AURA Takes you to the home page
 

Aberdeen University Research Archive >
6 - All research >
All research >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2164/174

This item has been viewed 306 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Burr HTA2007.pdf1.34 MBAdobe PDFView/Open
Title: The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma : a systematic review and economic evaluation
Authors: Burr, Jennifer Margaret
Mowatt, Graham
Hernández, Rodolfo Andrés
Siddiqui, Muhammad Ardul Rehman
Cook, Jonathan Alistair
Lourenco, Tania
Ramsay, Craig R
Vale, Luke David
Fraser, Cynthia Mary
Azuara-Blanco, Augusto
Deeks, J.
Cairns, J.
Wormald, R.
McPherson, S.
Rabindranath, K.
Grant, Adrian Maxwell
University of Aberdeen, School of Medicine & Dentistry, Division of Applied Health Sciences
Keywords: Cost-benefit Analysis
Glaucoma, Open-Angle
Screening
Health Technology Assessment
Program Evaluation
Issue Date: Oct-2007
Publisher: Gray Publishing
Citation: Burr, J.M., Mowatt, G., Hernandez, R., Siddiqui, M.A.R., Cook, J., Lourenco, T., Ramsay, C., Vale, L., Fraser, C., Azuara-Blanco, A., Deeks, J., Cairns, J., Wormald, R., McPherson, S., Rabindranath, K., and Grant, A. (2007). The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma : a systematic review and economic evaluation. Health Technology Assessment, 11(41).
Abstract: Objectives: To assess whether open angle glaucoma (OAG) screening meets the UK National Screening Committee criteria, to compare screening strategies with case finding, to estimate test parameters, to model estimates of cost and cost-effectiveness, and to identify areas for future research. Data sources: Major electronic databases were searched up to December 2005. Review methods: Screening strategies were developed by wide consultation. Markov submodels were developed to represent screening strategies. Parameter estimates were determined by systematic reviews of epidemiology, economic evaluations of screening, and effectiveness (test accuracy, screening and treatment). Tailored highly sensitive electronic searches were undertaken. Results: Most potential screening tests reviewed had an estimated specificity of 85% or higher. No test was clearly most accurate, with only a few, heterogeneous studies for each test. No randomised controlled trials (RCTs) of screening were identified. Based on two treatment RCTs, early treatment reduces the risk of progression. Extrapolating from this, and assuming accelerated progression with advancing disease severity, without treatment the mean time to blindness in at least one eye was approximately 23 years, compared to 35 years with treatment. Prevalence would have to be about 3–4% in 40 year olds with a screening interval of 10 years to approach costeffectiveness. It is predicted that screening might be cost-effective in a 50-year-old cohort at a prevalence of 4% with a 10-year screening interval. General population screening at any age, thus, appears not to be cost-effective. Selective screening of groups with higher prevalence (family history, black ethnicity) might be worthwhile, although this would only cover 6% of the population. Extension to include other at-risk cohorts (e.g. myopia and diabetes) would include 37% of the general population, but the prevalence is then too low for screening to be considered cost-effective. Screening using a test with initial automated classification followed by assessment by a specialised optometrist, for test positives, was more cost-effective than initial specialised optometric assessment. The cost-effectiveness of the screening programme was highly sensitive to the perspective on costs (NHS or societal). In the base-case model, the NHS costs of visual impairment were estimated as £669. If annual societal costs were £8800, then screening might be considered cost-effective for a 40-year-old cohort with 1% OAG prevalence assuming a willingness to pay of £30,000 per quality-adjusted life-year. Of lesser importance were changes to estimates of attendance for sight tests, incidence of OAG, rate of progression and utility values for each stage of OAG severity. Cost-effectiveness was not particularly sensitive to the accuracy of screening tests within the ranges observed. However, a highly specific test is required to reduce large numbers of false-positive referrals. The findings that population screening is unlikely to be cost-effective are based on an economic model whose parameter estimates have considerable uncertainty. In particular, if rate of progression and/or costs of visual impairment are higher than estimated then screening could be cost-effective. Conclusions: While population screening is not costeffective, the targeted screening of high-risk groups may be. Procedures for identifying those at risk, for quality assuring the programme, as well as adequate service provision for those screened positive would all be needed. Glaucoma detection can be improved by increasing attendance for eye examination, and improving the performance of current testing by either refining practice or adding in a technology-based first assessment, the latter being the more cost-effective option. This has implications for any future organisational changes in community eye-care services. Further research should aim to develop and provide quality data to populate the economic model, by conducting a feasibility study of interventions to improve detection, by obtaining further data on costs of blindness, risk of progression and health outcomes, and by conducting an RCT of interventions to improve the uptake of glaucoma testing.
URI: http://hdl.handle.net/2164/174
DOI: http://dx.doi.org/10.3310/hta11410
ISSN: 1366-5278
Appears in Collections:Applied Health Sciences research
All research

SFX Query

Items in AURA are protected by copyright, with all rights reserved, unless otherwise indicated.

 


The University of Aberdeen
King's College
Aberdeen
AB24 3FX
Tel: +44 (0)1224-272000