling plots were also established in puna to capture a representative range of environmental conditions, microforms (1–5 m scale landforms) and mesotopes (100 m–1 km scale landforms) (Belyea and Baird, 2006), as past ABERG studies of puna biogeochemistry were more limited in spatial extent (Gibbon et al., 2010; Zimmermann et al., 2010b). Mesotopic features include ridges, slopes, flats and basins. The latter two landforms include wet, grassy lawns with no discernible grade; and peat-filled depressions found in valley bottoms, respectively. Some (although not all) of these basins abut pool or lake complexes. Because of the logistic challenges of sampling over open water, we did not collect data from the pools or lakes, nor from the shoreline. Summary site descriptions are provided in Table 1 with data on site characteristics collated from prior studies (Feeley and Silman, 2010; Girardin et al., 2010; Zimmermann et al., 2009, 2010b).

2.2 Soil–atmosphere exchange

Field sampling was performed over a 13 month period from December 2010 to December 2011 for all habitats except premontane forest. Because of circumstances outside our control, only 6 months of data were collected for premontane forest, with sampling only commencing in July 2011. Soil–atmosphere fluxes were collected monthly, except where flooding or landslides prevented safe access by fieldworkers to the study sites. Gas exchange rates were determined with five replicate gas flux chambers deployed in...
each of the thirteen plots ($n = 65$ flux observations per month). Sampling was spatially stratified to account for mesotope (100 m–1 km) scale variability in redox and hydrologic conditions (Belyea and Baird, 2006); key environmental factors that often regulate soil-atmosphere trace gas fluxes (Silver et al., 1999; Teh et al., 2011). All representative landforms were sampled in each elevation band, including ridges, slopes, flats and basins (Table 1). This spatial stratification of sampling was justified by a prior pilot study conducted across the entire ABERG elevation gradient (i.e. 220–3700 m a.s.l.), which found significant within and among plot variability in fluxes, suggesting the need for a spatially explicit sampling design (Saiz and Teh, 2009, unpublished data; $n = 75$ static chamber measurements; > 10 flux measurements per elevation).

Daily sampling in puna for 12 days (from 11 November 2011 to 22 November 2011) was performed in order to determine if CH$_4$ and other trace gas fluxes varied among mesotope-scale landforms (ridge, slope, flat, basin) in response to short-term (daily) fluctuations in rainfall, water table depth and soil moisture content. Sampling followed a stratified design that encompassed a 2.5 ha area including ridge, slope, flat and basin landforms. Twenty-four sampling stations were set-up across this topographic gradient > 1 month prior to sampling, consisting of six 75 m long transects, each running perpendicular to the slope and containing 4 sampling stations each. Each sampling station was instrumented with a chamber base, a soil gas equilibration chamber buried at a depth of 10 cm (Teh et al., 2005), and a piezometer inserted to bedrock or saprolite depth (≤ 50 cm). Measurements of air temperature, flux chamber temperature, soil temperature (5 and 10 cm depth), atmospheric pressure, soil moisture (0–20 cm), soil oxygen (O$_2$) concentration and water table depth were collected concurrent with flux chamber measurements on a daily basis.

Soil-atmosphere fluxes of CH$_4$, N$_2$O and CO$_2$ were determined using a static flux chamber approach (Teh et al., 2011; Livingston and Hutchinson, 1995), although only CH$_4$ and N$_2$O fluxes are reported here. Static flux chamber measurements were made by enclosing a 0.03 m2 area with cylindrical, opaque (i.e. dark), two-component (i.e. base and lid) vented chambers. Chamber bases were permanently installed to a depth
of approximately 5 cm and inserted > 1 month prior to the commencement of sampling, in order to avoid potential artefacts from root mortality following base emplacement (Varner et al., 2003). Chamber lids were fitted with small computer case fans to promote even mixing in the chamber headspace (Pumpanen et al., 2004). Headspace samples were collected from each flux chamber over a 30 min enclosure period, with samples collected at 4 discrete intervals using a gastight syringe. Gas samples were stored in evacuated Exetainers® (Labco Ltd., Lampeter, UK), shipped to the UK by courier, and subsequently analysed for CH$_4$, N$_2$O and CO$_2$ concentrations using a Thermo TRACE GC Ultra (Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA) at the University of St Andrews. Chromatographic separation was achieved using a Porapak-Q column, and analyte concentrations quantified using a flame ionization detector (FID) for CH$_4$, electron capture detector (ECD) for N$_2$O, and methanizer-FID for CO$_2$. Instrumental precision was determined by repeated analysis of standards and was better than 5% for all detectors. Fluxes rates were determined by using the R (R Core Team, 2012) HMR package to plot best-fit lines to the data for headspace concentration against time for individual flux chambers (Pedersen et al., 2010). Gas mixing ratios (ppm) were converted to areal fluxes by using the Ideal Gas Law to solve for the quantity of gas in the headspace (on a mole or mass basis), normalized by the surface area of each static flux chamber (Livingston and Hutchinson, 1995).

2.3 Environmental variables

To investigate the effects of environmental variables on trace gas dynamics, we determined soil moisture, soil oxygen content in the 0–10 cm depth, soil temperature, chamber temperature and air temperature at the time of flux sampling. In flooded environments (e.g. puna basins), water table depth was also measured using piezometers installed to a depth of ≤ 50 cm in the soil. Soil moisture was determined using portable moisture probes (ML2x ThetaProbe, Delta-T Device Ltd., Cambridge, UK) inserted into the substrate immediately adjacent to each flux chamber (< 5 cm from each chamber base; depth of 0–10 cm). Soil moisture content was measured both as volumetric wa-
ter content (VWC) and water-filled pore space (WFPS), the latter calculated from VWC and bulk density data (Breuer et al., 2000). Soil O$_2$ concentration was determined by analysing soil gas with a portable O$_2$ meter (Apogee Instruments Ltd., Logan, Utah, USA), collected from soil gas equilibration chambers permanently installed to a depth of 0–10 cm adjacent to static flux chambers (Teh et al., 2005). Soil temperature (0–10 cm depth), chamber temperature and air temperature was determined using type K thermocouples (Omega Engineering Ltd., Manchester, UK). Data on aboveground litterfall, meteorological variables (i.e. photosynthetically active radiation, air temperature, relative humidity, rainfall, wind speed, wind direction), continuous plot-level soil moisture and soil temperature measurements (10 cm and 30 cm depths) were also collected, but are not reported in this publication.

Fluctuations in available inorganic N (i.e. ammonium, NH$_4^+$; nitrate, NO$_3^-$; nitrite, NO$_2^-$) concentrations were quantified in all plots using a resin bag approach (Templer et al., 2005). From August 2011 onwards, ion exchange resin bags ($n=15$ resin bags per elevation) were deployed in the rhizosphere (i.e. 0–10 cm depth in premontane forest, lower montane forest and puna; 0–15 cm in upper montane forest), and collected at monthly intervals (where possible) for determination of monthly time-averaged NH$_4^+$, NO$_3^-$ and NO$_2^-$ concentrations. For some plots, this sampling frequency was periodically disrupted due to natural hazards (i.e. land slides, river flooding) preventing safe access to the study sites. Resin bags were shipped to the University of Aberdeen after collection from the field, inorganic N was extracted using 2NKCl (Templer et al., 2005) and concentrations determined colorimetrically using a Burkard SFA2 continuous-flow analyzer (Burkard Scientific Ltd., Uxbridge, UK).

2.4 Denitrification potentials and N$_2$O yields

Potential denitrification rates across the elevation sequence were determined by performing an exploratory 15N-labeled nitrate (15N-NO$_3^-$) laboratory tracer study (Baggs et al., 2003; Bateman and Baggs, 2005). Details of the soil sampling scheme for this experiment are summarised in Table 2. Twenty-two soils samples (125–170 g dry soil
per sample) were collected from beneath the rooting zone from sites across the elevation sequence, air-dried and then shipped to the UK by courier. Upon arrival in the UK, 50 g dry soil sub-samples were taken from each soil sample and weighed out into 52 700 mL glass vessels for incubation (n = 19 for premontane forest, n = 3 for lower montane forest, n = 5 for upper montane forest, n = 10 for puna). The uneven sample sizes reflect the fact that this experiment was designed as a preliminary scoping exercise to capture a broad range of environmental conditions, microtopographic and mesotopic features in order to quantify the range of variability in denitrification rates both within and among elevation bands. Soil sub-samples were initially re-wetted to 20 % volumetric water content, and allowed to pre-incubate for 4 days. Soils were further moistened at the start of the experiment to achieve a final WFPS of 80 %. A KNO$_3$ solution containing 0.2 mL of 0.01 M 40 atom % 15N-NO_3^- was then added to the soil, and the glass incubation vessels sealed to initiate the experiment. Control incubations were conducted with soils from each elevation band (n = 3 per elevation) to correct for the 15N natural abundance signature of endogenous N$_2$O and N$_2$ production. Gas samples were collected at 0, 6, 12, 24, 33 and 48 h to quantify N$_2$O, 15N-N$_2$O and 15N-N$_2$ concentrations. Gas concentrations and isotope ratios were determined at the University of Aberdeen, using an Agilent 6890 GC fitted with an ECD (Agilent Technologies UK Ltd., Workingham, UK) and a SerCon 20 : 20 isotope ratio mass spectrometer (IRMS) equipped with an ANCA TGII pre-concentration module (SerCon Ltd., Crewe, UK), respectively. Instrumental precision was determined by repeated analysis of standards and was better than 5 % for both the GC and IRMS. Potential denitrification rates were calculated from the difference in the 15N atom % excess values of N$_2$O and N$_2$ relative to the controls. Fluxes of 15N-N$_2$O and 15N-N$_2$ were determined using the R (R Core Team; http://www.r-project.org) HMR package (as described above) and normalized for soil dry weight. Total denitrification potential (i.e. sum of 15N-N$_2$O plus 15N-N$_2$ fluxes) and N$_2$O yield (i.e. the ratio of 15N-N$_2$O : 15N-N$_2$O flux + 15N-N$_2$ flux) were also calculated (Yang et al., 2011).
2.5 Statistical analyses

Statistical analyses were performed using JMP IN Version 8 (SAS Institute, Inc., Cary, North Carolina, USA) and R (R Core Team, 2012). The data were log transformed where necessary to meet the assumptions of analysis of variance. Residuals were checked for heteroscedasticity and homogeneity of variances. Repeated measures analysis of variance (ANOVA) was used to explore the influence of spatial (e.g. elevation band, topography) and temporal factors (e.g. day of year, season) on gas fluxes and environmental variables. A student’s t test was used to compare differences in fluxes and environmental variables between seasons (dry, wet). Bivariate or multiple regression was utilized to investigate the relationship among environmental variables and trace gas fluxes. Repeated measures analysis of covariance (ANCOVA) was used to evaluate the relative contribution of ordinal variables (elevation band, topography, day of year, season) and continuous environmental covariates (soil moisture, soil oxygen, soil temperature, air temperature) in regulating gas fluxes. Means comparisons were performed using Fisher’s Least Significant Difference test (Fisher’s LSD). Statistical significance was determined at the $P < 0.05$ level, unless otherwise noted. Values are reported as means and standard errors (± 1 SE).

3 Results

3.1 Spatial variation in gas fluxes and environmental variables

The mean CH_4 flux for the entire 13 month dataset was $7.79 \pm 1.14 \text{ mg CH}_4 \text{ C m}^{-2} \text{ d}^{-1}$. CH_4 fluxes varied significantly among elevation bands (habitats) and over time (repeated measures ANOVA, $r^2 = 0.91$, $F_{101,731} = 75.75$, $P < 0.00001$). Multiple comparisons tests indicated that CH_4 fluxes from puna differed significantly from other habitats (Fisher’s LSD, $P < 0.05$; Fig. 1a). Puna were net sources of CH_4, with mean fluxes of $15.60 \pm 2.14 \text{ mg CH}_4 \text{ C m}^{-2} \text{ d}^{-1}$. In contrast, premontane, lower montane and upper
montane forests were all net atmospheric sinks, with mean uptake rates of \(-0.16 \pm 0.13 \text{ mg CH}_4 \cdot \text{C m}^{-2} \cdot \text{d}^{-1}\), \(-0.64 \pm 0.08 \text{ mg CH}_4 \cdot \text{C m}^{-2} \cdot \text{d}^{-1}\) and \(-0.82 \pm 0.08 \text{ mg CH}_4 \cdot \text{C m}^{-2} \cdot \text{d}^{-1}\), respectively (Fig. 1a). CH\(_4\) fluxes varied significantly among topographic features (ANOVA, \(r^2 = 0.54, F_{6,826} = 161.15, P < 0.0001; \) data not shown). Basin landforms, found only in the puna, emitted significantly more CH\(_4\) than other topographic features (mean CH\(_4\) flux for basin landforms was 63.99 \(\pm\) 7.80 mg CH\(_4\) \(\cdot\) C m\(^{-2}\) \(\cdot\) d\(^{-1}\); Fisher’s LSD, \(P < 0.05; \) data not shown). Other landforms were either weak sources or sinks, but could not be distinguished from each other statistically because of the large variance in fluxes. The mean for pooled CH\(_4\) fluxes from ridge, slope and flat landforms (i.e. the entire dataset excluding basin landforms) was 0.47 \(\pm\) 0.18 mg CH\(_4\) \(\cdot\) C m\(^{-2}\) \(\cdot\) d\(^{-1}\), with a range from \(-8.71\) to 78.5 mg CH\(_4\) \(\cdot\) C m\(^{-2}\) \(\cdot\) d\(^{-1}\).

The mean N\(_2\)O flux for the entire 13 month dataset was 0.22 \(\pm\) 0.12 mg N\(_2\)O \(\cdot\) N m\(^{-2}\) \(\cdot\) d\(^{-1}\). N\(_2\)O fluxes varied widely among elevations bands (habitats) and over time (repeated measures ANOVA, \(r^2 = 0.17, F_{76,381} = 1.06, P < 0.35\)). Mean N\(_2\)O fluxes declined progressively with increasing elevation, although this pattern was only statistically significant at the \(P < 0.1\) level due to high variance in fluxes both within and among study sites (Fig. 1b). The highest mean fluxes observed were in premontane forests (0.61 \(\pm\) 0.36 mg N\(_2\)O \(\cdot\) N m\(^{-2}\) \(\cdot\) d\(^{-1}\)), followed by lower montane forests (0.46 \(\pm\) 0.12 mg N\(_2\)O \(\cdot\) N m\(^{-2}\) \(\cdot\) d\(^{-1}\)), upper montane forests (0.12 \(\pm\) 0.13 mg N\(_2\)O \(\cdot\) N m\(^{-2}\) \(\cdot\) d\(^{-1}\)) and puna (0.04 \(\pm\) 0.30 mg N\(_2\)O \(\cdot\) N m\(^{-2}\) \(\cdot\) d\(^{-1}\)) (Fig. 1b). N\(_2\)O fluxes did not vary significantly among topographic features within elevation bands (ANOVA, \(r^2 = 0.02, F_{6,451} = 1.36, P > 0.2\)).

Soil moisture varied significantly among elevation bands (habitats) and over time. Patterns were qualitatively similar whether volumetric water content or WFPS were used as metrics of soil moisture (repeated measures ANOVA for VWC, \(r^2 = 0.86, F_{104,800} = 46.42, P < 0.0001; \) repeated measures ANOVA for WFPS, \(r^2 = 0.72, F_{76,628} = 18.57, P < 0.0001\)). Multiple comparison tests indicate that soil moisture varied significantly among elevations (Fisher’s LSD, \(P < 0.05; \) Table 3). Soil moisture
was greatest in puna (VWC: 72.9 ± 0.2 %; WFPS: 94.7 ± 0.3 %) followed by premontane forest (VWC: 42.0 ± 1.4 %; WFPS: 70.1 ± 2.3 %). Lower montane forest (VWC: 35.0 ± 0.7 %; WFPS: 58.4 ± 1.2 %) and upper montane forest (VWC: 31.9 ± 0.9 %; WFPS: 58.0 ± 1.6 %) had significantly lower levels of soil moisture than either puna or premontane forest. Soil moisture varied significantly among topographic features (ANOVA for VWC, $r^2 = 0.70$, $F_{6,898} = 350.76$, $P < 0.0001$; ANOVA for WFPS, $r^2 = 0.42$, $F_{6,622} = 73.62$, $P < 0.0001$). Soil moisture patterns among topographic features varied depending on elevation band. For example, soil moisture did not vary significantly among landforms in premontane forest. In contrast, in lower montane forest, ridges and slopes were not statistically different from each other (ridge: VWC: 35.5 ± 1.3 %, WFPS: 59.1 ± 2.2 % and slope: VWC: 38.4 ± 1.5 %, WFPS: 64.1 ± 2.5 %), but were significantly wetter than flat areas (VWC: 31.4 ± 0.8 %, WFPS: 57.4 ± 1.4 %). For upper montane forest, ridges were significantly wetter than slopes (ridge: VWC: 37.0 ± 1.5 %, WFPS: 67.3 ± 2.7 % versus slope: VWC: 38.4 ± 1.5 %, WFPS: 64.1 ± 2.5 %). For puna, soil moisture was highest in basins (VWC: 80.1 ± 0.8 %, WFPS: 97.5 ± 0.2 %), followed by flat areas and slopes (flat: VWC: 70.9 ± 0.7 %, WFPS: 94.7 ± 0.5 %; slope: VWC: 69.0 ± 0.6 %, WFPS: 95.1 ± 0.3 %), and driest on ridges (VWC: 68.2 ± 0.6 %, WFPS: 93.2 ± 0.6 %).

Soil O$_2$ concentrations in the 0–10 cm soil depth varied significantly among elevation bands (habitats) and over time (repeated measures ANOVA, $r^2 = 0.88$, $F_{48,269} = 40.08$, $P > 0.0001$). Multiple comparisons tests indicated that soil O$_2$ concentration in puna was significantly lower from that in other habitats (Fisher’s LSD, $P < 0.05$; Table 3), with a mean value of 13.8 ± 0.3 %. Mean O$_2$ concentrations in premontane, lower montane and upper montane forests were 18.7 ± 0.3 %, 19.2 ± 0.1 % and 18.4 ± 0.1 %, respectively. Soil O$_2$ varied significantly among topographic features (ANOVA, $r^2 = 0.54$, $F_{6,594} = 118.58$, $P < 0.0001$); basin features showed significantly lower O$_2$ than other landforms (5.3 ± 0.9 %; Fisher’s LSD, $P < 0.05$), but other topographic features did not differ significantly in O$_2$ concentration in the 0–10 cm soil depth. The pooled mean O$_2$
concentration for ridge, slope and flat landforms was $17.1 \pm 0.2\%$, with a range from 0–21 \% O$_2$.

Soil and air temperature varied significantly among elevation bands (habitats) and over time (repeated measures ANOVA for soil temperature, $r^2 = 0.83$, $F_{103,770} = 37.92$, $P < 0.0001$; repeated measures ANOVA for air temperature, $r^2 = 0.81$, $F_{75,492} = 28.50$, $P < 0.0001$). Multiple comparisons tests indicated that soil and air temperature were significantly different for each habitat (Table 3), with temperatures becoming progressively cooler with increasing elevation (Fisher's LSD, $P < 0.05$). Temperatures were highest in premontane forest (soil: 21.2 ± 0.1 °C; air: 23.4 ± 0.4 °C), followed by lower montane forest (soil: 18.1 ± 0.1 °C; air: 18.2 ± 0.1 °C), upper montane forest (soil: 11.8 ± 0.0 °C; air: 13.0 ± 0.1 °C) and puna (soil: 10.1 ± 0.1 °C; air: 11.8 ± 0.2 °C).

Available ammonium (NH$_4^+$) or nitrate (NO$_3^-$) concentrations varied significantly among elevation bands (habitats) and over time (repeated measures ANOVA for NH$_4^+$, $r^2 = 0.47$, $F_{60,151} = 2.22$, $P < 0.0001$; repeated measures ANOVA for NO$_3^-$, $r^2 = 0.81$, $F_{60,149} = 4.50$, $P < 0.0001$). In contrast, available NO$_2^-$ concentrations varied widely among habitats and over time, but with no clear spatial or temporal trends (repeated measures ANOVA, $r^2 = 0.39$, $F_{60,154} = 1.61$, $P < 0.01$). For NH$_4^+$, multiple comparisons tests indicate that NH$_4^+$ concentration was greatest for upper montane forest, while other habitats did not differ significantly from each other (Fisher’s LSD, $P < 0.05$; Fig. 2a). NH$_4^+$ concentration for the upper montane forest averaged 17.62 ± 1.33 µg NH$_4^+$ – N g resin$^{-1}$ d$^{-1}$; in contrast, NH$_4^+$ concentrations from premontane forest, lower montane forest and puna averaged 12.28 ± 0.73 µg NH$_4^+$ – N g resin$^{-1}$ d$^{-1}$, 14.82 ± 0.90 µg NH$_4^+$ – N g resin$^{-1}$ d$^{-1}$ and 12.78 ± 0.62 µg NH$_4^+$ – N g resin$^{-1}$ d$^{-1}$, respectively. For NO$_3^-$, multiple comparisons tests indicate that NO$_3^-$ concentrations decreased significantly with increasing elevation (Fisher’s LSD, $P < 0.05$; Fig. 2b). Mean NO$_3^-$ concentrations for premontane forest, lower montane forest, upper montane forest and puna were 17.67 ± 1.70 µg NO$_3^-$ – N g resin$^{-1}$ d$^{-1}$, 12.38 ± 1.87 µg NO$_3^-$ – N g resin$^{-1}$ d$^{-1}$, 4.92 ± 1.57 µg NO$_3^-$ – N g resin$^{-1}$ d$^{-1}$ and 0.17 ± 0.02 µg NO$_3^-$ – N g resin$^{-1}$ d$^{-1}$, respec-
tively. Available NO$_2^-$ concentrations did not vary significantly among elevation bands, averaging $0.02 \pm 0.00 \mu g$ NO$_2^-$ – N g resin$^{-1}$ d$^{-1}$ across the elevation gradient (data not shown).

3.2 Temporal variability in gas exchange

CH$_4$ efflux increased during the wet season (repeated measures ANOVA, $r^2 = 0.91$, $F_{101,731} = 75.75$, $P < 0.00001$; Table 4), although there were no clear directional trends in fluxes within seasons. Furthermore, daily sampling in puna from 11 November 2011 to 22 November 2011 identified no apparent trends in CH$_4$ fluxes at this sampling frequency. Mean CH$_4$ fluxes in puna rose by a factor of 19 from dry season to wet season, from 0.97 ± 0.47 mg CH$_4$ – C m$^{-2}$ d$^{-1}$ in the dry season to 18.57 ± 2.55 mg CH$_4$ – C m$^{-2}$ d$^{-1}$ ($t_{431} = 4.01$, $P < 0.0001$). Net CH$_4$ uptake fluxes declined significantly from dry season to wet season for premontane, lower montane and upper montane forests (Table 4); the pooled mean dry season flux for the 3 forest types was -0.86 ± 0.05 mg CH$_4$ – C m$^{-2}$ d$^{-1}$, while the pooled mean wet season flux was -0.47 ± 0.08 mg CH$_4$ – C m$^{-2}$ d$^{-1}$ ($t_{398} = 4.08$, $P < 0.0001$). This pattern was most pronounced for premontane forest ($t_{49} = 2.76$, $P < 0.008$), where the direction of the soil–atmosphere flux was reversed from a weak atmospheric sink in the dry season (-0.32 ± 0.11 mg CH$_4$ – C m$^{-2}$ d$^{-1}$) to a net atmospheric source during the wet season (0.51 ± 0.41 mg CH$_4$ – C m$^{-2}$ d$^{-1}$).

N$_2$O fluxes across the elevation gradient showed no easily identifiable temporal trends. There was insufficient data to fully characterise seasonal trends in NH$_4^+$, NO$_3^-$ and NO$_2^-$ concentrations as only 4 months of data were collected over the sampling period. However, significant month-to-month variability was observed in NH$_4^+$, NO$_3^-$ and NO$_2^-$ concentrations.
3.3 Temporal variability in environmental variables

Across the elevation gradient, soil moisture changed significantly over time, with temporal trends that varied depending on elevation band (repeated measures ANOVA for VWC, $r^2 = 0.86, F_{104,800} = 46.42, P < 0.0001$; repeated measures ANOVA for WFPS, $r^2 = 0.72, F_{76,628} = 18.57, P < 0.0001$). Soil moisture in premontane forest and puna showed significant month-to-month variability, but did not differ significantly between seasons (Table 3). In contrast, soil moisture in lower montane and upper montane forest rose significantly from dry season to wet season, with upper montane forest showing a more pronounced shift in soil water content (lower montane forest: VWC $t_{181} = 3.83, P < 0.0002$, dry season: $31.8 \pm 1.0\%$, wet season: $37.2 \pm 1.0\%$; upper montane forest: $t_{187} = 12.31, P < 0.05$, dry season: $22.7 \pm 1.0\%$, wet season: $37.7 \pm 1.0\%$).

Soil O_2 concentrations varied significantly over time, but temporal patterns differed for each elevation band (repeated measures ANOVA, $r^2 = 0.88, F_{48,269} = 40.08, P > 0.0001$). For lower montane forests, soil O_2 varied significantly from month-to-month, with small but statistically higher soil O_2 observed in the wet season ($19.4 \pm 0.1\%$) compared to the dry season ($19.0 \pm 0.1\%$) ($t_{90} = 3.21, P < 0.0002$; Table 3). Upper montane forests showed significant month-to-month variability, but no significant differences between seasons (overall mean $= 18.4 \pm 0.1\%$). Puna showed a different trend from the other habitats, as lower O_2 concentrations were observed during the wet season ($13.3 \pm 0.4\%$) compared to the dry season ($18.4 \pm 0.1\%$) ($t_{379} = -3.48, P < 0.0006$; Table 3). Data on soil O_2 content in the premontane forest site was too sparse to evaluate seasonal patterns in soil O_2 content due to unanticipated delays in the installation of soil gas sampling equipment.

Soil temperature and air temperature varied significantly over time (repeated measures ANOVA for soil temperature, $r^2 = 0.83, F_{103,770} = 37.92, P < 0.0001$; repeated measures ANOVA for air temperature, $r^2 = 0.81, F_{75,492} = 28.50, P < 0.0001$). In premontane, lower montane and upper montane forests, the overall trend was towards significantly warmer soil and air temperatures forests during the wet season (Table 3).
Puna showed a different pattern from the other study sites; no significant seasonal differences in soil temperature were observed, while air temperatures were warmer in the dry season (12.5 ± 0.3 °C) compared to the wet season (11.3 ± 0.2 °C) ($t_{198} = -3.53$, $P < 0.0005$; Table 3).

3.4 Relationships between gas fluxes and environmental variables

CH$_4$ fluxes across the elevation gradient were weakly correlated with soil moisture content (plot-averaged VWC versus CH$_4$ flux: $r^2 = 0.24$, $F_{1,152} = 48.64$, $P < 0.0001$; data not shown) and strongly negatively correlated with soil O$_2$ (plot-averaged soil oxygen versus CH$_4$ flux: $r^2 = 0.82$, $F_{1,125} = 588.41$, $P < 0.0001$; Fig. 3). A multiple regression model incorporating soil moisture and soil O$_2$ concentration explained only a further 1% of the variance in the entire CH$_4$ dataset ($r^2 = 0.83$, $F_{2,124} = 295.47$, $P < 0.0001$), with soil O$_2$ accounting for > 99% of the sum of squares in the multiple regression model (data not shown). No relationship between net CH$_4$ flux and temperature was found.

When these CH$_4$ flux data were disaggregated by elevation band and season, other relationships emerged, suggesting more habitat-specific controls on CH$_4$ flux. For lower montane forest, CH$_4$ fluxes were negatively correlated with soil temperature during the dry season (plot-averaged soil temperature versus CH$_4$ flux: $r^2 = 0.46$, $F_{1,13} = 10.86$, $P < 0.006$; data not shown), but not during the wet season. For puna, CH$_4$ fluxes were more strongly correlated with soil moisture content than for the overall pooled dataset ($r^2 = 0.24$ for the data pooled across the entire elevation gradient; data not shown). For example, taking both dry and wet season together for puna, the r^2 for the regression of CH$_4$ flux and VWC was 0.39 ($F_{1,64} = 41.44$, $P < 0.0001$), while the r^2 for the wet season data alone was higher ($r^2 = 0.46$, $F_{1,43} = 36.29$, $P < 0.0001$). Dry season puna CH$_4$ fluxes were not significantly correlated with VWC.

Only dry season N$_2$O fluxes from lower montane forest showed any relationship with environmental variables (Fig. 4), with N$_2$O fluxes negatively correlated with soil...
moisture content and WFPS (plot-averaged VWC or WFPS versus N\textsubscript{2}O flux: \(r^2 = 0.44, F_{1,9} = 7.10, P < 0.05 \) for both VWC and WFPS, respectively). No other trends were found for other habitats or seasons, whether these data were pooled across the entire elevation gradient, or disaggregated by elevation band and season. There were insufficient data on NH\textsubscript{4}+, NO\textsubscript{3}- and NO\textsubscript{2}- concentrations to statistically determine if inorganic N fluxes were directly linked to N\textsubscript{2}O emissions.

3.5 Denitrification potentials and N\textsubscript{2}O yields

Analysis of variance indicated that \(^{15}\)N-N\textsubscript{2}O and \(^{15}\)N-N\textsubscript{2} fluxes varied significantly among elevation bands (ANOVA for N\textsubscript{2}O: \(F_{3,33} = 4.42, P < 0.01 \); ANOVA for N\textsubscript{2}: \(F_{3,33} = 2.89, P < 0.05 \)). Premontane forest, lower montane forest and puna showed similar rates of \(^{15}\)N-N\textsubscript{2}O and \(^{15}\)N-N\textsubscript{2} flux (Fig. 5), with pooled means \(^{15}\)N-N\textsubscript{2}O and \(^{15}\)N-N\textsubscript{2} fluxes of \(134.21 \pm 25.69 \mu g \text{ N}_2\text{O} - ^{15}\text{N} \text{ kg soil}^{-1} h^{-1} \) and \(6.55 \pm 1.30 \mu g \text{ N}_2 - ^{15}\text{N} \text{ kg soil}^{-1} h^{-1} \), respectively. In contrast, upper montane forest showed significantly lower \(^{15}\)N-N\textsubscript{2}O flux (7.39 \pm 7.33 \mu g \text{ N}_2\text{O} - ^{15}\text{N} \text{ kg soil}^{-1} h^{-1}; \text{ Fisher’s LSD, } P < 0.05) \) and significantly greater \(^{15}\)N-N\textsubscript{2} flux (20.45 \pm 5.66 \mu g \text{ N}_2 - ^{15}\text{N} \text{ kg soil}^{-1} h^{-1}; \text{ Fisher’s LSD, } P < 0.05) \).

Total denitrification potential did not vary significantly across elevation bands (ANOVA \(F_{3,33} = 2.00, P > 0.13 \); Fig. 5) due to high levels of variance in the component N\textsubscript{2}O and N\textsubscript{2} fluxes. However, the overall trend was of lower total denitrification potential in the upper montane forest (27.85 \pm 5.30 \mu g \text{ ^{15}N kg soil}^{-1} h^{-1}) \), whereas the other elevation bands showed similar total denitrification potentials (pooled mean of 140.75 \pm 25.97 \mu g \text{ ^{15}N kg soil}^{-1} h^{-1}) \). N\textsubscript{2}O yields (i.e. ratio of \(^{15}\)N-N\textsubscript{2}O: \(^{15}\)N-N\textsubscript{2}O flux + \(^{15}\)N-N\textsubscript{2} flux) varied significantly among elevation bands (ANOVA \(F_{3,33} = 4.61, P > 0.01 \); data not shown). Premontane, lower montane and puna had statistically similar N\textsubscript{2}O yields (pooled mean of 0.79 \pm 0.36), whereas upper montane forest showed the lowest N\textsubscript{2}O yield overall (0.18 \pm 0.40, Fisher’s LSD, \(P < 0.05 \)).
4 Discussion

4.1 Andean ecosystems as both atmospheric sources and sinks of CH$_4$

Ecosystems across this tropical elevation gradient functioned as both atmospheric sources and sinks of CH$_4$, further challenging the long-standing assumption that tropical uplands are only net atmospheric CH$_4$ sinks (Dutaur and Verchot, 2007; Potter et al., 1996; Ridgwell et al., 1999; Teh et al., 2005, von Fischer and Hedin, 2002). CH$_4$ fluxes varied depending on elevation, topographic position and season. Montane grasslands (puna; 3200–3700 m a.s.l.) were net atmospheric sources; upper montane and lower montane forests were net sinks; and premontane forests fluctuated between sources or sinks depending on the season. From 600 to 3200 m a.s.l., the sink strength for atmospheric CH$_4$ increased with elevation. This pattern runs counter to observations from elsewhere in Latin America, such as Puerto Rico or Ecuador, where net CH$_4$ uptake decreased with increasing elevation (Silver et al., 1999; Teh et al., 2005; Wolf et al., 2012). The divergence between this study and others is likely due to local and regional differences in precipitation and soil moisture retention. Rainfall and soil moisture content decreases with rising elevation in this part of the Andes (Girardin et al., 2010), with the notable exception of puna, where soil moisture is elevated relative to other habitats across this elevation gradient due to poor drainage. In contrast, because of regional differences in climate and meteorology, soil moisture increases with elevation in Puerto Rico and Ecuador, favouring greater soil anaerobiosis, enhanced methanogenesis and diminished methanotrophy with rising altitude (Silver et al., 1999; Teh et al., 2005; Wolf et al., 2012).

CH$_4$ fluxes within elevation bands varied with topographic position, with lower topographic positions (e.g. basins) emitting more CH$_4$ than higher topographic positions (e.g. ridges). The development of more sub-oxic conditions in lower topographic positions likely drives greater methanogenesis and reduced methanotrophy; a common pattern observed in many other CH$_4$-emitting ecosystems (Teh et al., 2011; von Fischer et al., 2010; Waddington and Roulet, 1996; Silver et al., 1999). Across the entire...
altitudinal gradient, puna basins emitted more CH$_4$ than any other landform, releasing 233.56 ± 28.47 kg CH$_4$ – C ha$^{-1}$ yr$^{-1}$. Our findings are in general agreement with studies in Puerto Rico, where higher net CH$_4$ fluxes were observed from low topographic positions (Silver et al., 1999); but differ from research in Ecuador, where no significant difference was found in net CH$_4$ fluxes among topographic positions within an altitudinal band (Wolf et al., 2012). The most likely explanation for this divergence between the Peruvian and Puerto Rican transects on one hand, and the Ecuadorian transect on the other, is that the investigators in the latter study sampled only ridge and slope landforms, and did not sample lower topographic features such as flats or basins (Wolf et al., 2012). In addition, Wolf et al. (2012) did not sample more water-saturated puna habitats. Lower topographic landforms and puna habitats tend to accumulate water and contain more reduced soils capable of emitting CH$_4$, unlike more aerobic ridges and slopes that drain more freely (Teh et al., 2011; von Fischer et al., 2010; Waddington and Roulet, 1996; Silver et al., 1999).

CH$_4$ fluxes varied substantially depending on season, with an overall shift towards greater CH$_4$ emission or significant weakening of net soil sinks during the rainy season. These patterns were most pronounced for puna and premontane forest; the former showed a nineteen-fold increase in net CH$_4$ efflux from dry season to wet (0.97 ± 0.47 mg CH$_4$ – C m$^{-2}$ d$^{-1}$ to 18.57 ± 2.55 mg CH$_4$ – C m$^{-2}$ d$^{-1}$), while the latter switched from a net atmospheric sink (−0.32 ± 0.11 mg CH$_4$ – C m$^{-2}$ d$^{-1}$) to a net atmospheric source (0.51 ± 0.41 mg CH$_4$ – C m$^{-2}$ d$^{-1}$). These seasonal trends differ significantly from Puerto Rico or Ecuador, where soil CH$_4$ fluxes did not vary on an intra-annual basis, presumably because of weaker rainfall seasonality in these other regions (Silver et al., 1999; Teh et al., 2005; Wolf et al., 2012). However, these data are consistent with findings from other seasonally dry tropical ecosystems, where greater net CH$_4$ efflux is associated with wetter periods of the year, where soil anaerobiosis is more prevalent (Davidson et al., 2008; Verchot et al., 2000).

Our analysis of spatial, temporal and environmental trends in CH$_4$ fluxes across the elevation gradient suggest that soil redox is the principal control on CH$_4$ flux, as is the
case elsewhere in the tropics (Teh et al., 2005; Verchot et al., 2000; von Fischer and Hedin, 2007). CH$_4$ emissions were greatest from elevations, landforms or during times of year when soils were at their most sub-oxic. This conclusion is further supported by the strong inverse correlation observed between soil O$_2$ concentration (i.e. a proxy for soil redox potential) and CH$_4$ flux (Silver et al., 1999; Teh et al., 2005), with progressive declines in soil O$_2$ linked to increasingly large net CH$_4$ emissions (Fig. 3). Moreover, multiple regression models that included soil O$_2$, soil moisture and temperature indicated that soil O$_2$ concentration was the single best predictor of CH$_4$ flux, typically accounting for > 99 % of the variance in the entire dataset.

4.2 Andean ecosystems as atmospheric sources of N$_2$O

Ecosystems across the Kosñipata Valley were net sources of atmospheric N$_2$O. Fluxes progressively declined with elevation, with lower elevation habitats emitting substantially greater amounts of N$_2$O (premontane forest: 2.23 ± 1.31 kg N$_2$O N ha$^{-1}$ yr$^{-1}$; lower montane forest: 1.68 ± 0.44 kg N$_2$O N ha$^{-1}$ yr$^{-1}$) than higher elevation ones (upper montane forest: 0.44 ± 0.47 kg N$_2$O N ha$^{-1}$ yr$^{-1}$; puna: 0.15 ± 1.10 kg N$_2$O N ha$^{-1}$ yr$^{-1}$). Fluxes from lower elevation habitats exceeded the predictions for bottom-up emissions inventories for the region (< 0.5–1.0 kg N$_2$O N ha$^{-1}$ yr$^{-1}$) (Werner et al., 2007) and were also substantially greater than fluxes observed in Ecuador (mean annual flux of 0.31 ± 0.12 kg N$_2$O N ha$^{-1}$ yr$^{-1}$; range of −0.05–1.27 kg N$_2$O N ha$^{-1}$ yr$^{-1}$) (Wolf et al., 2011). Although the cause for this divergence between these observations and past studies is unclear, it may be linked to the higher N status of lower elevation soils in the Kosñipata Valley, which tend to be more N-rich than soils in Ecuador (Wolf et al., 2011; Fisher et al., 2013, van de Weg et al., 2009).

Analysis of the field and laboratory data suggests that controls on N$_2$O fluxes in the Kosñipata Valley are complex and not easily reducible to simple predictive metrics. However, holistic examination of these combined datasets suggests that the availability of N, particularly NO$_3^-$, may play a pivotal role in limiting N$_2$O emissions across the
elevation gradient. The central role of N availability in regulating N\textsubscript{2}O fluxes is highlighted by the altitudinal trends in N\textsubscript{2}O fluxes, available NO\textsubscript{3}- concentrations, potential N\textsubscript{2}O and N\textsubscript{2} production, and 15N-N\textsubscript{2}O yields. Even though potential denitrification rates were similar across the elevation gradient (with the exception of upper montane forest), net N\textsubscript{2}O fluxes and NO\textsubscript{3}- availability declined with elevation. Taken together, these data collectively suggest that altitudinal trends in N\textsubscript{2}O fluxes were due to variations in denitrification, driven by differences in NO\textsubscript{3}- availability. Data on denitrification potential in upper montane forest further reinforces this interpretation of the data; upper montane forests had lower N\textsubscript{2}O production potential, higher N\textsubscript{2} production potential and lower N\textsubscript{2}O yields than other sites – all characteristics reflective of NO\textsubscript{3}--limitation of denitrification (Blackmer and Bremner, 1978; Weier et al., 1993; Yang et al., 2011). These data are in broad agreement with findings from Ecuador, where N availability was inversely proportional to altitude and was found to be the dominant control on N\textsubscript{2}O efflux (Wolf et al., 2011).

Soil moisture and WFPS appeared to play a minor role in modulating N\textsubscript{2}O fluxes across the elevation gradient; a surprising finding given the prominent role played by WFPS in regulating N\textsubscript{2}O fluxes elsewhere in the seasonally dry tropics (Davidson et al., 1993, 2000, 2008; Davidson and Verchot, 2000; Keller and Reiners, 1994). Variations in soil moisture content and WFPS only appeared to influence N\textsubscript{2}O fluxes in lower montane forest only during the dry season; whereas these variables had no discernible impact on N\textsubscript{2}O fluxes in other elevations or during other seasons. This suggests that soil moisture and WFPS were not limiting during the 13 month period of observation, and that other factors more strongly constrained N\textsubscript{2}O fluxes in these other habitats.

Comprehensive inspection of the environmental data (including soil moisture, WFPS and available N) suggests that the nature of the constraints on N\textsubscript{2}O production may differ for each elevation band. WFPS fell within a relatively narrow range for premontane forest, lower montane forest during the wet season, and puna. Given the complexity of drivers for N\textsubscript{2}O production, this makes it difficult to identify the “signal” of WFPS relative to the background environmental “noise” (Davidson and Verchot, 2000; Groffman et al., 2013).
This signal-to-noise problem is further compounded by the fact that WFPS for these habitats was also within the predicted range where WFPS no longer limits N$_2$O production from denitrification (i.e. 60–90%); as a consequence, N$_2$O fluxes are no longer increasing linearly with WFPS and have effectively reached saturation (Davidson, 1991; Davidson and Verchot, 2000). In addition, for puna, low NO$_3^-$ availability and periods of very high WFPS (> 90%) may have favoured low N$_2$O production and complete denitrification to N$_2$ (Blackmer and Bremner, 1978; Davidson, 1991; Weier et al., 1993; Yang et al., 2011). In contrast, for upper montane forest, soil moisture montane forest, soil moisture and WFPS did in fact vary significantly between seasons (wet season: 68.6 ± 1.9%; dry season: 41.2 ± 1.8%), although the very low NO$_3^-$ availability probably constrained denitrification rates.

4.3 Preliminary area-weighted flux estimates for the Kosñipata Valley

The high mean annual CH$_4$ emissions from puna (56.94 ± 7.81 kg CH$_4$ –Cha$^{-1}$ yr$^{-1}$) and high mean annual N$_2$O fluxes from premontane and lower montane forests (2.22±1.31 kg N$_2$O –N ha$^{-1}$ yr$^{-1}$ and 1.68±0.44 kg N$_2$O –N ha$^{-1}$ yr$^{-1}$, respectively) may mean that the Kosñipata Valley is a stronger source for CH$_4$ and N$_2$O than previously predicted by bottom-up emissions inventories for upland tropical ecosystems in the region. To explore this possibility, we performed simple area-weighted flux calculations to estimate the potential contribution of different habitats to regional CH$_4$ and N$_2$O exchange. While we acknowledge that this “back-of-the-envelope” approach is not sufficient to accurately upscale plot-level fluxes to the regional scale, we believe it is still useful as a means of producing first order approximations of the source or sink potential of the region for CH$_4$ and N$_2$O.

Using published surface area estimates for different elevation bands for the Kosñipata Valley (Feeley and Silman, 2010), we calculated the areal fractions for each elevation band, multiplying these values by the mean annual fluxes of CH$_4$ or N$_2$O for our study sites, in order to derive area-weighted flux estimates for each elevation band (Table 5). To estimate the regional atmospheric flux of CH$_4$ or N$_2$O (i.e. for
the Kosñipata Valley as a whole), we added together the area-weighted fluxes from each elevation band (Table 5). This exercise produced mean annual flux estimates of $9.42 \pm 1.80 \text{ kg CH}_4 \text{ - Cha}^{-1} \text{ yr}^{-1}$ and $1.18 \pm 0.79 \text{ kg N}_2\text{O} \text{ - Nha}^{-1} \text{ yr}^{-1}$, respectively.

The positive sign of the area-weighted CH$_4$ flux implies that the region as whole is probably a net atmospheric CH$_4$ source, strongly influenced by the contribution of puna acting as a regional “hotspot” for CH$_4$. This speculation is supported by evidence from remote sensing studies showing elevated atmospheric CH$_4$ concentrations in the tropical Andes, implying the presence of strong regional sources, such as waterlogged, sub-oxic/anoxic puna or páramo grasslands, unaccounted for by past bottom-up emissions inventories (Wania et al., 2007; Bergamaschi et al., 2007). Likewise the estimated regional N$_2$O flux for the Kosñipata Valley exceeds both model predictions for the region (< 0.5–1.0 kg N$_2$O – Nha$^{-1}$ yr$^{-1}$) (Werner et al., 2007) and observations from comparable ecosystems in Ecuador (mean annual flux of $0.31 \pm 0.12 \text{ kg N}_2\text{O} \text{ - Nha}^{-1} \text{ yr}^{-1}$) (Wolf et al., 2011), probably influenced by the strong emissions from lower elevation bands, which account for ~54% of overall land cover.

While these area-weighted flux estimates may only be a first approximation, they are significant because these calculations suggest that Andean ecosystems may behave differently than previously thought, and may be larger emission sources than predicted. These findings also highlight the need for more intensive modeling studies to upscale plot-level measurements to the regional scale in order to more thoroughly evaluate the importance of these ecosystems for regional atmospheric budgets.

5 Conclusions

These data suggest that tropical Andean ecosystems are potentially important contributors to regional atmospheric budgets of CH$_4$ and N$_2$O, and that these ecosystems need to be considered more fully in future efforts to model and upscale CH$_4$ and N$_2$O fluxes from the terrestrial tropics. Ecosystems across this tropical altitudinal gradient were both atmospheric sources and sinks of CH$_4$, challenging long-standing assump-
tions from the literature that upland tropical ecosystems are only net atmospheric CH$_4$ sinks. Simple area-weighted flux calculations suggest that high CH$_4$ fluxes from emissions “hotspots” (e.g. montane grasslands) may make the region as a whole a net atmospheric CH$_4$ source. This inference is supported by top-down remote sensing data that indicates the existence of strong local CH$_4$ sources in the tropical Andes, leading to enhanced atmospheric CH$_4$ concentrations. CH$_4$ fluxes were modulated by redox dynamics, with the largest emissions arising from elevations, landforms or during time periods when soil O_2 availability was lowest. Ecosystems across this altitudinal gradient were also net atmospheric sources of N$_2$O, with the largest N$_2$O emissions originating from lower elevation habitats (premontane forest, lower montane forest). Simple area-weighted flux calculations suggest that this region is likely to be a stronger source of atmospheric N$_2$O than previously predicted by bottom-up emissions inventories. This is largely due to the fact that lower elevation habitats are relatively large emission sources, and account for a substantial fraction of total land area in the region (~54%). Proximate controls on N$_2$O fluxes were complex and difficult to elucidate from field measurements alone, although comprehensive inspection of combined field and laboratory data indicate that NO$_3^-$ availability is the principal constraint on N$_2$O efflux, while soil moisture and water-filled porosity played a secondary role in modulating emissions. Any current and future changes in N management or anthropogenic N deposition may cause shifts in net N$_2$O fluxes from these tropical montane ecosystems, further enhancing this emission source.

Acknowledgements. The authors would like to acknowledge the agencies that funded this research; the UK Natural Environment Research Council (NERC; joint grant references NE/H006583, NE/H007849 and NE/H006753) and the Norwegian Agency for Development Cooperation (Norad; via a sub-contract to Y. A. T. managed by the Amazon Conservation Association). P. S. is a Royal Society–Wolfson Research Merit Award holder and P. M. is supported by an Australian Research Council Fellowship (FT110100457). Javier Eduardo Silva Espejo, Walter Huaraca Huasco, Adan Julian Ccahuana and the ABIDA NGO provided critical fieldwork and logistical support. Angus Calder and Vicky Munro provided invaluable laboratory support. Viktoria Oliver provided data on soil characteristics for Hacienda Villa Carmen. Thanks to Adrian
Tejedor from the Amazon Conservation Association, who provided assistance with site access and selection at Hacienda Villa Carmen. Thanks are also owed to TCH for providing comments on an earlier draft of this manuscript. This publication is a contribution from the Scottish Alliance for Geoscience, Environment and Society (http://www.sages.ac.uk).

References

Fletcher, S. E. M., Tans, P. P., Bruhwiler, L. M., Miller, J. B., and Heimann, M.: CH₄ sources estimated from atmospheric observations of CH₄ and its C-13/C-12 isotopic ratios: 2. In-

Table 1. Site characteristics.

<table>
<thead>
<tr>
<th>Elevation band (m.a.s.l.)</th>
<th>Habitat</th>
<th>Areal coverage in the Kosñi-pata Valley (km²)</th>
<th>Site name</th>
<th>Latitude (S)</th>
<th>Longitude (W)</th>
<th>Mean annual temperature (°C)</th>
<th>Mean annual precipitation (mm)</th>
<th>Soil C/N (0–10 cm depth)</th>
<th>Mesotopes</th>
<th>Plots</th>
<th>Flux chambers</th>
</tr>
</thead>
<tbody>
<tr>
<td>600–1200</td>
<td>Premontane forest</td>
<td>Hacienda Villa Carmen</td>
<td>12°53’43”</td>
<td>71°24’04”</td>
<td>23.4</td>
<td>5318</td>
<td>15</td>
<td>ridge, slope, flat</td>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1200–2200</td>
<td>Lower montane forest</td>
<td>San Pedro</td>
<td>13°2’56”</td>
<td>71°32’13”</td>
<td>18.8</td>
<td>2631</td>
<td>15</td>
<td>ridge, slope, flat</td>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2200–3200</td>
<td>Upper montane forest</td>
<td>Wayqecha</td>
<td>13°11’24”</td>
<td>71°35’13”</td>
<td>12.5</td>
<td>1706</td>
<td>25</td>
<td>slope, flat</td>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3200–3700</td>
<td>Montane grasslands (puna)</td>
<td>Tres Cruces</td>
<td>13°07’19”</td>
<td>71°36’54”</td>
<td>11.8</td>
<td>2200</td>
<td>14</td>
<td>ridge, slope, flat, basin</td>
<td>4</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Summary of soil sampling scheme for denitrification potential experiment.

<table>
<thead>
<tr>
<th>Elevation band (m.a.s.l.)</th>
<th>Habitat</th>
<th>Soil samples</th>
<th>Incubations</th>
<th>Rooting zone depth (cm)</th>
<th>Soil sample depth (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600–1200</td>
<td>Premontane forest</td>
<td>11</td>
<td>19</td>
<td>0–10</td>
<td>5–10</td>
</tr>
<tr>
<td>1200–2200</td>
<td>Lower montane forest</td>
<td>2</td>
<td>3</td>
<td>0–15</td>
<td>20–25</td>
</tr>
<tr>
<td>2200–3200</td>
<td>Upper montane forest</td>
<td>3</td>
<td>5</td>
<td>0–25</td>
<td>20–25</td>
</tr>
<tr>
<td>3200–3700</td>
<td>Montane grasslands (puna)</td>
<td>6</td>
<td>10</td>
<td>0–10</td>
<td>5–10</td>
</tr>
</tbody>
</table>
Table 3. Abiotic environmental variables for each elevation band for the wet and dry season. Upper case letters indicate differences among elevation bands and lower case letters indicate difference among seasons within elevation bands (Fisher’s LSD, $P < 0.05$). Values reported here are means and standard errors.

<table>
<thead>
<tr>
<th>Elevation Band (m.a.s.l.)</th>
<th>Habitat</th>
<th>Volumetric soil moisture (%)</th>
<th>Water-filled pore space (%)</th>
<th>Soil oxygen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wet season</td>
<td>Dry season</td>
<td>Wet season</td>
<td>Dry season</td>
</tr>
<tr>
<td>600–1200</td>
<td>Premontane forest</td>
<td>39.3 ± 2.4 A a</td>
<td>42.9 ± 1.6 A a</td>
<td>65.6 ± 4.1 A a</td>
</tr>
<tr>
<td>1200–2200</td>
<td>Lower montane forest</td>
<td>37.2 ± 1.0 A a</td>
<td>31.8 ± 1.5 B b</td>
<td>62.0 ± 1.6 A a</td>
</tr>
<tr>
<td>2200–3200</td>
<td>Upper montane forest</td>
<td>37.7 ± 1.0 A a</td>
<td>22.7 ± 1.0 C b</td>
<td>68.6 ± 1.9 A a</td>
</tr>
<tr>
<td>3200–3700</td>
<td>Montane grasslands (puna)</td>
<td>71.6 ± 0.5 B a</td>
<td>71.2 ± 0.5 D a</td>
<td>95.5 ± 0.2 B a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elevation Band (m.a.s.l.)</th>
<th>Habitat</th>
<th>Soil temperature (°C)</th>
<th>Air temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wet season</td>
<td>Dry season</td>
<td>Wet season</td>
</tr>
<tr>
<td>600–1200</td>
<td>Premontane forest</td>
<td>21.6 ± 0.1 A a</td>
<td>21.0 ± 0.1 A a</td>
</tr>
<tr>
<td>1200–2200</td>
<td>Lower montane forest</td>
<td>18.3 ± 0.1 B a</td>
<td>17.7 ± 0.1 B b</td>
</tr>
<tr>
<td>2200–3200</td>
<td>Upper montane forest</td>
<td>12.0 ± 0.1 C a</td>
<td>11.6 ± 0.1 C b</td>
</tr>
<tr>
<td>3200–3700</td>
<td>Montane grasslands (puna)</td>
<td>10.2 ± 0.1 D a</td>
<td>9.7 ± 0.1 D b</td>
</tr>
</tbody>
</table>
Table 4. Methane fluxes for each elevation band for the wet and dry season. Lower case letters indicate differences among seasons within elevation bands (Fisher’s LSD, $P < 0.05$). Numbers reported here are means and standard errors.

<table>
<thead>
<tr>
<th>Elevation band (m.a.s.l.)</th>
<th>Habitat</th>
<th>Methane flux (mg CH$_4$ - C m$^{-2}$ d$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Wet season</td>
</tr>
<tr>
<td>600–1200</td>
<td>Premontane forest</td>
<td>0.51 ± 0.41 a</td>
</tr>
<tr>
<td>1200–2200</td>
<td>Lower montane forest</td>
<td>−0.49 ± 0.13 a</td>
</tr>
<tr>
<td>2200–3200</td>
<td>Upper montane forest</td>
<td>−0.54 ± 0.11 a</td>
</tr>
<tr>
<td>3200–3700</td>
<td>Montane grasslands (puna)</td>
<td>18.57 ± 2.55 a</td>
</tr>
</tbody>
</table>
Table 5. Preliminary area-weighted flux estimates for the Kosñipata Valley, Manu National Park, Peru. Surface areas and fractional areas calculated from data published in Feeley and Silman (2010). Flux values reported here are means and standard errors.

<table>
<thead>
<tr>
<th>Elevation band (m.a.s.l.)</th>
<th>Habitat</th>
<th>Surface area (ha)</th>
<th>Fractional area</th>
<th>Unweighted mean annual fluxes</th>
<th>Area-weighted mean annual fluxes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CH₄ kg CH₄ - C ha⁻¹ yr⁻¹</td>
<td>CH₄ kg CH₄ - C ha⁻¹ yr⁻¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N₂O kg N₂O - N ha⁻¹ yr⁻¹</td>
<td>N₂O kg N₂O - N ha⁻¹ yr⁻¹</td>
</tr>
<tr>
<td>600–1200</td>
<td>Premontane forest</td>
<td>733 428</td>
<td>0.24</td>
<td>0.51 ± 0.47</td>
<td>2.23 ± 1.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−2.34 ± 0.29</td>
<td>1.68 ± 0.44</td>
</tr>
<tr>
<td>1200–2200</td>
<td>Lower montane forest</td>
<td>892 338</td>
<td>0.30</td>
<td>−0.51 ± 0.47</td>
<td>−0.14 ± 0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−2.34 ± 0.29</td>
<td>−0.14 ± 0.12</td>
</tr>
<tr>
<td>2200–3200</td>
<td>Upper montane forest</td>
<td>806 588</td>
<td>0.27</td>
<td>0.51 ± 0.47</td>
<td>0.54 ± 0.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−2.34 ± 0.29</td>
<td>0.54 ± 0.32</td>
</tr>
<tr>
<td>3200–3700</td>
<td>Montane grasslands (puna)</td>
<td>585 883</td>
<td>0.19</td>
<td>56.94 ± 7.81</td>
<td>0.15 ± 1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56.94 ± 7.81</td>
<td>0.15 ± 1.10</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td>3 018 236</td>
<td>1.00</td>
<td>9.42 ± 1.80</td>
<td>1.18 ± 0.79</td>
</tr>
</tbody>
</table>

...
Fig. 1. (A) Net CH$_4$ and (B) net N$_2$O fluxes by elevation band. The short-dash line within each box represents the mean, whereas the solid line represents the median. Boxes enclose the interquartile range, whiskers indicate the 90th and 10th percentiles. The dotted line running across the boxes indicates zero net flux. Lower case letters indicate statistically significant differences among means (Fisher’s LSD, $P < 0.05$).
Fig. 2. (A) Available NH_4^+ and (B) available NO_3^- concentrations by elevation band. The short-dash line within each box represents the mean, whereas the solid line represents the median. Boxes enclose the interquartile range, whiskers indicate the 90th and 10th percentiles. Lower case letters indicate statistically significant differences among means (Fisher’s LSD, $P < 0.05$).
Fig. 3. Mean plot-level CH\textsubscript{4} flux against mean plot-level soil O\textsubscript{2} for the 0–10 soil depth. For CH\textsubscript{4} flux, 10 was added to the raw data so that negative or zero net fluxes could be log\textsubscript{10}-transformed. For O\textsubscript{2}, 1 was added to the raw data so that zero values could be log\textsubscript{10}-transformed.
Fig. 4. Mean plot-level N₂O flux against mean plot-level water-filled pore space for lower montane forest during the dry season.
Fig. 5. Potential rates of N_2O production, N_2 production and total ($\text{N}_2\text{O} + \text{N}_2$) denitrification from $^{15}\text{N}-\text{NO}_3^-$ laboratory tracer studies. Lower case letters indicate statistically significant differences among $^{15}\text{N}-\text{N}_2\text{O}$, $^{15}\text{N}-\text{N}_2$ or total denitrification fluxes (Fisher’s LSD, $P < 0.05$).