










or laminarin. The full genome sequence of Galleria is currently
available but not fully annotated (24). However, several b-1,3-
glucan–binding protein analogs and C-type lectins have been
characterized in this species, as well as other Lepidopterans,
namely Manduca sexta (25, 26), Bombyx mori (27), and Plodia
interpunctella (28). Recognition of fungal PAMPs (e.g., curdlan
and mannan) by membrane-bound receptors modulate cellular
(hemocyte)-directed immunity in insects (encapsulation, nodula-
tion, and phagocytosis) (29). Although soluble mannan did not
significantly reduce association of Cryptococci with Galleria
hemocytes in data presented in this paper, both glucan-6-
phosphate and laminarin led to a marked reduction in uptake
(Fig. 5, p , 0.001 for both when compared to the PBS controls).
Interestingly, administering glucan-6-phosphate or laminarin for

24 h appeared to partially protect the insect larvae from infection by
both unopsonized species of Cryptococcus (Fig. 6), suggesting that
disease establishment in this model organism requires the fungus
to grow intracellularly, something that has previously been pro-
posed for human hosts (30).

Cryptococcal uptake by macrophages does not lead to
increased proinflammatory cytokine secretion

Unlike many pathogens, internalization of opsonized Cryptococci
into phagocytes is not accompanied by the production of proin-
flammatory cytokines such as TNF and IL-1a or IL-1b (31, 32). To
test whether this is also true of nonopsonic uptake, we measured
the secretion of TNF-a and nuclear translocation of p65 (a major
regulator of cytokine transcription) from J774.A1 macrophages upon
challenge with unopsonized or serum-opsonized C. neoformans H99
or C. gattii R265. Although LPS-stimulated macrophages showed
strong nuclear translocation of p65, neither IgG-opsonized nor
unopsonized C. neoformans H99 or C. gattii R265 stimulated NF-kB
activation (Fig. 7A). However, NF-kB activation could be restored in
cryptococcal exposed macrophages by the subsequent addition of
LPS (Fig. 7B).
Furthermore, to test whether internalization of unopsonized

Cryptococci into J774.A1 mouse macrophages or primary human
macrophages elicits the production of proinflammatory cytokines

such as TNF, we measured the secretion of TNF-a from J774.A1
macrophages or primary human macrophages upon challenge with
unopsonized C. neoformans H99 or C. gattii R265, with C. albi-
cans and LPS as controls. With J774.A1 mouse macrophage and
primary human macrophages, C. albicans- or LPS-stimulated
macrophages showed stronger TNF-a production compared to
varying doses of C. neoformans H99 or C. gattii R265 (Fig. 8;
p = 0.04 for C. albicans versus media control, p . 0.05 for C.
albicans versus C. neoformans/C. gattii). Overall, this suggests
that Cryptococci do not actively block inflammatory signaling in
host cells and do not induce a strong inflammatory stimulus fol-
lowing nonopsonic uptake.

Discussion
In this study, we examined the phagocytic uptake of unopsonized
cryptococcal yeast particles by macrophages. This process relies on
the use of phagocytic receptors, which can be categorized either as
opsonic or nonopsonic. Opsonic phagocytic receptors include the
Fc receptor and complement receptor families, which recognize
Ab- or complement-opsonized (coated) particles, respectively.
Nonopsonic phagocytic receptors are PRRs, such as the C-type
lectin family of receptors, which recognize distinct PAMPs on
the fungal surface (33).
Although phagocytosis of Cryptococcus within the circulatory

system would occur predominantly through an opsonized (coated)
uptake route because of the presence of Abs and/or complement
proteins found in serum, this is not always the case. For example,
the first encounter of the human body with Cryptococcus is
through the lungs when desiccated yeast cells or spores are
breathed in. These cryptococcal particles encounter their initial
immunological challenge through resident alveolar macrophages
and DCs in a serum-deficient or low-serum environment (34–36).
Interestingly, it was reported recently that between 25 and 40%
of mouse lung-resident macrophages are able to phagocytose
C. neoformans particles through a scavenger receptor pathway
(37). Therefore, this confirms that initial uptake of Cryptococcus

FIGURE 5. Administration of polysaccharides blocks uptake of Cryp-

tococcus particles to hemocytes in the G. mellonella larvae model. Larvae

were inoculated with 60 mg of blocking sugars 1 h prior to infection for 2 h

with 106 C. neoformans H99 (black bars) or C. gattii R265 (white bars).

Uptake of yeast of hemocytes was determined under light microscopy.

Results are expressed as the mean 6 SD of at least three inde-

pendent experiments. *p , 0.05 (related to PBS control). ns, not

significant (p $ 0.05).

FIGURE 6. Glucan administration protects G. mellonella larvae from

infection by C. neoformans or C. gattii. Larvae were inoculated with 60 mg

of blocking sugars 24 h prior to infection for a further 24 h with 106

C. neoformans H99 (black bars) or C. gattii R265 (white bars). Fungal load

was determined by serially diluting homogenized larvae and plating ali-

quots onto erythromycin containing agar plates. Yeast cell density were

related to the values obtained from the negative (PBS) controls and

expressed as cfu3 105/larva. Results are expressed as the mean6 SD of at

least three independent experiments. *p , 0.05 (related to PBS control).

ns, not significant (p $ 0.05).
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by macrophages is most likely through a nonopsonized route, and
there is a need to understand the mechanisms that underpin this
process (6). We confirmed that, compared with the bacterium
E. coli or fungus C. albicans, Cryptococci cells are not readily
taken up by mammalian macrophages, most likely because of
the presence of the capsule, which renders Cryptococci anti-
phagocytic (38, 39). By using a combination of a soluble mannose
inhibitor and MR KO tissue, we demonstrated that mannose re-
ceptor was not necessary for the uptake of either species of
Cryptococcus, in line with recent data from the zebrafish model
(40), although this is not the case in primary human macrophages.
We note that others have shown MR KO mice to be more sus-
ceptible to C. neoformans (41) and demonstrated a role for this
receptor, along with FcgRII (CD32) in driving cryptococcal up-
take into DCs (42). Thus, mannose receptor dependency appar-
ently varies across different cell types and tissue contexts.
Next, we pursued a different set of nonopsonic PRRs, dectin-1

and dectin-2, which are C-type lectin receptors that are highly
expressed in macrophages and are key b-glucan receptors (43, 44).
Recognition of soluble or surface expressed b-glucans on yeasts
is sufficient to initiate and mediate phagocytosis and proin-
flammatory cytokine responses (45). Both of these receptors re-
quire Syk activity (18, 46, 47), and, indeed, our data clearly
demonstrate the activation of Syk at phagocytic cups containing
unopsonized Cryptococci, as well as a strong dependency on Syk
for particle uptake. Interestingly, pharmacological inhibition of
dectins inhibited uptake of both C. neoformans and C. gattii in
J774.A1 mouse and human macrophages, but BMMs from dectin-
1– and dectin-2–KO mice showed defects only in the uptake of
C. neoformans and not C. gattii, an effect that has been observed
before (48). The most parsimonious explanation is therefore that
the two dectin receptors are redundant for the uptake of C. gattii,
but not C. neoformans, perhaps reflecting differing surface com-
ponents between the two species, as reported recently (49). Such
surface variation between species, strains, and potentially devel-
opmental stages of Cryptococci may explain many of the previous
inconsistencies in the literature regarding dectin dependency
(or otherwise) (50, 51).
Alongside mouse macrophages, we adopted wax worm

larvae (G. mellonella) as an alternative model for understanding

cryptococcal virulence and host immune responses (52–54) in
which cryptococcal phagocytosis has previously been reported
(55). Our data demonstrate striking similarities in patterns of
uptake between this invertebrate host and murine phagocytes. In
addition, we showed that inhibiting phagocytosis in this alterna-
tive host reduces disease burden, highlighting the importance of
host phagocytes as a niche for cryptococcal replication.
We acknowledge that although there are currently no direct

dectin receptor homologs identified in G. mellonella, many C-type
lectins have been characterized in other insect models, for ex-
ample; the tobacco hornworm, Manduca sexta (immulectin-2 fa-
cilitates phagocytosis of bacteria (56)); webworm, Hyphantria
cunea (lectin (57, 58)); silkworm, Bombyx mori (BmLBP and
BmMBP (59, 60)); and the cockroach, Blaberus discoidalis
(a b-glucan–specific lectin (61)). These invertebrate C-type lectins

FIGURE 7. Uptake of Cryptococcus did not affect

NF-kB nuclear translocation. J774.A1 macrophages

were challenged with a variety of opsonized or

unopsonized pathogenic fungi, SRBCs, or soluble ago-

nists (LPS or PMA), processed for immunofluores-

cences, analyzed by microscopy (A), and scored for p65

nuclear translocation (B), as described in Materials and

Methods. (A) Representative images of PMA- (top) or

LPS- (bottom) stimulated J774.A1 macrophages and

stained to highlight either actin or p65. Actin was

stained using rhodamine-phalloidin; p65 was stained

using the anti–65 kDa subunit (p65) NFkB mAb with an

anti-rabbit Alexa Fluor–488. Scale bar, 20 mm.

FIGURE 8. Uptake of Cryptococcus did not affect proinflammatory

cytokine response. J774.A1 macrophages (black bars) or differentiated

primary human macrophages (white bars) were challenged with a variety

of unopsonized pathogenic fungi (C. neoformans, Cn; C. gattii. Cg;

Candida albicans, Ca) or LPS, and subsequent supernatants were analyzed

by ELISA, as described in Materials and Methods. Results are expressed

as the mean 6 SD of at least three independent experiments. *p , 0.05.
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show up to 35% similarity with mammalian C-type lectins and can
bind to several PAMPs, including LPS, lipoteichoic acid, and
b-glucan and are inducible when the host is exposed to microbial
challenge or ligands and the mechanisms for uptake of pathogenic
microbes by G. mellonella hemocytes are similar to that of human
neutrophils (62).
Two key reports have shown that there are at least three scav-

enger receptors involved in the recognition of different serotypes of
Cryptococcus neoformans, namely the homologous genes from
the nematode Caenorhabditis elegans, CED-1 and C03F11.3, as
well as the mouse MARCO scavenger receptors (37, 63). Inter-
estingly, knocking out MARCO gene from mice did not abolish
uptake of C. neoformans by lung-resident mononuclear phago-
cytes (37), suggesting a role or roles for the extent and distribution
of multiple receptors and ligands on the surface of both host cell
and yeast.
Finally, we demonstrate that entry of Cryptococcus does not

affect NF-kB nuclear translocation and its subsequent TNF-a
release in the Dectin-1/Syk/NF-kB signaling axis—both in J774.
A1 mouse macrophages and in primary human macrophages.
Although it is known that Dectin-1 coupling to Syk leads to
downstream activation of NF-kB, which coordinates the tran-
scription of innate response genes, including expression of
proinflammatory cytokines such as TNF-a (64–66), this appears
not to be the case for cryptococcal uptake.
In conclusion, we propose that unopsonized Cryptococci are

recognized and engulfed via mannose receptor- or dectin-based
recognition in vitro depending on the activation state of the host
cells. The absence of an associated proinflammatory cascade allows
the yeast to exploit this intracellular niche for rapid disease es-
tablishment.
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