Novel \textit{LIPA} mutations in Mexican siblings with lysosomal acid lipase deficiency

Yuritzi Santillán-Hernández, Enory Almanza-Miranda, Winnie W Xin, Kendrick Goss, Aurea Vera-Loaiza, María T Gorráez-de la Mora, Raul E Piña-Aguilar

Published online: January 21, 2015

Abstract

Lysosomal acid lipase (LAL) deficiency is an under-recognized lysosomal disease caused by deficient enzymatic activity of LAL. In this report we describe two affected female Mexican siblings with early hepatic complications. At two months of age, the first sibling presented with alternating episodes of diarrhea and constipation, and later with hepatomegaly, elevated transaminases, high levels of total and low-density lipoprotein cholesterol, and low levels of high-density lipoprotein. Portal hypertension and grade 2 esophageal varices were detected at four years of age. The second sibling presented with hepatomegaly, elevated transaminases and mildly elevated low-density lipoprotein and low high-density lipoprotein at six months of age. LAL activity was deficient in both patients. Sequencing of \textit{LIPA} revealed two previously unreported heterozygous mutations in exon 4: c.253C>A and c.294C>G. These cases highlight the clinical continuum between the so-called Wolman disease and cholesteryl ester storage disease, and underscore that LAL deficiency represents a single disease with a degree of clinical heterogeneity.

Key words: Cholesteryl ester storage disease; Liver fibrosis; Dyslipidemia; Liver steatosis; Wolman disease

Core tip: Lysosomal acid lipase deficiency is a rare genetic disorder related to the metabolism of cholesterol and triglycerides inside the lysosome. In this report, we present the findings from two siblings with no lysosomal acid lipase activity caused by two previously unidentified mutations in exon 4 of \textit{LIPA}.
The patients had early hepatic presentation, including severe cirrhosis and esophageal varices in the elder sibling, underscoring the significant morbidity that can occur at all ages of lysosomal acid lipase deficiency and highlighting possible compensatory mechanisms in liver function in children.

CASE REPORT

Sibling 1

This report describes the case of a 9-year-old girl with healthy, non-consanguineous parents from Mexico, who was apparently normal at birth and met normal development milestones. She became symptomatic at two months of age, presenting with alternating episodes of diarrhea and constipation, and reduced weight and height. Hepatomegaly was detected by abdominal radiography at six months of age during the evaluation for diarrhea. An initial laboratory workup indicated leukocytosis (16000/mL) and eosinophilia (2700/mL), and a bone marrow analysis showed an increase of myeloid series, with augmented cellularity and the presence of megakaryocytes, without immature cells. The patient then underwent additional testing to rule out a hematologic malignancy. Further workup included karyotype in peripheral blood, reported as 46, XX[20].

Laboratory assessments at two years of age showed: hemoglobin, 14.1 g/dL; leukocytes, 13200/mL; eosinophilia, 2700/mL (24.6% of white blood cell differential count); platelets, 330000; abnormal liver enzymes and dyslipidemia (Table 1) with evidence of chronic Epstein-Barr virus infection. Serology for hepatitis A, B and C was negative. Hepatosplenomegaly was confirmed by abdominal ultrasound.

A computed tomography scan at four years of age revealed an enlarged liver, with a longitudinal diameter of 18 cm and spleen length of 13.4 cm, without adrenal calcifications. The patient was transferred to the pediatric gastroenterology department in our hospital for further investigation for metabolic disease. She presented gastrointestinal bleeding and endoscopy revealed grade 2 (Sohendra) esophageal varices.

When the patient was five years of age, a hepatic biopsy showed multinodular microvesicular steatosis in 10% of hepatocytes, with irregular small nodules separated by gross bands of portal-portal fibrosis with no zonal preference, ballooning degeneration and pseudoacinar regeneration, and no stasis of bilirubin or deposition of copper or iron (Figure 1A, B). The portal triads were expanded by fibrous tissue, with sparse ducts.
proliferation. Cells with foamy cytoplasm were observed in the portal space and in the fibrous tissue, which demonstrated diastase resistance and Periodic acid-Schiff positivity. Kupffer sinusoidal cells were immunopositive for CD68 (Figure 1C) and immunonegative for Hep-1 and pan-cytokeratin, with fine granules containing autofluorescent ceroid-like material (Figure 1D).

Doppler ultrasound at six years of age showed a homogenous parenchyma, with normal echogenicity and without intrahepatic lesions or increased flux in portal circulation.

A duodenal biopsy performed when the patient was seven years of age showed preserved architecture of duodenal mucosa, but with groups of histiocytes with fluorescent ceroid material occupying about 40% of the lamina propria of villi (Figure 1E) that were associated with lymphocytes. A liver biopsy also demonstrated the same changes, with minimal steatosis that was decreased from the biopsy performed at five years. The histology indicated micronodular cirrhosis, widened portal spaces and fibrotic tissue with histiocytes, with an absence of a central vein and nodules of hepatic regeneration.

The pathologic findings of the biopsies were interpreted as a possible diagnosis of Niemann-Pick disease. Thus, sphingomyelinase activity was measured by mass spectrometry, and quantified as 2.3 µmol/L per hour. A skin biopsy was taken to determine cholesterol esterification and filipin staining in cultured fibroblasts to eliminate Niemann-Pick type C disease (performed at Mayo Clinic, United States), revealing low-density lipoprotein esterification that was 2% of normal control cells, similar to patients with Niemann-Pick type C disease, but with normal filipin staining.

The patient was not given any lipid-lowering drugs; recent laboratory test results are shown in Table 1. Associated with the progression of her liver disease and the associated portal hypertension and splenomegaly, the patient’s platelet count decreased to 96000 (reference range; 150000-500000). Endoscopy performed at nine years of age revealed continued presence of grade 2 esophageal varices (Figure 1F) and one medium gastric varix; the esophageal varices were ligated. The last Doppler ultrasound showed a longitudinal liver diameter of 14.7 cm, increased liver echogenicity, micronodular pattern, spleen longitudinal length of 14.6 cm, and increase in portal flux and collateral circulation with porto-systemic shunts (splenoportal shunt and umbilical vein recanalization) (Figure 2). The patient is currently being treated with propranolol (2 mg/kg per day) for gastrointestinal bleeding prophylaxis and vitamin K (10 mg/d) for prolonged bleeding times.

Sibling 2

Given the suspicion of a probable lysosomal storage disease in sibling 1, we began the study of her now 4-year-old sister at six months of age. The initial physical examination revealed reduced height and hepatomegaly, which was confirmed by an abdominal ultrasound showing the liver with a longitudinal diameter of 8.4 cm and increased echogenicity, and a spleen length of 7.1 cm. Laboratory tests revealed alterations in liver function and lipid profile (Table 1); however, a bone marrow aspirate indicated no evidence of storage disease. Sphingomyelinase activity was 2.8 µmol/L per hour. A recent endoscopy showed no varices, but Doppler ultrasound demonstrated increased hepatic flux, without porto-systemic shunts (Figure 2).

LAL enzymatic and molecular analyses

Following exclusion of Niemann-Pick diseases, a diagnosis of LALD was considered for both siblings. LAL activity was determined using a fluorescence-based whole blood assay with 4-methylumbelliferone[6], which revealed < 0.02 pmol/punch*h (normal range: 24.00-134.00 pmol/punch*h) in dried blood and 0.000 nmol/punch*h in whole blood (normal range: 0.027-0.152 nmol/punch*h). LAL activity from dried

Table 1 Hepatic function test, lipid profile and coagulation values in patients

<table>
<thead>
<tr>
<th>Parameter (unit)</th>
<th>Sibling 1</th>
<th>Sibling 2</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST (U/L)</td>
<td>229</td>
<td>192</td>
<td>8-50</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>344</td>
<td>193</td>
<td>7-45</td>
</tr>
<tr>
<td>Alkaline phosphatase (U/L)</td>
<td>365</td>
<td>545</td>
<td>4 yr: 169-372</td>
</tr>
<tr>
<td>Total bilirubin (mg/dL)</td>
<td>0.8</td>
<td>0.42</td>
<td>9 yr: 212-468</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>343.0</td>
<td>211.0</td>
<td>19 yr: 145-345</td>
</tr>
<tr>
<td>LDL-cholesterol (mg/dL)</td>
<td>316.0</td>
<td>118.0</td>
<td>7-150</td>
</tr>
<tr>
<td>HDL-cholesterol (mg/dL)</td>
<td>277.1</td>
<td>157.4</td>
<td>8-50</td>
</tr>
<tr>
<td>Prothrombin time (min)</td>
<td>21.9</td>
<td>21.1</td>
<td>15-22</td>
</tr>
<tr>
<td>INR (%)</td>
<td>1.15 (92.8%)</td>
<td>1.3 (98.4%)</td>
<td>0.8-1.1 (89%-129%)</td>
</tr>
</tbody>
</table>
that the father was a carrier of the c.294C>G mutation, and the mother carried the c.253C>A mutation. This confirmed the trans-state of mutations in the siblings.

Bioinformatics analyses using the Polyphen-2 and Sorting Intolerant From Tolerant (SIFT) predictive tools indicated that the exon 4 mutations are likely to be pathogenic, which was also indirectly demonstrated by the undetectable level of LAL activity in whole blood and the very low incorporation of low-density lipoprotein cholesterol in fibroblasts. These mutations were not found in other patients with LALD studied at the Massachusetts General Hospital, in the 1092 control individuals of diverse ethnic background studied in the 1000 Genomes Project (http://www.1000genomes.org), or in the 6500 samples from NHLBI GO Exome Sequencing Project (http://evs.gs.washington.edu/EVS),

blood samples was 40.06 pmol/punch*h in the father, and 19.53 pmol/punch*h (low normal) in the mother.

LIPA sequencing

Genomic DNA was extracted from dried blood spots, and exons 1-10 of *LIPA* were amplified by polymerase chain reaction and labeled with Big Dye Terminator (Applied Biosystems of Thermo Fisher Scientific Inc., Waltham, MA, United States) and resolved by capillary electrophoresis on a 3730XL Genetic Analyzer (Applied Biosystems). Sequencing revealed a previously reported single nucleotide polymorphism within intron 5 (rs2297472; c.539-5C>T), along with two previously unreported missense mutations in exon 4: c.253C>A (p.Gln85Lys) and c.294C>G (p.Asn98Lys) (Figure 3). Subsequent sequencing of exon 4 in the parents showed that the father was a carrier of the c.294C>G mutation, and the mother carried the c.253C>A mutation. This confirmed the trans-state of mutations in the siblings.

Bioinformatics analyses using the Polyphen-2 and Sorting Intolerant From Tolerant (SIFT) predictive tools indicated that the exon 4 mutations are likely to be pathogenic, which was also indirectly demonstrated by the undetectable level of LAL activity in whole blood and the very low incorporation of low-density lipoprotein cholesterol in fibroblasts. These mutations were not found in other patients with LALD studied at the Massachusetts General Hospital, in the 1092 control individuals of diverse ethnic background studied in the 1000 Genomes Project (http://www.1000genomes.org), or in the 6500 samples from NHLBI GO Exome Sequencing Project (http://evs.gs.washington.edu/EVS),

![Figure 1](https://www.wjgnet.com/1004/January212015_Volume21_Issue3_WJG.png)

Figure 1 Liver histopathology and endoscopy images from sibling 1. A: Presence of ballooning and pseudoacin ar regeneration, with foamy cells (HE, magnification × 400); B: Presence of portal triads expanded by fibrosis tissue and foamy cells (Masson’s trichrome, magnification × 400); C: Positive CD68 immunoreactivity in cells (CD68 immunostaining); D: Autofluorescence of foamy cells in portal spaces (Masson’s trichrome, magnification × 400); E: Duodenal biopsy shows histiocytes with ceroid material in the lamina propria of the villi; F: Endoscopy showing esophageal varices.
Figure 2 Comparison of Doppler ultrasound images from sibling 1 (A,C) and sibling 2 (B,D). A: Splenic vein with a spontaneous splenorenal shunt; B: Splenic vein with collateral vessels at the hilum, without porto-systemic shunts; C: Dilated and tortuous vessels, collateral circulation and a spontaneous splenorenal shunt; D: Absence of a splenorenal shunt.

Figure 3 Electropherograms showing the mutations in exon 4 of the LIPA gene. A: Mutation in exon 4: c.253C>A (p.Gln85Lys); B: Mutation in exon 4: c.294C>G (p.Asn98Lys).
suggestions that these alleles are very rare.

DISCUSSION

There are several previous reports of severe LALD in patients of Mexican origin. A Mexican family was studied at Baylor College of Medicine in Texas with three affected members who developed esophageal varices, hepatic failure and pulmonary complications early in life. Another Mexican female studied at the same institute represented the first case of hepatic transplantation in CESD after developing several complications. In Mexico, two infants were diagnosed with Wolman disease by the characteristic adrenal calcification at autopsy, and another case was diagnosed by the presence of crystal structures upon electron microscopy. Considering the severity of hepatic failure, it was thought that Mexican patients had more severe alleles or genes that modulated CESD. Only two reports included a molecular diagnosis: a male infant affected by LALD (Mexican father and American mother) had Trp95X/ fs219 mutations, and a female infant with a sibling that died at three months had compound heterozygosity for one new mutation: p.Gln98His/p.Gly342Arg.

The mutations found at amino acids 85 and 98 in exon 4 reported here are novel and were associated with undetectable whole blood enzyme activity, though a different mutation has been reported at amino acid 98 (p.Gln85Arg). Although structural features of the LAL protein are not well defined, exon 4 may be functionally important as the majority of mutations are within this exon and its deletion causes LALD. The absence of detectable activity is an interesting finding because these siblings had early non-fatal complications, suggesting that LALD is a continuous phenotype with some cases presenting overlapping features of Wolman disease and CESD, and indicating that enzymatic activity cannot predict the phenotype. Studies of the natural history of LALD and correlating genotype and phenotype are urgently needed.

An exon 8 splice junction mutation (E8SJM) is present in the majority of LALD cases. A review of the 55 published cases of LALD with molecular analysis of LIPA demonstrated that 89% of patients had the E8SJM mutation in at least one allele. Ethnicity influences the prevalence of LALD, as a recent screen showed an increased frequency of E8SJM carriers in Caucasian and Hispanic populations (1:300) compared to African American, Asian and Ashkenazi groups. The cases reported here demonstrate that despite a high prevalence of the E8SJM allele, LALD can originate from alternate mutations. In the Human Mutation Database, there are only 48 LIPA mutations reported to date in infant (19 mutations) and child/adult (27 mutations) cases. Thus, further studies of carrier frequency of mutations in the full LIPA gene are required.

Clinicians, particularly pediatric gastroenterologists, should be aware of LALD in view of the frequent reported pediatric presentations and the potential for misdiagnosis. Children can have all the complications related to the progression of cirrhosis, such as portal hypertension, ascites, esophageal/gastric varices, coagulopathy and bleeding; but these complications may not follow the adult pattern. Therefore, the detection of fibrosis, which progresses to cirrhosis, is a priority for the assessment of hepatic dysfunction, the need for hepatic transplantation and prognosis. Hepatic biopsy is still the most reliable assessment of progressive liver disease, so it is necessary to develop and validate noninvasive techniques that correlate with histopathology in order to identify fibrosis and to evaluate response to treatment, such as the recently developed dry blood spot assay for diagnostic confirmation of LALD. It is also necessary to explore the use of Doppler ultrasound for identifying subtle changes in portal flow, and the presence of compensatory changes like recanalization of umbilical vein and splenic renal shunts. Magnetic resonance spectroscopy can be used to quantify intrahepatic fat in LALD, but cannot evaluate the presence of fibrosis.

The progression to fibrosis in sibling 1 corresponded with an increase in alanine aminotransferase levels, altering the ratio with aspartate aminotransferase. The patient also presented with a porto-systemic shunt (Figure 2) that likely maintained stable portal hypertension and decreased the risk of variceal bleeding, despite the extensive fibrosis. It is not clear if these changes are the natural course of hepatic compromise in pediatric LALD patients. Other cases of LALD in Mexican patients demonstrate a rapid progression to hepatic failure.

Treatment for LALD has been limited to the use of lipid-lowering drugs or hepatic transplantation, which was performed in nine patients with mixed-results but with no long-term follow-up. Sebelipase alfa (Synageva BioPharma Corp., Lexington, MA, United States), a recombinant human LAL, is under development for use as an enzymatic replacement therapy. The initial trial in adults showed a decrease in serum lipids and liver volume and normalization of liver transaminases, and a phase 3 global trial is currently underway. Timely diagnosis, as well as incorporation of LAL activity in newborn screening, will be needed to optimize the time to begin enzymatic replacement therapy. Further research is needed for evaluating additional therapies for CESD patients, such as bone marrow and hepatic transplantation.

CONCLUSION

LALD is an underdiagnosed pediatric disease requiring an increased awareness and early diagnosis, particularly in Caucasian and Hispanic individuals. This report presents the cases of two siblings carrying two previously unreported mutations in exon 4 of LIPA that likely resulted in a deficiency of LAL activity with early
symptomatology and complications.

REFERENCES

17. Stenson PD, Mort M, Ball EV, Howells K, Phillips AD,
Santillán-Hernández Y et al. LAL deficiency in Mexican siblings

P- Reviewer: Hoare M, Kovacs SJ, Liaskou E, Mohn A
S- Editor: Qi Y L- Editor: Wang TQ E- Editor: Ma S