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The echinocandin antifungal drugs inhibit synthesis of the major fungal cell wall polysaccharide �(1,3)-glucan. Echinocandins
have good efficacy against Candida albicans but reduced activity against other Candida species, in particular Candida parapsilo-
sis and Candida guilliermondii. Treatment of Candida albicans with a sub-MIC level of caspofungin has been reported to cause
a compensatory increase in chitin content and to select for sporadic echinocandin-resistant FKS1 point mutants that also have
elevated cell wall chitin. Here we show that elevated chitin in response to caspofungin is a common response in various Candida
species. Activation of chitin synthesis was observed in isolates of C. albicans, Candida tropicalis, C. parapsilosis, and C. guillier-
mondii and in some isolates of Candida krusei in response to caspofungin treatment. However, Candida glabrata isolates dem-
onstrated no exposure-induced change in chitin content. Furthermore, isolates of C. albicans, C. krusei, C. parapsilosis, and C.
guilliermondii which were stimulated to have higher chitin levels via activation of the calcineurin and protein kinase C (PKC)
signaling pathways had reduced susceptibility to caspofungin. Isolates containing point mutations in the FKS1 gene generally
had higher chitin levels and did not demonstrate a further compensatory increase in chitin content in response to caspofungin
treatment. These results highlight the potential of increased chitin synthesis as a potential mechanism of tolerance to caspofun-
gin for the major pathogenic Candida species.

The echinocandins are the newest class of antifungal agents and
target the fungal cell wall through noncompetitive inhibition

of �(1,3)-glucan synthase (1–3). The inhibition of �-glucan syn-
thesis by the echinocandins occurs predominantly through inhi-
bition of Fks [�(1,3)-glucan synthase] subunits (1, 2). Currently,
three echinocandins have been approved for clinical use: caspo-
fungin (CSF), micafungin (MCF), and anidulafungin (ANF) (4–
7). CSF is the most widely used echinocandin in clinical settings
and has fungicidal activity against the majority of Candida species,
although Candida parapsilosis and Candida guilliermondii are rel-
atively insensitive to CSF (8–13). The incidence of clinical resis-
tance to the echinocandins is rare, with more than 99% of Candida
clinical isolates (with the exception of C. parapsilosis and C. guil-
liermondii) being inhibited by �2 �g ml�1 CSF (14–17). How-
ever, 5% of nosocomial C. glabrata isolates are resistant to caspo-
fungin (18). The CLSI Antifungal Subcommittee has introduced
species-specific guidelines that revise the original echinocandin
MIC clinical breakpoint (CBP) for susceptibility of �2 �g ml�1

(13). In these new guidelines, the CBP for resistance has been
recommend as �1 �g ml�1 for CSF, ANF, and MCF for C. albi-
cans, C. tropicalis, and C. krusei. C. parapsilosis isolates are classi-
fied as resistant if the MIC is �8 �g ml�1 for CSF, ANF, and MCF,
and the CBPs for C. glabrata are �0.5 �g ml�1 for CSF and ANF
and �0.25 �g ml�1 for MCF.

Isolates of different Candida species that are resistant to
echinocandins, either in vitro or in vivo, have frequently ac-
quired point mutations in the FKS1 or FKS2 target gene (7, 19,
20, 52). In C. albicans, these mutations are typically associated
with two hot spot regions in the FKS1 gene, which lie between
amino acid residues 641 and 649 (hot spot region 1) and resi-
dues 1345 and 1365 (hot spot region 2) (7, 19, 20, 52). The most
frequent amino acid substitution resulting in resistance to CSF
in C. albicans occurs at Ser645, in the first hot spot region (21,
22). In C. glabrata, resistance-conferring point mutations have
also been identified in FKS2 that result in amino acid substitu-

tions at positions 659 to 666 and 1375 (23). C. parapsilosis is
thought to be intrinsically less susceptible to CSF due to an
alanine occurring naturally at position 660 in Fks1, which re-
places the proline found in other species (24). Similarly, other
intrinsically less susceptible fungal species, such as Neurospora
crassa, Fusarium solani, Fusarium graminearum, Fusarium ver-
ticillioides, and Magnaporthe grisea, contain a tyrosine at resi-
due 641, replacing the phenylalanine found in Fks1 proteins of
susceptible species (25, 26). This suggests that Fks alterations
confer resistance to the echinocandins in a wide range of fungal
species.

The paradoxical effect of CSF is an in vitro phenomenon
whereby echinocandins have reduced activity against Candida and
Aspergillus species at concentrations well above the MIC (27–29).
Paradoxical growth has been shown to occur most frequently with
CSF but has also been observed with the other echinocandins (30).
A survey of bloodstream Candida isolates, including isolates of C.
albicans, C. parapsilosis, C. tropicalis, C. krusei, and C. glabrata,
showed that the frequency of the paradoxical effect is echinocan-
din specific and also species related (30, 31). The paradoxical effect
has also been shown to be growth medium specific and to occur
more frequently when biofilms are formed (32–35). The paradox-
ical effect has been debated as being only an in vitro phenomenon
because it apparently does not occur in the presence of human
serum (36). Paradoxical growth is not associated with point mu-
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tations in FKS1 and is therefore more likely due to activation of
cell wall salvage mechanisms (7, 37, 38). The cell wall is a dynamic
structure which can alter its composition in response to damage
by upregulating cell wall biosynthetic genes (7). This results in
remodelling of the cell wall to restore cell wall integrity. Often, this
cell wall salvage mechanism results in increased chitin synthesis
(7, 37, 39). Consequently, treating wild-type C. albicans cells with
a sub-MIC level of CSF leads to increased chitin synthesis (7).
Likewise, one clinical isolate of C. albicans which demonstrated
the paradoxical effect had a significantly elevated chitin content in
the presence of 12.5 �g ml�1 CSF (40). Clinical isolates of C.
albicans, C. tropicalis, C. orthopsilosis, and C. parapsilosis that ex-
hibited paradoxical growth were also shown to have elevated chi-
tin and glucan and thicker cell walls (31). Paradoxical growth of C.
albicans is eliminated by nikkomycin Z, a chitin synthase inhibi-
tor, and calcineurin inhibitors, which prevent the upregulation of
chitin synthesis in response to cell wall stress (36). This suggests
that paradoxical growth occurs as a result of increased chitin con-
tent, which allows cells to survive otherwise lethal concentrations
of CSF. The compensatory increase in chitin content in response
to CSF treatment is mediated by the Ca2�-calcineurin, protein
kinase C (PKC), and HOG signaling pathways (7, 39). In addition,
treating C. albicans cells with CaCl2 and calcofluor white (CFW),
which activate the Ca2�-calcineurin and PKC pathways, increases
chitin content and reduces susceptibility to CSF in vitro and in vivo
(7, 41). Likewise, cell wall mutants of C. albicans with increased
chitin contents are less susceptible to CSF (42). These findings

suggest that C. albicans has the ability to adapt to CSF treatment
through compensatory elevation of its chitin content.

Because different Candida species have varied susceptibilities
to CSF, we aimed to determine whether clinical isolates of differ-
ent Candida species were less susceptible to CSF due to a naturally
higher cell wall chitin content, the acquisition of FKS1 point mu-
tations, or a combination of both. The sequences of the FKS1 hot
spot regions of each isolate were analyzed, and the responses of
different Candida species to varied CSF concentrations, in terms
of compensatory chitin synthesis, were also investigated. We show
that with the exception of C. glabrata, all Candida species elevated
their chitin content in response to echinocandin treatment and
that Fks1 mutations generated stable, high chitin contents in the
Candida cell wall.

MATERIALS AND METHODS
Strains, media, and growth conditions. The Candida species used for
investigation were chosen to represent both caspofungin-sensitive species
(C. albicans, C. glabrata, and C. krusei) and species that have reduced
caspofungin susceptibility in vitro (C. parapsilosis and C. guilliermondii).
For each Candida species, 4 to 6 clinical isolates were tested (Table 1). The
isolates were selected as isolates from different anatomical locations in
patients who had no previous exposure to caspofungin. Candida strains
used in this study are listed in Table 1. Candida strains were maintained on
Sabouraud dextrose (Sabdex) agar plates (1% mycological peptone [wt/
vol], 4% [wt/vol] glucose and 2% [wt/vol] agar). In some experiments,
Candida isolates were grown in YPD broth (1% yeast extract [wt/vol], 2%
mycological peptone [wt/vol], and 2% [wt/vol] glucose) alone or pre-

TABLE 1 Candida sp. clinical isolates used in this project

Isolate Strain Site of isolation Country of origin

C. parapsilosis isolate 1 SCS40113 Blood Scotland
C. parapsilosis isolate 2 73/116 Anus England
C. parapsilosis isolate 3 L103 Anus England
C. parapsilosis isolate 4 81/029 Mouth England
C. parapsilosis isolate 5 SCS015.50183 Blood Scotland
C. krusei isolate 1 20479.077 Blood Slovakia
C. krusei isolate 2 RB1316 Skin biopsy England
C. krusei isolate 3 RB29-01 Blood England
C. krusei isolate 4 J990529 Vagina USA
C. krusei isolate 5 20522.042 Blood Slovakia
C. krusei isolate 6 L86 Mouth England
C. glabrata isolate 1 J990055 Sputum USA
C. glabrata isolate 2 J981302 Vagina USA
C. glabrata isolate 3 AM2004/0050 Blood Scotland
C. glabrata isolate 4 BB412783 Blood Scotland
C. guilliermondii isolate 1 M476/93/6 Animal (seal) Scotland
C. guilliermondii isolate 2 81/054 Nail England
C. guilliermondii isolate 3 SCS192139p Blood Scotland
C. guilliermondii isolate 4 J960023 Nail Belgium
C. guilliermondii isolate 5 SCS74555E Blood Scotland
C. tropicalis isolate 1 31586/7/04 Central venous pressure catheter tip (femoral) England
C. tropicalis isolate 2 31580/7/04 Urine England
C. tropicalis isolate 3 GUI4448 Soil (beach) Brazil
C. tropicalis isolate 4 B31581/7/04 Urine England
C. tropicalis isolate 5 L634 Wound Unknown
C. albicans isolate 1 FJ9 Throat Australia
C. albicans isolate 2 AM2003/0191 Blood England
C. albicans isolate 3 AM2003/0069 Vagina England
C. albicans isolate 4 FC28 Vulva USA
C. albicans isolate 5 J990102 Vagina Belgium
C. albicans isolate 6 S20175.016 Blood Israel
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treated by growing in YPD broth containing 0.2 M CaCl2 and 100 �g ml�1

CFW (Sigma-Aldrich, United Kingdom) for 12 h at 30°C with shaking at
200 rpm to stimulate chitin synthesis (7).

Antifungal susceptibility testing. CSF (Merck Research Laboratories,
NJ) MICs were determined by broth microdilution testing with YPD me-
dium at 30°C and a starting inoculum of 1 � 106 cells/ml. Drug concen-
trations ranged from 0.016 �g ml�1 to 16 �g ml�1 CSF. Exponentially
growing cultures were diluted to 2 � 106 cells ml�1 in 2� YPD, and 100 �l
of culture was added to each well. Plates were incubated for 24 h at 30°C.
After incubation, optical densities at 405 nm were read in a VERSAmax
tunable microplate reader (Molecular Devices, CA).

Calcofluor white susceptibility testing. Susceptibility to CFW was
determined by broth microdilution testing. Exponentially grown cultures
were diluted to 2 � 106 cells ml�1 in 2� YPD, and 100 �l of culture was
added to each well. CFW concentrations ranged from 25 �g ml�1 to 400
�g ml�1. Plates were incubated for 24 h at 30°C, and optical densities at
600 nm were read in a VERSAmax tunable microplate reader (Molecular
Devices, CA).

Caspofungin susceptibility testing on solid medium. CSF was incor-
porated into YPD agar plates at 0.032 �g ml�1 to 16 �g ml�1, depending
on the 50% inhibitory concentration (IC50) of each isolate. Candida cells
were serially diluted to generate suspensions containing 1,000 to 1 � 106

cells ml�1 in sterile water. Plates were inoculated with 5-�l drops of each
cell suspension and incubated for 24 h at 37°C.

Fluorescence microscopy. After washing with sterile water to remove
any excess medium, samples were fixed in 10% (vol/vol) neutral buffered
formalin (Sigma-Aldrich, United Kingdom) and examined by differential
interference contrast (DIC) microscopy. Cells were stained with 25 �g
ml�1 CFW (Sigma-Aldrich, United Kingdom) to visualize chitin. All sam-
ples were examined by fluorescence microscopy using a Zeiss Axioplan 2
microscope. Images were recorded digitally using an Openlab system
(Openlab v 4.04; Improvision, Coventry, United Kingdom) and a
Hamamatsu C4742-95 digital camera (Hamamatsu Photonics,
Hamamatsu, Japan). Chitin content was measured by quantitative CFW
fluorescence of individual yeast cells (7). Mean fluorescence intensities
were calculated for 50 individual cells for each condition. In some exper-
iments, the exposure time of fluorescence images was fixed so the intensity
of fluorescence relative to a control of known chitin content was deter-
mined.

DNA sequence analysis of FKS1 hot spot regions. FKS1 hot spot re-
gions were analyzed as described previously. Briefly, genomic DNA was
extracted according to the protocol of Hoffman and Winston (53). Hot
spot regions were amplified with the following forward and reverse prim-
ers (1 �M concentration of each): HS1-F, 5=-TTT ATT CAA ATT CTT
GCC-3=; HS2-F, 5= AAT GCC ATG ATG AGA GGT GG-3=; HS1-R, 5=
GGA ATG CCA TTG TTA TTT CC-3=; HS2-R, 5= GGT ACA GTT TCT
CAT TGG CA-3=. PCRs were performed using Extensor master mix (Ab-
gene) and involved an initial 5-min denaturation step at 94°C followed by
30 cycles of 94°C for 30 s, 53°C for 1 min, and 72°C for 1 min, with a 5-min
final extension step at 72°C. PCR products were purified according to the
protocol of Rosenthal et al. (43).

Methods for DNA sequence determinations have been described pre-
viously (44). Briefly, purified PCR fragments were sequenced on both
strands by using a 0.7 �M concentration of each PCR primer. Sequencing
reactions were performed with an ABI Prism BigDye Terminator cycle
sequencing ready reaction kit (Applied Biosystems) according to the man-
ufacturer’s recommendations. Sequences were analyzed with an ABI
Prism model 3730xl DNA analyzer (Applied Biosystems) by Geneservice,
Oxford, United Kingdom. The sequence of FKS1/GSC1 (orf19.2929)
from the Candida Genome Database (CGD; http://www.candidagenome
.org) was used as a reference (45).

RESULTS
Candida species have different susceptibilities to caspofungin.
The relative susceptibilities of Candida sp. clinical isolates to CSF
were determined using a broth microdilution method. In general,
isolates of C. albicans, C. glabrata, and C. tropicalis were the most
susceptible to CSF (Table 2). Isolates of C. krusei had intermediate
susceptibility, and isolates of C. parapsilosis and C. guilliermondii
were relatively insensitive to CSF (Table 2). The IC50 range for the
susceptible species, C. albicans, C. glabrata, and C. tropicalis, was
0.032 �g ml�1 to 0.064 �g ml�1 CSF (Table 2). The majority of C.
krusei isolates had IC50s between 0.032 �g ml�1 and 0.13 �g ml�1,
similar to the susceptible strains, with the exception of C. krusei
isolate 6, which was resistant to CSF, with an IC50 of �16 �g ml�1

CSF (Table 2). The C. parapsilosis isolates had significantly higher
IC50s than the more susceptible species (Table 2). C. guilliermondii
isolates are known to be less susceptible to CSF, and indeed, the
majority of C. guilliermondii isolates had IC50s of �16 �g ml�1

CSF (Table 2). Interestingly, C. guilliermondii isolate 3 was rela-
tively susceptible to CSF compared to the other C. guilliermondii
isolates, with an IC50 of 0.064 �g ml�1 (Table 2). Therefore, the
order of susceptibility of these species to CSF, from most suscep-
tible to most resistant, was as follows: C. albicans � C. glabrata �
C. krusei � C. parapsilosis � C. guilliermondii.

Candida species have different sensitivities to the chitin
binding agent calcofluor white. Elevated chitin content can lead
to reduced susceptibility to CSF in C. albicans, both in vitro and in
vivo (7, 41, 42). Because different Candida species are known to
have various degrees of susceptibility to CSF, it was of interest to
determine the susceptibility of the Candida isolates to CFW. CFW
is a chitin binding agent which inhibits growth of fungal cells.
Typically, cells with a high chitin content are hypersensitive to
CFW, whereas cells with low chitin levels are less sensitive; how-
ever, other changes in the cell wall that do not involve modifica-
tions to the chitin levels may also alter CFW sensitivity (46). Each
isolate was tested for susceptibility to CFW by the broth microdi-
lution method. All of the C. albicans clinical isolates were inhibited

TABLE 2 Susceptibilities of different Candida species to caspofungina

Species

Caspofungin IC50 (�g ml�1)

Isolate 1 Isolate 2 Isolate 3 Isolate 4 Isolate 5 Isolate 6

C. albicans 0.064 0.064 0.064 0.064 0.064 0.032
C. glabrata 0.032 0.032 0.032 0.032
C. tropicalis 0.064 0.064 0.064 0.032 0.032
C. krusei 0.13 0.064 0.032 0.032 0.032 �16
C. parapsilosis 0.13 0.25 0.25 0.13 0.064
C. guilliermondii �16 �16 0.064 �16 �16
a As determined by broth microdilution testing. The IC50 was defined as the concentration of caspofungin at which growth of the clinical isolates of each Candida species was
inhibited by 50% during growth in YPD for 24 h at 30°C.
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by intermediate concentrations of CFW, indicating intermediate
levels of chitin in the cell wall (Table 3). C. glabrata and C. guilli-
ermondii isolates were all resistant to CFW (Table 3), suggesting
that isolates of C. glabrata and C. guilliermondii have relatively low
chitin contents. Isolates of C. tropicalis were very sensitive to CFW
(Table 3), suggesting that they may have higher levels of cell wall
chitin. The majority of C. krusei and C. parapsilosis isolates had
low sensitivity to CFW, suggesting that they also contain lower
levels of chitin, although for both species there were individual
isolates which were particularly sensitive to CFW, suggesting that
these strains had higher chitin levels (Table 3). In summary, there
was a crude but not universal correlation between species type,
chitin content, and CFW sensitivity.

Candida species have different responses to caspofungin
treatment. To further analyze the chitin contents of the clinical
isolates, each strain was stained with 25 �g ml�1 CFW, which can
be used as a semiquantitative stain for cell wall chitin content.
Isolates were also stained with CFW after treatment with CSF to
determine whether CSF treatment activated chitin synthesis in the
different Candida species, as it does with C. albicans. The concen-

tration of CSF used was the IC50 presented in Table 2 and varied
for individual isolates. Pregrowth of C. albicans with 200 mM
CaCl2 and 100 �g ml�1 CFW increased cell wall chitin and re-
sulted in cells which were less susceptible to CSF (7). Therefore,
each clinical isolate was also pregrown with CaCl2 and CFW to
determine whether this would lead to an increase in chitin con-
tent. After pregrowth with CaCl2 and CFW, isolates were treated
with CSF at the IC50 to determine whether this resulted in reduced
susceptibility to CSF. The results are summarized below for each
species examined.

(i) C. albicans. All clinical isolates of C. albicans had chitin
distributed evenly around the cell wall, with more intense staining
in the septal region (Fig. 1A). Likewise, treatment with CSF at the
IC50 led to a uniform increase in chitin content in the lateral cell
wall (Fig. 1B; Table 4). Pregrowth with CaCl2 and CFW also led to
increased chitin synthesis in all of the C. albicans clinical isolates
(Fig. 1C; Table 4). When isolates were pregrown with CaCl2 and
CFW and then exposed to CSF at the IC50, there was an even
greater elevation of chitin content (Fig. 1D; Table 4), and cells
were less susceptible to CSF (Fig. 2).

TABLE 3 Different Candida species have different susceptibilities to CFWa

Species

Calcofluor white IC50 (�g ml�1)

Isolate 1 Isolate 2 Isolate 3 Isolate 4 Isolate 5 Isolate 6

C. albicans 100 200 100 100 100 200
C. glabrata �400 �400 �400 �400
C. tropicalis 25 50 50 50 50
C. krusei �400 �400 �400 �400 �400 50
C. parapsilosis �400 25 �400 �400 �400
C. guilliermondii �400 �400 �400 �400 �400
a Sensitivities of clinical isolates of Candida species to CFW were determined by broth microdilution testing in YPD at 30°C for 24 h. The concentration of CFW at which growth of
the Candida sp. isolates was inhibited by 50% (IC50) was determined.

FIG 1 Chitin distribution in Candida clinical isolates. DIC microscopy images (top panels) and CFW fluorescence images (bottom panels). Isolates were grown
in YPD alone to establish basal chitin levels (A), treated with a sub-MIC level of CSF (B), grown in YPD with 200 mM CaCl2 and 100 �g ml�1 CFW (C), or
pregrown with CaCl2 and CFW and then exposed to caspofungin at the IC50 (D). Bars, 2 �m.

Chitin Response of Candida Species to Caspofungin

January 2013 Volume 57 Number 1 aac.asm.org 149

 on A
pril 10, 2018 by U

niversity of A
berdeen

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org
http://aac.asm.org/


(ii) C. glabrata. Clinical isolates of C. glabrata had little chitin
in the cell wall, as assessed by CFW staining and CFW susceptibil-
ity. There was some accumulation of chitin concentrated at the
poles of the cells. Two representatives are shown in Fig. 1A (iso-
lates 1 and 4). Treating C. glabrata isolates with CSF at the IC50 had
no effect on chitin content (Fig. 1B; Table 4). Similarly, pregrowth
with CaCl2 and CFW did not stimulate chitin synthesis (Fig. 1C;
Table 4), and exposing these treated cells to CSF did not result in a
change in chitin content (Fig. 1D; Table 4). Although this was the
general trend for most strains, C. glabrata isolate 1 was less sus-
ceptible to CSF after pregrowth with CaCl2 and CFW (Fig. 2 and
data not shown). Pregrowth with CaCl2 and CFW had no effect on
the CSF susceptibility of the other three isolates (Fig. 2 [for isolate
4] and data not shown).

(iii) C. tropicalis. Isolates of C. tropicalis had relatively high
levels of chitin in the cell wall, and chitin was distributed evenly
throughout the cell wall (Fig. 1A). Treatment with caspofungin
resulted in an increase in chitin content in isolates of C. tropicalis
(Fig. 1B; Table 4). Correspondingly, C. tropicalis isolates appeared
to be hypersensitive to CaCl2 and CFW, and consequently, no
growth was observed after this treatment (Fig. 2).

(iv) C. krusei. The C. krusei isolates tested were generally less
susceptible to CSF than C. albicans and C. glabrata. An exception
was isolate 6, which was an example of a highly resistant strain
(Table 2). The majority of C. krusei isolates (83%), including iso-
lates 1 and 4, contained low levels of basal chitin, concentrated
predominantly at the poles of the cells (Fig. 1A; Table 4). The
exception to this was C. krusei isolate 6, which appeared to have a
homogeneous distribution of chitin over the cell wall surface (Fig.
1A). Likewise, only C. krusei isolate 6 exhibited a substantial in-
crease in chitin content after treatment with CSF at the IC50 (Fig.
1B; Table 4). Isolates 1 and 6, which showed an increase in chitin
after pregrowth with CaCl2 and CFW (Fig. 1C; Table 4), were less
susceptible to CSF (Fig. 2). Pregrowth with CaCl2 and CFW had
no effect on the chitin content of C. krusei isolate 4 and conse-
quently did not affect its susceptibility to CSF (Fig. 2; Table 4).

Isolate 4 alone had unaltered CSF susceptibility after CaCl2 and
CFW treatment.

(v) C. parapsilosis. The C. parapsilosis isolates tested were
significantly less susceptible to CSF than most other Candida
species (Table 2) (14). All of the C. parapsilosis clinical isolates
tested had a uniform chitin distribution over the cell surface
when they were grown without CSF treatment (Fig. 1A). There
were some notable differences in the levels of basal chitin in
different isolates (Fig. 1A; Table 4). Treatment with CSF at the
IC50 either had no effect on the chitin content of C. parapsilosis
(isolate 1) or resulted in a compensatory increase in chitin (e.g.,
in isolate 4) (Fig. 1B; Table 4). Treatment with CaCl2 and CFW
led to an increase in overall chitin content (Fig. 1C; Table 4).
After pregrowth with CaCl2 and CFW, the majority of the C.
parapsilosis isolates, such as isolate 4, exhibited an increase in
chitin after treatment with CSF (Fig. 1D; Table 4), and these
became less susceptible to CSF than untreated cells (Fig. 2).
However, in some cases (for example, isolate 1), pregrowth
with CaCl2 and CFW and subsequent treatment with CSF re-
sulted in a decrease in chitin content (Fig. 1D; Table 4). Re-
flecting this, C. parapsilosis isolate 1 was hypersensitive to CSF
after pregrowth with CaCl2 and CFW (Fig. 2). Therefore, in the
majority of cases, treatment of C. parapsilosis with CaCl2 and
CFW led to an increase in chitin content and a reduced suscep-
tibility to CSF.

(vi) C. guilliermondii. C. guilliermondii was the most CSF-
resistant species of the Candida species tested (Table 2). The cell
wall chitin distribution of C. guilliermondii isolates varied. Some
(for example, isolate 2) had a homogeneous distribution of chitin,
whereas other isolates (isolates 1 and 3) had lower chitin levels,
with some chitin concentrated at the poles of the cells (Fig. 1A;
Table 4). In contrast, treatment with CSF at the IC50 resulted in an
increase in chitin in the majority of isolates (Table 4). An excep-
tion was isolate 3 (Fig. 1B; Table 4). Pregrowth of the C. guillier-
mondii isolates with CaCl2 and CFW resulted in an increase in
chitin in all isolates, again with the exception of isolate 3 (Fig. 1C;

TABLE 4 Quantification of cell wall chitin contents of Candida species, with and without caspofungin and/or CaCl2 and CFW treatmenta

Candida species Isolate no.

CFW fluorescence (mean fluorescence intensity)

No
treatment

Caspofungin
treatment

CaCl2 and CFW
treatment

CaCl2 and CFW pretreatment
and caspofungin treatment

C. albicans 1 605 � 208 1,402 � 404* 1,655 � 328* 2,050 � 629*
C. glabrata 1 363 � 119 330 � 74 405 � 92 379 � 98

4 317 � 81 344 � 112 334 � 76 346 � 61

C. tropicalis 5 543 � 166 1,664 � 249* NG NG
C. krusei 1 369 � 75 393 � 49 1,282 � 322* 2,113 � 384*

4 375 � 108 401 � 76 418 � 106 408 � 183
6 568 � 149 1,037 � 169* 1,517 � 290* 2,275 � 504*

C. parapsilosis 1 730 � 172 779 � 109 1,385 � 388* 362 � 120*
4 260 � 87 998 � 218* 1,787 � 374* 1,876 � 405*

C. guilliermondii 1 231 � 92 861 � 163* 666 � 107* 1,580 � 306*
2 627 � 146 978 � 143* 1,115 � 169* 1,488 � 304*
3 300 � 94 328 � 96 294 � 79 329 � 77

a The average relative chitin content of individual cells from isolates of different Candida species was determined by measuring the intensity of CFW fluorescence. Measurements
were made on untreated control cultures and after growth with caspofungin at the IC50 specific for each isolate (as determined in Table 2), after growth with 0.2 M CaCl2 and 100
�g/ml CFW, and for cells pregrown with CaCl2 and CFW and then grown with caspofungin at the IC50 for each isolate. Statistical differences are shown for comparison to each
untreated isolate (*, P � 0.05; Student t test), and data are means with standard deviations (n 	 50). NG, no growth.
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Table 4). Pregrowth of C. guilliermondii isolates with CaCl2 and
CFW and subsequent treatment with CSF also led to an increase in
chitin in most isolates (Fig. 1D; Table 4). The higher chitin levels
appeared to be distributed uniformly rather than concentrated at
the poles of cells (Fig. 1D). With the exception of isolate 3, pre-
growth with CaCl2 and CFW increased chitin synthesis and led to
a reduced susceptibility to CSF in C. guilliermondii (Fig. 2).

This analysis revealed that specific Candida species dis-
played a compensatory increase in chitin content in response to
CSF treatment, but the response varied between species and
isolates of the same species (Table 5). Likewise, treatment with
CaCl2 and CFW was capable of eliciting an increase in chitin
content, leading to CSF protection in some, but not all, Can-
dida species (Table 5).

Sequencing of FKS1 hot spot regions. The FKS1 hot spot re-
gions of the Candida sp. clinical isolates were sequenced to deter-
mine whether reduced susceptibility to CSF was due to point mu-
tations in FKS1 (Fig. 3). Isolates of C. albicans, C. glabrata, and C.
krusei contained no point mutations in FKS1 (Fig. 3). All of the C.
parapsilosis isolates contained the P660A substitution (Fig. 3)

which is thought to render C. parapsilosis intrinsically less suscep-
tible to CSF (24). C. parapsilosis isolate 4 contained an additional
S645P point mutation (Fig. 3). Isolate 3 of C. guilliermondii con-
tained an L646I point mutation in the first FKS1 hot spot region

FIG 2 Pregrowth of Candida isolates with CaCl2 and CFW reduces susceptibility
to caspofungin. Plate dilution sensitivity tests were performed on Candida clinical
isolates on YPD agar containing caspofungin at the IC50 for each isolate. The
following CSF concentrations were used: for C. albicans isolate 1, 0.064 �g ml�1;
for C. glabrata isolates 1 and 4, 0.032 �g ml�1; for C. tropicalis isolate 5, 0.032 �g
ml�1; for C. krusei isolate 1, 0.13 �g ml�1; for C. krusei isolate 4, 0.032 �g ml�1; for
C. krusei isolate 6, 16 �g ml�1; for C. parapsilosis isolates 1 and 4, 0.13 �g ml�1; for
C. guilliermondii isolates 1 and 2, 16 �g ml�1; and for C. guilliermondii isolate 3,
0.064 �g ml�1. Rows marked with asterisks indicate pregrowth of the inoculum in
YPD containing both 200 mM CaCl2 and 100 �g ml�1 CFW. Cell numbers per
spot were 5,000, 500, 50, and 5 cells, from left to right.

TABLE 5 Summary of results for all Candida spp.

Candida species

Elevation of chitin contenta

Treatment with
caspofungin at
the IC50

Treatment with
CaCl2 and
CFW

Protection after
pretreatment
with CaCl2 and
CFW

C. albicans � � �
C. glabrata � � �
C. tropicalis � NG NG
C. krusei � � �
C. parapsilosis � � �
C. guilliermondii � � �
a NG, no growth.

FIG 3 Sequencing of the FKS1 hot spot region in Candida species. For each
species, the sequenced control strain was used as a template to determine
whether any of the clinical isolates contained point mutations in FKS1. All
isolates of C. parapsilosis contained a P660A substitution, and isolate 4 con-
tained an additional S645P point mutation (highlighted in bold). C. guillier-
mondii isolate 3 contained an L646I point mutation (highlighted in bold).
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(Fig. 3). No point mutations were observed in the second hot spot
region of FKS1 (Fig. 3).

DISCUSSION

Different Candida species are known to have various susceptibil-
ities to CSF. C. albicans is the most sensitive of these species, with
C. glabrata, C. tropicalis and C. krusei, C. parapsilosis, and C. guil-
liermondii representing the rank order of susceptibility for the
non-C. albicans species (8, 10, 14, 47). The clinical isolates of Can-
dida species tested in this study followed the same susceptibility
trends. The C. albicans clinical isolates tested all demonstrated an
elevation of chitin content upon treatment with CSF at the IC50.
After treatment with CaCl2 and CFW, these isolates showed an
increase in chitin content which resulted in reduced CSF suscep-
tibility. Therefore, increased chitin synthesis rescued a range of C.
albicans clinical isolates from the inhibitory effects of CSF treat-
ment.

Increases in SLT2 expression and chitin content have been as-
sociated with incomplete killing of C. glabrata by CSF (48). In
contrast, none of the C. glabrata isolates tested in this study
showed a change in chitin content after treatment with CSF. Sim-
ilarly, pregrowth with CaCl2 and CFW did not elevate the chitin
content of C. glabrata isolates. Despite this observation, two iso-
lates of C. glabrata showed reduced susceptibility to CSF after
pregrowth with CaCl2 and CFW. Because there was no visible
change in chitin content in these strains, the pretreatment may
have elicited different, as yet uncharacterized responses in these
isolates. The difference in results between this work and a previous
study (48) may relate to strain differences in the C. glabrata iso-
lates that were used. In this work, susceptible clinical isolates of C.
glabrata were used, whereas the study by Cota et al. employed a
genetically modified control strain (48). This study used measure-
ments of CFW fluorescence to determine the chitin contents of
isolates, whereas Cota et al. used a biochemical assay to quantify
chitin content. Another consideration for differences between the
studies may be the concentrations of caspofungin that were used.
It is conceivable that treatment with concentrations of caspofun-
gin above the MIC may also have resulted in an increase in chitin
content in the C. glabrata isolates in this study.

The clinical isolates of C. krusei exhibited significantly variable
chitin contents, and chitin was distributed either at polar locations
or uniformly throughout the cell wall surface. A previous study
showed that C. krusei isolates from soil sediments in which there
were various levels of environmental pollution had significantly
different chitin contents and chitin synthase activities (54). Iso-
lates taken from the most polluted areas had the highest chitin
contents, whereas isolates with low chitin levels were predominant
in areas with less pollution (54). In the present study, the majority
of C. krusei isolates had a polar distribution of chitin. C. krusei
isolate 6 had a uniform chitin distribution and was the only isolate
to be isolated from an oral infection site. Because an elevated chi-
tin content was the only obvious difference between this isolate
and the other C. krusei isolates, it is possible that the reduced
susceptibility to CSF was a result of the strain’s higher basal chitin
content. In most cases, an elevation of chitin content rescued C.
krusei from CSF treatments.

C. parapsilosis isolates had various basal chitin contents. C.
parapsilosis is known to be significantly less susceptible to CSF,
due to a naturally occurring alanine at position 660. The MIC
value and Fks1 sequence of this strain corroborated this. Interest-

ingly, C. parapsilosis isolates which contained this amino acid sub-
stitution had higher chitin contents than those of isolates which
contained further additional point mutations. Isolates with the
naturally occurring alternative Fks1 sequence showed no change
in chitin content upon exposure to CSF. In contrast, isolates
which had additional point mutations in FKS1 had significantly
lower basal chitin contents and were the only C. parapsilosis iso-
lates to display elevated chitin contents after treatment with CSF.
Pregrowth with CaCl2 and CFW increased the chitin content of
most C. parapsilosis isolates and consequently led to reduced sus-
ceptibility to CSF in most cases. However, in a minority of cases,
subsequent exposure of these pretreated cells to CSF led, paradox-
ically, to isolates becoming more sensitive to CSF. This may again
be related to the strain chitin content, because pregrowth with
CaCl2 and CFW prior to treatment of these isolates with CSF
resulted in a significant decrease rather than the normal increase
in chitin content. C. albicans cells with reduced chitin content
have also been shown to have increased sensitivity to CSF (42).
There are some indications that activation of chitin synthesis may
have a potential role in the reduced susceptibility of C. parapsilosis
to CSF. Clinical isolates from the C. parapsilosis group, which
encompasses C. parapsilosis, C. orthopsilosis, and C. metapsilosis,
all contain an alanine at position 660. Despite this observation, C.
parapsilosis has been shown to be less susceptible to CSF and
anidulafungin than C. orthopsilosis and C. metapsilosis (24, 49, 50).
Because there are no differences in the Fks1 hot spot sequences
between these three species, this difference in susceptibility may be
due to differences in cell wall composition or the properties of the
signaling pathways that respond to cell wall stress. In support of
this, the paradoxical effect, which is thought to be a consequence
of elevated chitin content, occurred more frequently in isolates of
C. parapsilosis than in the other two species (50). Furthermore,
isolates of C. parapsilosis can switch between four different mor-
phological types. Two of these variants are associated with pseu-
dohypha formation, and two with growth in the yeast form. Inter-
estingly, one main difference between the two yeast colonial
forms, termed “smooth” and “crater,” is that smooth-phase yeast
cells have a significantly lower chitin content, with chitin only at
the poles of the cells (51).

The isolates of C. guilliermondii used in this study had the high-
est MIC of CSF and had various basal chitin levels and differing
distributions of chitin in the cell wall. Most isolates of C. guillier-
mondii demonstrated an increase in chitin in response to CSF
treatment. As with C. parapsilosis, the isolate of C. guilliermondii
which contained a point mutation in FKS1 did not show a com-
pensatory increase in chitin content in response to CSF treatment.
However, in most cases, increasing the chitin content again led to
reduced susceptibility to CSF in the C. guilliermondii isolates.

The results of this work demonstrate that different Candida
species have different basal chitin levels and differences in the
chitin response to CSF treatment. In some cases, there was con-
siderable variation in chitin content between clinical isolates of the
same Candida species. One limitation of this study is the lack of
paired isogenic sensitive and resistant isolates to look specifically
at the impact of FKS1 point mutations on chitin levels in the
different species, as this would have removed the strain-to-strain
variation that we observed. The majority of Candida species did
not have a significantly high basal chitin content, which could
explain their marked susceptibility to CSF. Several species re-
sponded to the inhibition of �(1,3)-glucan synthesis by CSF by
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stimulating a compensatory increase in chitin synthesis. Isolates of
C. albicans, C. parapsilosis, and C. guilliermondii increased their
chitin contents after treatment with CSF at the IC50. In contrast,
isolates of C. glabrata and C. krusei did not significantly increase
their chitin levels in response to CSF treatment. Interestingly, iso-
lates from the species tested which contained FKS1 point muta-
tions also did not alter their chitin levels in response to treatment
with CSF. In contrast, all Candida species, with the exception of C.
glabrata, could be stimulated by treatment with CaCl2 and CFW to
increase their chitin content, which in turn led to reduced suscep-
tibility to CSF. Therefore, the majority of Candida species exhib-
ited reduced susceptibility to CSF as a result of increases in chitin
content. This may be an indication that isolates from some Can-
dida species are better able to tolerate cell wall damage or that they
have different abilities to sense cell wall damage and adapt to that
damage through elevations of chitin content. All of the Candida
species contain the same three classes of Chs enzymes, i.e. classes I,
II, and IV, although some species have more than one enzyme per
class (Table 6). All three classes of Chs enzymes are known to be
activated in response to CSF treatment in C. albicans. C. glabrata
has the smallest number of CHS genes, with one gene per class
(Table 6). All species that increased chitin content in response to
CSF treatment had more than one CHS gene per chitin synthase
class. The Candida species with the largest numbers of CHS genes
(C. parapsilosis and C. guilliermondii, with 5 each) also tended to
have the most marked responses to cell wall damage caused by
CSF treatment.

At present, the incidence of resistance to the echinocandins is
relatively low, but there has been a growing number of reports of
sporadic cases of breakthrough infections (7). The chitin re-
sponse, however, is fully reversible upon removal of cell wall
stress, complicating the evaluation of the true significance of this
phenomenon in vivo. It is therefore possible that the increasing use
of echinocandins may lead to the emergence of further examples
of resistant isolates (20). None of the Candida species tested here
appeared to have a chitin content that was naturally higher than
that of C. albicans, which could account for their reduced suscep-
tibility to CSF (with the exception of one C. krusei isolate). How-
ever, the majority of species displayed a compensatory increase in
chitin in response to inhibition of �(1,3)-glucan by CSF. There-
fore, most Candida species demonstrated the potential to adapt to
CSF treatment by increasing the synthesis of chitin.
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