CENTRALIZERS OF NORMAL SUBGROUPS AND THE Z*-THEOREM

E. HENKE AND J. SEMERARO

Abstract. Glauberman’s Z*-theorem and analogous statements for odd primes show that, for any prime p and any finite group G with Sylow p-subgroup S, the centre of $G/O_p(G)$ is determined by the fusion system $F_S(G)$. Building on these results we show a statement that seems a priori more general: For any normal subgroup H of G with $O_p(H) = 1$, the centralizer $C_S(H)$ is expressed in terms of the fusion system $F_S(G)$ and its normal subsystem induced by H.

Keywords: Finite groups; fusion systems; Glauberman’s Z*-theorem.

Throughout p is a prime. Glauberman’s Z*-theorem [3] and its generalization to odd primes, which is shown using the classification of finite simple groups (see [7] and [4]), can be reformulated as follows:

Theorem A. Let G be a finite group with $O_p(G) = 1$, and $S \in \text{Syl}_p(G)$. Then $Z(G) = Z(F_S(G))$.

We refer the reader here to [2] for basic definitions and results regarding fusion systems; see in particular Definitions I.4.1 and I.4.3 for the definition of central subgroups and the centre $Z(F)$. A more common formulation of the Z*-theorem states that, assuming the hypothesis of Theorem A, we have $t \in Z(G)$ if and only if $t^G \cap S = \{t\}$ for every element $t \in S$ of order p. Given a normal subgroup H of a finite group G, a Sylow p-subgroup $S \in \text{Syl}_p(G)$, and an element $t \in S$ of order p, one can apply the Z*-theorem with $H(t)$ in place of G to obtain the following corollary: Provided $O_p(H) = 1$, we have $t^H \cap S = \{t\}$ if and only if $t \in C_S(H)$. In this short note, we use Theorem A to give a less obvious characterization of $C_S(H)$.

Given a saturated fusion system F on a finite p-group S and a normal subsystem \mathcal{E} of F on $T \leq S$, Aschbacher [1] (6.7)(1)] showed that the set of subgroups X of $C_S(T)$ with $\mathcal{E} \subseteq C_F(X)$ has a largest member $C_S(\mathcal{E})$. He furthermore constructed a normal subsystem $C_F(\mathcal{E})$ on $C_S(\mathcal{E})$, the centralizer of \mathcal{E} in F; see [1] Chapter 6]. Note that $C_S(\mathcal{E})$ depends not only on S and \mathcal{E} but also on the fusion system F in which both S and \mathcal{E} are contained.

The definition of $C_S(\mathcal{E})$ generalizes the definition of $Z(F)$ since $C_S(F) = Z(F)$. Moreover, for every normal subgroup H of a finite group G with Sylow p-subgroup S, $F_{S\cap H}(H)$ is a normal subsystem of $F_S(G)$ by [2] I.6.2. Thus, the following theorem, which we prove later on, can be seen as a generalization of Theorem A.

Theorem B. Let G be a finite group and let S be a Sylow p-subgroup of G. Let $H \leq G$ with $O_p(H) = 1$. Then $C_S(F_{S\cap H}(H)) = C_S(H)$.

In the statement of Theorem B it is understood that $C_S(F_{S\cap H}(H))$ is formed inside of $F_S(G)$. The result says in other words that, under the hypothesis of Theorem B, for any $X \leq S$ with $F_{S\cap H}(H) \subseteq C_{F_S(G)}(X)$, we have $X \leq C_S(H)$.

1
This is not true if one drops the assumption that \(H \) is normal in \(G \) as the following example shows: Let \(G := G_1 \times G_2 \) with \(G_1 \cong G_2 \cong S_3 \). Set \(p = 3 \), \(S = O_3(G) \), \(S_i := O_3(G_i) \) and let \(R \) be a subgroup of \(G \) of order \(2 \) which acts fixed point freely on \(S \). Set \(H := S_1 \times R \). Then \(S_1 \cap H \in \text{Syl}_3(H) \) and \(F_{S_1}(H) = F_{S_1}(G_1) \subseteq C_{F_{S_1}(G)}(S_2) \) as \(S_2 = C_S(G_1) \). However, \(S_2 \not\subseteq C_S(H) \) by the choice of \(R \).

Theorem B was conjectured by the second author of this paper in [6]. Our proof of Theorem B builds on Theorem A and the reduction uses only elementary group theoretical results. Essential is the following lemma, whose proof is self-contained apart from using the conjugacy of Hall-subgroups in solvable groups.

Lemma 1. Let \(G \) be a finite group with Sylow \(p \)-subgroup \(S \) and a normal subgroup \(H \). Let \(P \leq S \) such that \(P \cap H \) is centric in \(F_{S \cap H}(H) \). Then for every \(p' \)-element \(\varphi \in \text{Aut}_G(P) \) with \([P, \varphi] \leq P \cap H \) and \(\varphi|_{P \cap H} \in \text{Aut}_H(P \cap H) \), we have \(\varphi \in \text{Aut}_H(P) \).

Proof. This is [5, Proposition 3.1].

Proof of Theorem B. We assume the hypothesis of Theorem B. Furthermore, we set \(F := F_S(G) \), \(T := S \cap H \) and \(E := F_T(H) \). If a homomorphism \(\varphi \) between subgroups \(A \) and \(B \) of \(T \) is induced by conjugation with an element \(h \in H \), then \(\varphi \) extends to \(c_h : AC_S(H) \to BC_S(H) \) and \(c_h \) restricts to the identity on \(C_S(H) \).

Thus \(E \subseteq C_T(C_S(H)) \), so by the definition of \(C_S(E) \), we have \(C_S(H) \leq C_S(E) \). To prove the converse inclusion, choose \(t \in C_S(E) \). Define:

\[
G_0 = H^t \quad \text{and} \quad S_0 := T^t,
\]
so that plainly \(S_0 \) is a Sylow \(p \)-subgroup of \(G_0 \) and \(F_0 := F_{S_0}(G_0) \) is a saturated fusion system on \(S_0 \). Note also that \(O_{p'}(G_0) = 1 \) as \(O_p(G_0) = O_p(H) \) and \(O_{p'}(H) = 1 \) by assumption.

By Theorem A, \(Z(F_0) = Z(G_0) \leq C_S(H) \). It thus suffices to prove \(t \in Z(F_0) \). As \(t \in C_S(E) \leq C_S(T) \), \(t \in Z(S_0) \). Let \(P \) be a subgroup of \(S_0 \) which is centric radical and fully normalized in \(F_0 \). Then \(t \in Z(S_0) \leq C_{S_0}(P) \leq P \). It is sufficient to prove \([t, \text{Aut}_{F_0}(P)] = 1\). For as \(P \) is arbitrary, Alperin’s fusion theorem [2, Theorem 3.6] implies then \(t \in Z(F_0) \). As \(F_0 \)-normal, \(\text{Aut}_{S_0}(P) \in \text{Syl}_p(\text{Aut}_{F_0}(P)) \) and thus \(\text{Aut}_{F_0}(P) = \text{Aut}_{S_0}(P) \text{Op}(\text{Aut}_{F_0}(P)) \). Note that \([t, \text{Aut}_{S_0}(P)] = 1\) as \(t \in Z(S_0) \). Hence, it is enough to prove

\[
[t, \text{Op}(\text{Aut}_{F_0}(P))] = 1.
\]

Let \(\varphi \in \text{Aut}_{F_0}(P) \) be a \(p' \)-element. Since \(\text{Op}(H) = \text{Op}(G_0) \), we have \(\text{Op}(\text{Aut}_{F_0}(P)) = \text{Op}(\text{Aut}_H(P)) \). In particular, \(\varphi \in \text{Aut}_H(P) \) and thus \(\varphi|_{P \cap T} \in \text{Aut}_H(P \cap T) = \text{Aut}_{E}(P \cap T) \). As \(t \in P \leq S_0 = T^t \), we have \(P = (P \cap T)^t \). Moreover, \(t \in C_S(E) \) implies that \(E \subseteq C_{F}(t) \). Hence, \(\varphi|_{P \cap T} \) extends to \(\psi \in \text{Aut}_E(P) \) with the property that \(t \psi = t \). Note that \(o(\psi) = o(\varphi|_{P \cap T}) \) and thus \(\psi \) is a \(p' \)-element as \(\varphi \) has order prime to \(p \). Moreover, plainly \([P, \psi] \leq P \cap T \) and \(\psi|_{P \cap T} = \varphi|_{P \cap T} \in \text{Aut}_H(P \cap T) \).

Since \(E \subseteq F_0 \), \(P \cap T \) is \(E \)-centric by [1] 7.18. Now it follows from Lemma 1 that \(\psi \in \text{Aut}_H(P) \). Thus, \(\chi := \varphi \circ \psi^{-1} \in \text{Aut}_H(P) \leq \text{Aut}_{F_0}(P) \). Clearly \(\chi|_{P \cap T} = \text{Id} \) as \(\psi \) extends \(\varphi|_{P \cap T} \). Moreover, using that \(H \) is normal in \(G \), we obtain

\[
[P, \chi] \leq \text{Aut}_H(P) \leq P \cap H = P \cap T.
\]

Hence, by [2] Lemma A.2, \(\chi \in C_{\text{Aut}_{F_0}(P)}(P/(P \cap T)) \) and \(C_{\text{Aut}_{F_0}(P)}(P \cap T) = \text{Op}(\text{Aut}_{F_0}(P)) = \text{Inn}(P) \) as \(P \) is radical in \(F_0 \). As \(\text{Inn}(P) \leq \text{Aut}_{S_0}(P) \) and \([t, \text{Aut}_{S_0}(P)] = 1\), it follows \(t \chi = t \). By the choice of \(\psi \), also \(t \psi = t \) and consequently \(t \varphi = t \). Since \(\varphi \) was chosen to be an
arbitrary p'-element in $\text{Aut}_{F_0}(P)$ and $O^p(\text{Aut}_{F_0}(P))$ is the subgroup generated by these elements, it follows that $[t, O^p(\text{Aut}_{F_0}(P))] = 1$. As argued above, this yields the assertion. □

References

Institute of Mathematics, University of Aberdeen, U.K.
E-mail address: ellen.henke@abdn.ac.uk

Heilbronn Institute for Mathematical Research, Department of Mathematics, University of Bristol, U.K.
E-mail address: js13526@bristol.ac.uk