Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish: Proof of concept for key components of the insulin-like growth factor axis

Fiona M. Lappin, Rebecca L. Shaw, Daniel J. Macqueen *

Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom

A R T I C L E I N F O

Article history:
Received 19 February 2016
Received in revised form 11 June 2016
Accepted 11 June 2016
Available online 23 June 2016

Keywords:
Sequence capture
Target enrichment
Second-generation sequencing
Whole genome duplication
Salmonid fish
Insulin-like growth factor axis

A B S T R A C T

High-throughput sequencing has revolutionised comparative and evolutionary genome biology. It has now become relatively commonplace to generate multiple genomes and/or transcriptomes to characterize the evolution of large taxonomic groups of interest. Nevertheless, such efforts may be unsuited to some research questions or remain beyond the scope of some research groups. Here we show that targeted high-throughput sequencing offers a viable alternative to study genome evolution across a vertebrate family of great scientific interest. Specifically, we exploited sequence capture and Illumina sequencing to characterize the evolution of key components from the insulin-like growth (IGF) signalling axis of salmonid fish at unprecedented phylogenetic resolution.

The IGF axis represents a central governor of vertebrate growth and its core components were expanded by whole genome duplication in the salmonid ancestor ~95 Ma. Using RNA baits synthesised to genes encoding the complete family of IGF binding proteins (IGFBP) and an IGF hormone (IGF2), we captured, sequenced and assembled orthologous and paralogous exons from species representing all ten salmonid genera. This approach generated 299 novel sequences, most as complete or near-complete protein-coding sequences. Phylogenetic analyses confirmed congruent evolutionary histories for all nineteen recognized salmonid IGFBP family members and identified novel salmonid-specific IGF2 paralogues. Moreover, we reconstructed the evolution of duplicated IGF axis paralogues across a replete salmonid phylogeny, revealing complex historic selection regimes - both ancestral to salmonids and lineage-restricted - that frequently involved asymmetric paralogue divergence under positive and/or relaxed purifying selection. Our findings add to an emerging literature highlighting diverse applications for targeted sequencing in comparative-evolutionary genomics. We also set out a viable approach to obtain large sets of nuclear genes for any member of the salmonid family, which should enable insights into the evolutionary role of whole genome duplication before additional nuclear genome sequences become available.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

During the last decade, large-scale sequencing projects have become commonplace, allowing the genomes and transcriptomes of vast numbers of species to be analysed. For example, large consortium projects such as the ‘1000 Plant’ (Matsci et al., 2014), ‘Bird 10 K’ (Zhang, 2015), ‘5000 arthropod genomes’ (i5K Consortium, 2013), ‘Genome 10K’ (Haussler et al., 2009) and Fish-TIK (Sun et al., 2016) are aiming to characterise vast genomic diversity within eukaryotes, while providing essential data for comparative-genomic, evolutionary and phylogenetic studies (e.g. Wickett et al., 2014; Zhang et al., 2014; Jarvis et al., 2014). While such projects generate extensive high-quality sequence data at a relatively low cost, they require sizeable investment in expert person time and infrastructure necessary to achieve their bioinformatic goals (see Wetterstrand, 2015). As a cost-effective, bioinformatically less-demanding alternative, targeted capture/enrichment and sequencing of pre-selected genomic regions offers a proven approach for researchers working on both model and non-model organisms.

The concept of targeting specific areas of the genome for sequencing is well-established and has a long history. Classically, PCR is used to analyse a small number of genes in combination with the Sanger method, or more recently, with second-generation high-throughput sequencing (Tewhey et al., 2009; reviewed in Metzker, 2010). An alternative approach has been to exploit custom-designed microarrays or solution-based hybridization platforms to enrich for sequences (i.e. sequence capture) prior to second-generation sequencing (e.g. Okie et al., 2007; Glee et al., 2009; Turner et al., 2009).

The development of sequence capture/enrichment methods has opened up the possibility of routinely obtaining hundreds to thousands

* Corresponding author.
E-mail address: daniel.macqueen@abdn.ac.uk (D.J. Macqueen).
of target sequences at both intra and inter-specific levels, which can be employed to address a range of evolutionary or ecological questions (for reviews see Grover et al., 2012; McCormack et al., 2013; Jones and Good, 2015). Such approaches have been used extensively for population genetics in humans (e.g. Ng et al., 2009; Choi et al., 2009; Calvo et al., 2012) and non-model eukaryotes (e.g. Bi et al., 2013; Hebert et al., 2013; Tennessen et al., 2013). Unmodified sequence capture using baits designed from a limited number of well-characterized species has also proven effective for broader comparisons of species at higher taxonomic levels (e.g. Nadeau et al., 2012; Hedtke et al., 2013; Neves et al., 2013; Heyduk et al., 2015). In this respect, a particularly effective approach has been to capture extremely-conserved regions within the genome (e.g. Lemmon et al., 2012; Faircloth et al., 2012; Eytan et al., 2015; Prum et al., 2015). Moreover, with modifications to the stringency of hybridization, sequence capture can be used to obtain even highly-distant homologous sequences of interest (e.g. Li et al., 2013).

As sequence capture is based on DNA hybridization, this method can be applied to study paralogous sequences arising through relatively recent gene and/or whole genome duplication (WGD) events (Grover et al., 2012, e.g. Hebert et al., 2013; Saintenac et al., 2011; Salmon and Ainouche, 2015). In this respect, sequence capture offers a feasible method to reconstruct the evolutionary history of complex gene families in large taxonomic groups sharing ancestral WGD events. Our lab is exploiting such an approach to characterize patterns of genome and gene family evolution after a salmonid-specific WGD (ssWGD) event that occurred ~95 Ma (Macqueen and Johnston, 2014; Lien et al., 2016). Crucially, the success of this approach hinges on the fact that the average divergence of paralogous regions from the ssWGD, including protein-coding gene paralogues (Berthelot et al., 2014; Lien et al., 2016; e.g. Macqueen et al., 2010, 2013), is within the proven limits of sequence capture. Here, we applied sequence capture across all extant genera of salmonid fish, allowing a detailed evolutionary characterization of key components from the insulin-like growth (IGF) factor axis - a genetic pathway that was expanded by ssWGD and hence offers an ideal model to address post-WGD evolution.

The IGF axis is conserved in all vertebrates and its core components comprise two IGF hormones (IGF1 and IGF2), a family of IGF binding proteins (IGFBPs) and a cell-membrane IGF receptor (IGF1R) (Jones and Clemmens, 1995; Wood et al., 2005; Johnston et al., 2011). The binding of IGF hormones to IGF1R triggers intracellular signalling events that govern a range of key growth phenotypes. In turn, the interaction of IGFs with IGF1R are modulated by IGFBPs, which have a high affinity for IGFs and can inhibit or facilitate the interaction of IGFs with IGF1R, regulating the extent of IGF signalling under different physiological contexts (Jones and Clemmens, 1995). The IGF axis has proven to be of great scientific interest in salmonid fish, owing to its implications in a number of key physiological contexts, including nutritional status (e.g. Bower et al., 2008; Shimizu et al., 2011), metabolism (e.g. Pierce et al., 2006), muscle development (Bower and Johnston, 2010), oocyte maturation (Kamangar et al., 2006), rapid body size evolution (Macqueen et al., 2011) and cross-talk between growth and immunity (Alzaid et al., 2016). Additionally, the IGFBP gene family is among the best-characterized of all gene families in the context of ssWGD and hence represents an excellent model system to exploit in our study. Starting from a core set of six family members, which arose during local and WGD events in the common vertebrate ancestor (Ocampo-Daza et al., 2011; Macqueen et al., 2013), the IGFBP family was expanded during a ‘teleost-specific’ WGD (tsWGD) (i.e. Jaillon et al., 2004), which was later followed by ssWGD – from which eight salmonid-specific paralogue pairs have been conserved in Atlantic salmon Salmo salar (Macqueen et al., 2013).

Our first study aim was to verify the use of sequence capture to acquire complete coding sequences of key duplicated IGF axis components across the full phylogenetic breadth of lineages within the salmonid family. The IGFBP family is well suited for this aim, owing to the retention of a large number of ssWGD paralogues with differing degrees of sequence divergence (Macqueen et al., 2013), allowing us to test the hypothesis that sequence capture can be used to characterize gene families shaped by the ssWGD, defining conserved or distinct patterns of duplicate retention in different salmonid lineages. Our second aim was to demonstrate a useful application for such data, by reconstructing fine-scale patterns of post-ssWGD evolution using phylogenetic methods, including an examination of historic selective regimes that shaped paralogous sequence variation in different salmonid lineages. Our findings highlight outstanding value for sequence capture enrichment as a tool to acquire large-scale sequence data across the entire salmonid family phylogeny, including in relation to the inherently complex, yet undoubtedly interesting aspects of this lineages evolution following ssWGD.

2. Materials and methods

2.1. Sequence capture and assembly

2.1.1. Design of capture baits

Agilent SureSelect 120mer RNA oligomer baits used for sequence capture were synthesized at 4-fold tiling to cover complete coding sequences for nineteen Atlantic salmon IGF gene families (Macqueen et al., 2013), as well as IGFB (Bower et al., 2008), i.e. the probe sequences (accession numbers as follows: IGFBP-1A1: NM_001279140, IGF1B2: NM_001279133, IGFBP-2A: JX565547, IGFBP-2B1: NM_001123948, IGFBP-2B2: NM_001279160, IGF1B3A1: NM_001279147, IGF1B3A2: NM_001279157, IGF1B3B1: NM_001279167, IGF1B3B2: NM_001279170, IGF1B3C1: JX565554, IGF1B3C2: JX565555, IGF1B3D1: NM_001279142, IGF1B3D2: JX565557, IGF1B3D3: NM_001279155, IGF1B3D4: NM_001279145, IGF1B3D5: JX565560, IGF1B3D6: NM_001279150 and IGFB: NM_001146402).

2.1.2. Sequence capture and Illumina sequencing

Genomic DNA was extracted from sixteen species (see Table 1) using a QIAGEN DNeasy kit. The studied species included fifteen salmonids, covering all known genera, along with a member of Esociformes (Northern pike, Esox lucius) – a sister lineage to salmonids that did not undergo ssWGD (Rondeau et al., 2014; see Fig. 1A). Purity, integrity and concentration of the initial gDNA was assessed, respectively, using a Nanodrop system (Thermo Scientific) by agarose gel electrophoresis.

Table 1

<table>
<thead>
<tr>
<th>Species</th>
<th>Sampling date and location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esox lucius</td>
<td>2011, Lake Couler Reservoir, Stirling, UK</td>
</tr>
<tr>
<td>Brachymystax lenok</td>
<td>2005, Kuanda River, Lena basin, Siberia</td>
</tr>
<tr>
<td>Thymallus baicalensis</td>
<td>2003, Selenga Bay, Baikal, Siberia</td>
</tr>
<tr>
<td>Thymallus pruhii</td>
<td>2007, Bureya River, Russia</td>
</tr>
<tr>
<td>Coregonus renke</td>
<td>Unknown sample date, Millstättersee, Austria</td>
</tr>
<tr>
<td>Coregonus lavaretus</td>
<td>2011, Carson Valley Reservoir, Stirling, UK</td>
</tr>
<tr>
<td>Oncorhynchus nerka</td>
<td>2011, National Research Institute of Fisheries Science</td>
</tr>
<tr>
<td>Oncorhynchus kisutch</td>
<td>2011, Center for Aquaculture and Environmental Research</td>
</tr>
<tr>
<td>Oncorhynchus tshawytscha</td>
<td>2011, Center for Aquaculture and Environmental Research</td>
</tr>
<tr>
<td>Prosopium coulteri</td>
<td>Unknown, Little Bitterroot Lake, Montana, USA</td>
</tr>
<tr>
<td>Paralohus perryi</td>
<td>2006, Koppi River, Russia</td>
</tr>
<tr>
<td>Huchlo taimen</td>
<td>2005, Munza River, Lena Basin, Russia</td>
</tr>
<tr>
<td>Huchlo huchlo</td>
<td>2010, Mur River, Graz, Austria</td>
</tr>
<tr>
<td>Salvelinus alpinus</td>
<td>2008, Scotland, Loch Ericht, UK</td>
</tr>
<tr>
<td>Salmo trutta</td>
<td>2009, College Mill trout farm, Almondbank, Perthshire, UK</td>
</tr>
<tr>
<td>Stenurus leucichthys</td>
<td>2013, Lake Couler Reservoir, Stirling, USA</td>
</tr>
</tbody>
</table>

*Gift from Dr. Steven Weiss; Karl-Franzens University of Graz, Institute of Zoology, Universitätsplatz 2, A-8010 Graz, Austria.
*Gift from Dr. Takashi Yada; National Research Institute of Fisheries Science, Fisheries Research Agency, Nikko, Tochigi 321-1661, Japan.
*Gift from Dr. Robert Devlin; Centre for Aquaculture and Environmental Research, Fisheries and Oceans Canada, Vancouver, Canada.
and using a Qubit Fluorometer with a dsDNA broad range assay kit (Life Technologies). Sixteen separate Agilent SureSelectXT libraries (3 μg of genomic DNA input, one library per species) were prepared and hybridised according to Protocol version 1.5 (SureSelectXT Target Enrichment System for Illumina Paired-End Sequencing, Nov. 2012). For amplification of pre-capture libraries, 250 ng of adapter-ligated DNA was subjected to 5 PCR cycles. 750 ng of pre-capture library was then hybridised to 2 μl of the RNA oligomer baits for 24 h at 65 °C. The captured libraries were amplified and indexed using 12 PCR cycles. Final captured libraries were quantified using the Qubit approach (described above) and their size distribution determined using an Agilent Bioanalyser (High Sensitivity DNA chip, Agilent). Captured libraries were pooled at equal concentrations and purified using Agencourt AMPure XP beads (Beckman Coulter). The size distribution and concentration of the final pool was assessed, respectively, using an Agilent Bioanalyser and by the Qubit method (described above) along with quantitative PCR (Roche LightCycler 480 II), using an Illumina KAPA Library Quantification Kit (Illumina). The captured libraries were pooled and sequenced on an Illumina HiSeq2000, using version-3 chemistry and generating 2 × 100 bp paired end reads. All steps from sequence capture to Illumina sequencing and subsequent trimming and quality control were performed at the Centre for Genome Research (University of Liverpool, UK). The sequence capture study presented here is part of a larger project (Natural Environment Research Council grant NBAF704), which used the same approach as above, but employed a much broader set of probe sequences for sequence capture (data to be published independently).

2.2. Bioinformatics

After sequence capture and Illumina sequencing, adapters were removed using Cutadapt v.1.2.1 (Martin, 2011) before further trimming was done using Sickle v. 1.21 (Joshi and Fass, 2011) with a minimum window score of 20. Reads < 10 bp were excluded from further analysis. SOAPdenovo2 (Luo et al., 2012) was used to assemble the Illumina reads for each species (K = 91, M = 3) incorporating only paired end-reads. The output contigs/scaffolds were incorporated into species-specific BLAST databases (Altschul et al., 1990). A custom python script was used to query each database using BLASTn for each of the probe sequences described above and return all contigs/scaffolds in fasta format. The recovered contigs/scaffolds represented single or multiple exons homologous to the probe sequences, along with flanking genomic
regions. A manual approach was necessary to join contigs representing different exons, allowing us to build complete or larger sequences that were non-chimeric in terms of the represented ssWGD paralogues (described more in the results section and Fig. 2). Sequences were handled within BioEdit (Hall, 1999). Novel IGFBP and IGFB2 sequences generated by this approach are provided as supplementary data, along with 1633 separate SOAPdenovo2 contigs used to build the sequences (Supplementary dataset 1). We also mapped the probe sequences against the reference Atlantic salmon (S. salar) genome (Lien et al., 2016) using BLASTn via the Salmobase server (http://salmobase.org/).

2.3. Phylogenetic analysis

To establish the evolutionary history of novel sequences acquired by sequence capture, seven independent phylogenetic analyses were performed, one per each of the six vertebrate IGFBP family members (IGFBP-1 through to −6), along with one for IGFB2. The identity of novel captured salmonid sequences was initially assigned according to high (i.e. >90%) sequence similarity to previously characterized genes (for IGFB2: Bower et al., 2008; for IGFBB subtypes: Macqueen et al., 2013). The purpose of the IGFBP trees (n = 6) was to address the relationships of salmonid paralogues within a vertebrate IGFBP family member, rather than branching arrangements between different IGFBP family members (done elsewhere: Ocampo-Daza et al., 2011; Macqueen et al., 2013). The purpose of the IGFB2 tree was to test whether putative IGFB2 paralogues identified by sequence capture were retained from the ssWGD. For each analysis, relevant IGFBP/IGFB2 orthologues were obtained from a representative range of vertebrate lineages, including all the major lobe-finned fish groups and diverse ray-finned fish. All sequences other than novel−generated sequence capture data were obtained from Ensembl (http://www.ensembl.org/index.html) or NCBI (http://www.ncbi.nlm.nih.gov/) databases. The specific Ensembl database versions used were: Anolis carolinensis: AnoCar2.0; Danio rerio: GRCz10; Gallus gallus: GalGa4; Gasterosteus aculeatus: BroadS1; Homo sapiens: GRCh38.p5; Latimeria chalumnae: LatCha1/GCA_000225785.1; Lepisosteus oculatus: LepOcu1; Oreochromis niloticus: Oreni1.1; Pelodiscus sinensis: PeSin_1.0; Tetraodon nigroviridis: TETRAODON 8.0/ASM18073v1 and Xenopus tropicalis: JGI 4.2 (GCA_000004195.1). The NCBI accession/Ensembl identifier codes of all sequences are provided within figures.

Amino acid sequences for different phylogenetic analyses were separately aligned using MAFFT v.7 (Katoh and Standley, 2013) before the GUIDANCE2 algorithm (Landan and Graur, 2008; Sela et al., 2015) was used to test for uncertainty in the alignment and identify potential regions of low confidence. For all alignments, the GUIDANCE alignment score exceeded 0.95 and >95% of aligned columns had a confidence score exceeding 0.5; a small number of columns below this confidence score were removed. Finished high−confidence amino acid alignments were 268, 295, 307, 267, 272, 203 and 215 characters in length for IGFBP-1, −2, −3, −4, −5, −6 and IGFB2, respectively (Supplementary dataset 2). Each alignment was submitted to the iQ−Tree server (Nguyen et al., 2015), which identified the best−fitting of 144 tested amino acid substitution models (JTT + I + G4, JTT + I + G4, JTT + I + G4 and JTT + I + G4 for IGFBP-1, −2, −3, −4, −5, −6 and IGFB2, respectively) and performed phylogenetic analysis by maximum likelihood, employing a fast unbiased bootstrapping approach with 1000 replicates (Minh et al., 2013) to assess statistical confidence for each reconstructed node. Final phylogenetic trees were drawn using Mega v.6 (Tamura et al., 2013).

In addition, a further phylogenetic analysis was performed on nucleotide data for putative salmonid IGFBP−6B paralogues (complete coding sequences; rationale provided in section 3.2), covering all the data captured from the salmonid species, plus IGFBP−6B orthologues from E. lucius and G. aculeatus. The alignment was performed in MAFFT (Katoh and Standley, 2013) and led to an alignment of 558 nucleotide characters that was submitted to the iQ−Tree server (Nguyen et al., 2015), which identified the best−fitting of 88 tested nucleotide substitution models (K2P + G4) and performed phylogenetic analysis by
maximum likelihood, as described above. The presented tree was rooted to the *G. aculeatus* IGF2-6B orthologue.

2.4. Reconstruction of selective pressures

Separate codon alignments were constructed for IGF2 family members with unequivocal salmonid-specific paralogues: IGF2-1A, -1B, -2B, -3A, -3B, -5B, -6A and -6B, along with IGF2 (Supplementary dataset 3). The alignments were built using Pal2Nal (Suyama et al., 2006) with respect to amino acid alignments produced using MAFFT (Katoh and Standley, 2013). Each alignment included *E. lucius* as an outgroup to ssWGD and was separately uploaded to the DATAMONKEY server (Delpout et al., 2010) of the maximum likelihood-based package HyPhy (Pond et al., 2005), specifying a fixed topology of species relationships (after Campbell et al., 2013; Macqueen and Johnston, 2014; see Fig. 1A). Model selection was done to determine the best-fitting of all possible general time reversible (GTR) nucleotide substitution models. All nine codon alignments were run through the BS-REL and RELAX tests (Kosakovksy Pond et al., 2011; Wertheim et al., 2014) via DATAMONKEY. The RELAX algorithm was ran twice per alignment, each time setting the ‘foreground’ test branch as the ancestral node to one of the two salmonid-specific paralogous pairs (in both cases, the remaining branches were set as the ‘background’ reference branches). Finally, we calculated d_S and d_D across each branch of the fixed salmonid phylogeny under the MC94 codon model (Muse and Gaut, 1994) crossed with the best-fitting GTR nucleotide substitution model, using parametric bootstrapping with 200 replicates to establish variation around the sampled parameters including on d_S/d_D ratios (hereafter: ω).

3. Results and discussion

3.1. Sequence capture: an efficient tool for acquiring duplicated sequences across the salmonid family

Our first study aim was to test whether sequence capture provides an effective tool to acquire complete coding sequences, including ssWGD paralogues, across different salmonid family lineages. Here, we report the success of this approach using twenty IGF axis components (IGF2 and nineteen IGF2 family members) captured in solution using RNA baits designed to cover complete coding sequences from one reference species (i.e. Atlantic salmon). Specifically, we captured paired-end sequence reads from fifteen salmonid species, including all three salmonid subfamilies and their recognized genera, and one close outgroup to ssWGD (see Fig. 1). A de-novo approach (Luo et al., 2012) was used to assemble the captured reads, which was favoured over a reference-guided assembly owing to the evolutionary distance between the captured species. Using BLAST, we screened each assembly for the captured sequence data, which typically represented single exons of the target genes, along with flanking gDNA from introns (usually around 100 bp; note, the coding sequence of all IGBP genes and IGF2 is spread over four separate exons). However, less frequently we identified scaffolds spanning multiple exons when introns were short enough to be assembled. Therefore, a manual step was necessary to join different exons and build up larger coding sequences (outlined in Fig. 2). In this respect, BLAST would routinely identify pairs of distinct, yet closely-related contigs in our data, congruent with expectations concerning the presence of ssWGD paralogues (Fig. 2A, B). In such instances, it was crucial to avoid building chimeras representing a mixture of exons from different ssWGD paralogy pairs (Fig. 2B). Crucially, the majority of salmonid-specific gene duplicates began diverging soon after the ssWGD (Lien et al., 2016) and subsequently evolved as independent genes for tens of millions of years before the extinct salmonid subfamilies diverged ~45–55 Ma (Macqueen and Johnston, 2014). In such cases, paralogous sequence substitutions present in the common salmonid ancestor will have been inherited by all salmonid lineages and such sites are routinely observed as orthologous characters shared among extant salmonid species (Fig. 2C), presumably due to the action of persistent purifying selection. This property can be exploited, such that, as long as salmonid-specific paralogues have been fully verified in one reference species (here, Atlantic salmon sequences), then exons from other species can always be joined to their orthologous exons within a ssWGD paralogy pair, allowing different exons to be joined with a high degree of confidence (Fig. 2).

Using this protocol to join exons manually (after exclusion of flanking introns), a total of 299 manual nucleotide sequences were built representing the target IGF axis genes from the different salmonid species and Northern pike, of which 244 recovered >90% of the coding region (Fig. 3). The average recovery of the probe sequences across all 16 captured species was approximately 85% (SD: 5%). There was no obvious pattern suggesting that evolutionary distance among different salmonid species was an important factor affecting recovery of sequences. In other words, the recovery of data was evidently no more efficient for close relatives to the Atlantic salmon RNA bait sequences (i.e. other members of Salmoniniae) in comparison to more distant salmonids (i.e. Thymallinae and Coregoninae members) (Fig. 3). In fact, a clearer observed pattern was that certain probe sequences were less likely to recover complete coding sequences than others for all species (e.g. IGF2-1A2 and -3A2). Despite this, sequence data recovered for the more distant outgroup to ssWGD, i.e. the Northern pike, which split off from the salmonid ancestor ~125 Ma (Fig. 1A) was more frequently less complete, suggesting the limits of sequence capture were being reached in some instances. For the majority of genes characterized, BLAST searches of the Atlantic salmon genome confirmed that salmonid-specific paralogous pairs were embedded within large duplicated chromosomal regions that started diverging rapidly after the salmonid WGD and still maintain extensive collinearity (see Lien et al., 2016), specifically: Chr10 and 23 for IGBP-1A1 and -1A2; Chr14 and 03 for IGBP-1B1 and 1B2; Chr25 and 21 for IGBP-2B1 and -2B2; Chr10 and 23 for IGBP-3A1 and -3A2; Chr14 and 03 for IGBP-3B1 and -3B2; Chr21 and 25 for IGBP-5B1 and -5B2; Chr22 and 12 for IGBP-6A1 and -6A2 and Chr13 and 15 for IGBP-6B1 and -6B2. The Atlantic salmon IGF2 gene was found once on Chr10, embedded in a duplicated region that started diverging rapidly after the ssWGD (data from Lien et al., 2016). Therefore, as these genes started diverging in the salmonid ancestor, it was possible to exploit ancestral variation among the salmonid-specific duplicates to confidently rebuild complete sequences in all the tested species (i.e. correctly joining exons following the concept described in Fig. 2). Conversely, BLAST searches of the Atlantic salmon genome revealed that IGBP-2A, -4 and -5A duplicates are embedded in large duplicated regions that started diverging much more recently, owing to a large delay in the rediploidization process (data from Lien et al., 2016). Specifically, IGBP-2A, and -4 are located within duplicated regions on Chr16 and 17, while IGBP-5A falls within regions on Chr2 and 12, which show a very high level of sequence similarity. In such cases, reference sequences from one salmonid species cannot be used to confidently rebuild exon-spanning sequences in other species, as the paralogous sites may have arisen after the lineages separated by speciation and therefore cannot be shared across all lineages. Accordingly, while sequence capture recovered IGBP-2A, -4 and -5A sequences (Fig. 3), in this study, we collapsed any identified variation into a single consensus sequence and excluded these genes from downstream evolutionary analyses (Section 3.3) beyond confirmatory phylogenetic reconstruction (Section 3.2).

Prior to confirmation by phylogenetic analyses (Section 3.2), our data suggested a strong maintenance in the overall structure of the IGBP gene family across different salmonids, along with the presence of two putative paralogues of IGF2 in Coregoninae and Thymallinae (Fig. 3). The latter case is notable, as it demonstrates that RNA baits designed to a single gene can efficiently capture multiple related ssWGD
paralogues. While it is more difficult to prove gene loss than retention, our sequence capture approach worked effectively across large evolutionary distances. Thus, with knowledge of salmonid phylogeny, it is possible to consider evidence for gene loss in an appropriate evolutionary context. Therefore, the complete absence of any IGFBP-1A2 sequences within three separate members of Coregonus must be taken as strong evidence for an ancestral gene loss within the genus ancestor, especially considering that a more distant IGFBP-1A orthologue from the ssWGD outgroup was fully recovered using the same RNA baits (Fig. 3). On the other hand, it would be somewhat speculative to conclude a gene loss in the single additional case where a gene was totally absent in our data - IGFBP-3A2 in Thymallus baicalensis – given that another member of Thymallinae retains the gene. Overall, these findings confirm that targeted sequence capture provides an efficient tool for acquiring gene coding sequences across many members of the salmonid family.

3.2. Phylogenetic validation of sequence capture approach for rebuilding salmonid-specific paralogues

To validate the success of targeted sequence capture in distinguishing ssWGD paralogues (i.e. study aim 1), we performed maximum likelihood phylogenetic analyses (done at the amino acid level) to reconstruct evolutionary histories for novel salmonid IGFBP and IGF2 sequences obtained by sequence capture. As the captured data from Northern pike was less complete than the salmonid sequences (Section 3.1), our phylogenetic analyses were supplemented by complete sequences predicted from the genome assembly (Rondeau et al., 2014; available from NCBI). As expanded below, these analyses validate our hypothesis that sequence capture offers a useful approach to recover and characterize the evolution of gene families shaped by the ssWGD in any target salmonid lineage.

For the IGFBP family, we present one representative tree in the main paper (Fig. 4: for IGFBP-3), with all remaining trees provided as supplementary material (Fig. S1-S5), as the relevant branching patterns are mostly common to all the trees. Each IGFBP family member tree recaptured anticipated patterns of gene family evolution before the ssWGD, including the presence of all recognized teleost paralogues of IGFBP-1, -2, -3, -5 and -6 (Fig. 4, Fig. S1, S2, S4, S5) thought to be retained from the ssWGD. In particular, our new analyses, in contrast to past work considering teleost IGFBPs (Ocampo-Daza et al., 2011; Macqueen et al., 2013), included the spotted gar as a ray-finned fish outgroup to ssWGD (Braasch et al., 2016) - this species invariably branched with maximal statistical support outside two teleost IGFBP clades (‘A’ and ‘B’ nomenclature), with all ray-finned fish being sister to a monophyletic clade of lobe-finned fish (Fig. 4, Fig. S1–S5). Moreover, most previously identified salmonid-specific paralogues retained from ssWGD (Macqueen et al., 2013) were confirmed to be ancestral salmonid characters. Specifically, for the ssWGD family members IGFBP-1A and -1B (Fig. S1), -2B (Fig. S2), -3A and -3B (Fig. 4), 5B (Fig. S4) and -6A (Fig. S5), our phylogenetic trees recovered two salmonid-specific clades, each containing the reference Atlantic salmon sequences branching within Salmoninae (as anticipated in light of species relationships, Fig. 1A). Moreover, within each salmonid clade, the three salmonid subfamilies were usually monophyletic, while relationships therein were broadly congruent with expected species relationships to the level of genera (Campbell et al., 2013; Macqueen and Johnston, 2014). Conversely, the branching arrangements separating salmonid subfamilies were more variable, which was again expected, owing to the short evolutionary time separating the most recent common salmonid ancestor to the ancestors of each subfamily (Macqueen and Johnston, 2014). The presence of the Northern pike outgroup to ssWGD (Rondeau et al., 2014), which is novel to this study, adds further weight to conclusions concerning the salmonid-specific paralogues. Specifically, the relevant pike IGFBP sequences either branched as the sister lineage to a pair of salmonid-specific parologue clades (i.e. sister to IGFBP-1B, IGFBP-3A, IGFBP-3B, IGFBP-5B and IGFBP-6A, Fig. 4, Fig. S1, S4 and S5) or in some instances, as the sister lineage to one of the salmonid-specific
paralogous clades (i.e. to IGFBP-1A2; IGFBP-2B2, Fig. S1, S2.), the former being expected and the latter representing a probable branching artefact associated with asymmetric paralogue evolution (see Section 3.4), considering that these paralogue pairs reside in verified duplicated ssWGD regions in the Atlantic salmon genome (Lien et al., 2016). The branching of putative salmonid-specific paralogues in the IGFBP-6B clade failed to recover two monophyletic clades representing each anticipated ssWGD paralogue (Fig. S5), again suggesting a branching artefact, given that these genes are present in duplicated regions retained from ssWGD in the Atlantic salmon genome (Lien et al., 2016). To confirm the branching artefact for IGFBP-6B, we performed an additional ML analysis using nucleotide characters, which should have more phylogenetic signal at the relatively modest levels of genetic distance characterizing salmonid evolution (Fig. S6). Indeed, this analysis strongly supported the presence of two ancestrally divergent salmonid IGFBP-6B paralogues retained from ssWGD that have been retained in all salmonid species (Fig. S6).

For IG2, our phylogenetic analyses included two characterized teleost duplicates (IGF2-A and -B) thought to be retained from tsWGD, which to date have only be observed in members of the Ostariophysi, including zebrafish (Zou et al., 2009) (Fig. 5). In our tree, the spotted gar branched as the sister to one of the two teleost paralogue clades (IGF2B) with strong support (Fig. 2), which requires either that the duplication of IGF2 occurred before the tsWGD or that our analysis recovered a branching artefact. The latter is more probable, as past work identified double conserved synteny comparing the gene regions containing zebrafish IGF2A and IGF2B genes to the single-copy IGF2 gene of human (Zou et al., 2009), which is a hallmark of a large scale duplication event, explained most parsimoniously by tsWGD. In any case, it is important to note that all salmonid IGF2 sequences formed a monophyletic group within the teleost IGF2B clade and split into two sister clades, each containing different salmonid subfamilies as monophyletic groups (Fig. 5). However, while Thymallinae and Coregoninae were present in both salmonid-specific clades, single sequences recovered in all Salmoninae members were only present in one of the clades (Fig. 5). The ssWGD outgroup species pike branched as the sister group to these two putative salmonid-specific paralogous clades (Fig. 5). As mentioned above, given that the reference Atlantic salmon IGF2 gene sequence resides within a duplicated collinear region of the genome that started diverging in the salmonid ancestor (Lien et al., 2016), this data offers strong evidence that two IGF2B paralogues were retained from the ssWGD (hereafter: IGF2-B1 and -B2) and while both have been retained in Thymallinae and Coregoninae, one was lost in the Salmoninae ancestor.

Overall, these analyses further verify the success of our sequence capture approach, highlighting that the manual steps required to
rebuild coding regions of different salmonid-specific paralogues leads to phylogenetically-informative data that is congruent with expectations regarding ssWGD.

3.3. High-resolution evolutionary analysis of key components from the duplicated salmonid IGF axis

Our final study aim was to demonstrate the utility of sequence capture for comparative evolutionary analyses encompassing the salmonid lineage – hence, we explored the molecular evolution of IGFBP family members retained as two ssWGD paralogues that began diverging in the common salmonid ancestor, along with the novel salmonid IGF2-B paralogues (Fig. 6). To gain insights into the selective pressures underlying the sequence evolution and divergence of IGF axis ssWGD paralogues, we first estimated d_{NS}/d_{SY} ratios (ω) for each branch in the salmonid family tree (Fig. 6). For the ssWGD outgroup branches (Northern pike), we observed low ω estimates for all tested genes, suggesting strong purifying selection to maintain ancestral functions across the pike’s evolutionary history (Fig. 6). Conversely, when taking the data as a whole, while low ω estimates were common in the salmonid phylogeny, they were frequently interspersed with higher ω values, including values exceeding one (Fig. 6). This pattern can be explained by a general background of purifying selection, with episodic periods of faster protein evolution, potentially associated with some combination of relaxed and positive selection. There is also evidence of heterogeneity comparing the historic selective regimes operating on the different salmonid IGFBP family members, including the pattern of divergence among ssWGD paralogues. For example, both ssWGD paralogues of IGFBP-5B have evidently been subjected to a greater level of purifying selection across all salmonids (i.e. mainly low estimated ω values) compared to all other tested IGFBP family members (Fig. 6). This includes the period immediately post-WGD, suggesting strong selection to preserve pre-WGD functions in both paralogues. Conversely, the other IGFBP family members had more variable ω estimates across branches, typically affecting both paralogues, which was a pattern observed to some extent for IGF2-B (Fig. 6). Further, IGFBP family members often had divergent ω estimates comparing the two immediate post-ssWGD paralogue branches (Fig. 6), suggesting a period of functional divergence in the common salmonid ancestor.

When interpreting these patterns, it is important to note that the ω estimates shown in Fig. 6 were often underpinned by a small number of sequence changes owing to the close relationships of many tested salmonid species and are sometimes subject to large variance in the underlying parameter estimates. In this respect, we suggest particular caution is applied when interpreting branches with ω values exceeding one, often taken as evidence of positive selection. Such high ω values, if accompanied by statistical uncertainty, cannot disentangle the relevant importance of positive selection from a relaxation in purifying selection. Moreover, it is possible for a small number of sites to be fixed by positive selection in a background of purifying selection, associated with low ω values for specific branches in a tree when assessed at the level of whole gene coding regions. Therefore, we also employed more powerful tests specifically geared towards identification of episodic positive selection or relaxation of purifying selection using branch-site models.

Fig. 5. Maximum likelihood tree offering strong support for novel IGF2-B paralogues retained from ssWGD. The tree was built using IQ-Tree from an alignment of 214 amino acid positions under the JTT + I + G4 amino acid substitution model. Other details are as provided in the Fig. 4 legend, except for the following additional species abbreviations: For teleosts: Sc = Siniperca chuatsi, Cs = Cynoglossus semilaevis, Am = Astyanax mexicanus.
that consider variation across lineages as well as different codons in a gene. The first test, called BS-REL (Kosakovsky Pond et al., 2011), aims to detect positive selection, while the second test, called RELAX (Wertheim et al., 2014), is designed to distinguish the presence of relaxed selection from an intensification of selective pressure (data in Table S1, S2). Whereas the BS-REL test was used across the entire tree, the RELAX test requires specific nodes to be selected for testing and was done only on the immediate post-ssWGD branches. The BS-REL test provided evidence for positive selection in the ancestral salmonid branches leading to IGFBP-1A2, -2B1 and -6A2 (Fig. 6A, C, G; Table S1), with the latter two instances being coincident with evidence for an intensification in selective pressure according to the RELAX test (Table S2). These data are thus consistent with a scenario where adaptive functions became fixed in one ssWGD paralogue for three separate pairs of salmonid-specific IGFBP proteins in the ancestor to extant salmonids.

It is also interesting to note evidence for positive selection on numerous branches within different salmonid lineages for both IGFBP-1A2 and to a lesser extent IGFBP-1A1 (Fig. 6A). Included among these
for IGFBP-1A2 was the branch leading into all members of the ancestrally-ly-anadromous (i.e. having within-life capacity to migrate between fresh and seawater, including the ability to undergo smoltification) members of Salmononae (see Alexandrou et al., 2013) and several branches therein, as well as the ancestor to the Thymallinae (Fig. 6A). In Atlantic salmon, the IGFBP-1A2 gene was previously observed to be lowly expressed compared to its ssWGD parologue IGFBP-1A1, which retains expression similar to other teleost IGFBP-1A genes (Macqueen et al., 2013). Thus, such repeated bouts of positive potential selection may reflect ongoing adaptive changes linked to the evolution of novel protein functions in IGFBP-1A1 that potentially accompany evolutionary divergence in gene expression. For IGFBP-2B1, we also observed a number of salmonid branches with evidence for positive selection, including, in addition to the ancestors to all salmonids, separate branches leading into the ancestrally-anadromous Salmononae members as well as their sister group (Hucho-Brachymystax) that never evolved anadromy (Alexandrou et al., 2013) (Fig. 6C). IGFBP-2B1 is more highly expressed than its ssWGD parologue in Atlantic salmon and restricted to liver (Macqueen et al., 2013), which is the predominant tissue that releases IGFs and IGFBPs into the circulation to have endocrine effects on IGF signalling. Conversely, its ssWGD parologue IGFBP-2B2 was inferred to have undergone positive selection on the branch leading into members of Coregoninae, which independently evolved capacity for anadromy (Alexandrou et al., 2013). While the functional relevance of such evolutionary patterns remain unexplored in the context of anadromy, the role of the IGF axis in controlling seawater tolerance and salmonid smoltification is well-established (Björnsson et al., 2011), pointing towards interesting lines of future work in a comparative evolutionary context.

For IGFBP-3A2, a high ω value was associated with evidence for a significant relaxation in selection (Fig. 6D; Table S2). Notably, this was the only detected instance supporting a relaxation in selection in the immediate post-ssWGD parologue branches. For IGFBP-5B2, despite the overall strong background of purifying selection on both ssWGD paralogues, there was nevertheless evidence of positive selection within some salmonid lineages, particularly from within the Coregoninae subfamily (Fig. 6F). IGFBP-6B was the only IGFBP family member without any evidence of positive selection according to the BS-REL test (Fig. 6H), along with IGFBP-3 (Fig. 6I).

Overall, these data suggest that the evolution of duplicated salmonid IGF-axis components has involved bouts of protein-level level divergence associated with shifts in selective pressures on both ssWGD paralogues in a pair. While potentially important changes among ssWGD paralogues occurred ancestrally, ongoing evolutionary divergence within salmonid lineages seem to have been equally important. While this study aimed largely to demonstrate a useful application for generating large-scale protein-coding sequence data across salmonid physiology and development, and subsequent patterns of parologue retention and loss. Moreover, the timing of divergence of ssWGD paralogues in different lineages related to the ssWGD using phylogenomic approaches, for example, the sequencing projects are providing unprecedented and remarkable insights into the evolution of salmonid genomes and will always represent the bedrock from which understanding of these fascinating fish is drawn. Nonetheless, generating a high-quality salmonid genome (which are large and highly repetitive), remains a non-trial task, meaning new genomes are unlikely to be finalized for all the major salmonid lineages for some time. In the meantime, sequence capture offers a useful option to bridge the gap between the genome-wide insights made possible by sequencing a few key salmonid genomes and the rich comparative insights gained by broadening the number of phylogenetic lineages sampled.

Acknowledgements

This study was funded by a Natural Environment Research Council grant (NERC, project code: NFA7704). FML is funded by a NERC Doctoral Training Grant (Project Reference: NE/L50175X/1). RLS was an undergraduate student at the University of Aberdeen and benefited from financial support from the School of Biological Sciences. DJM is indebted to Dr. Steven Weiss (University of Graz, Austria), Dr. Takashi Yada (National Research Institute of Fisheries Science, Japan), Dr. Robert Devlin (Fisheries and Oceans Canada, Canada), Prof. Samuel Martin (University of Aberdeen, UK), Dr. Neil Lincoln (Environment Agency, UK) and Prof. Colin Adams/Mr. Stuart Wilson (University of Glasgow, UK) for providing salmonid material or assisting with its sampling. We are grateful to staff at the Centre for Genomics Research (University of Liverpool, UK) (i.e. NERC Biomolecular Analysis Facility – Liverpool; NBF-Liverpool) for performing sequence capture/Illumina sequencing and providing us with details on associated methods that were incorporated into the manuscript. Finally, we are grateful to the organizers of the Society of Experimental Biology Satellite meeting ‘Genome-powered perspectives in integrative physiology and evolutionary biology’ (held in Prague, July 2015) for inviting us to contribute to this special edition of Marine Genomics and hosting a really stimulating meeting.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.margen.2016.06.003.

References

