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Abstract 

Determining the response of fluvial systems to syn-sedimentary halokinesis is important for 

reconstructing the palaeogeography of salt basins, determining the history of salt movement and 

predicting development and architecture of sandstone bodies for subsurface fluid extraction. To 

assess both the influence of salt movement on fluvial system development and the use of 

lithostratigraphic correlation schemes in salt basins we have analysed the Triassic Chinle 

Formation in the Paradox Basin, Utah.  

 

Results indicate that sandstone body development proximal to salt bodies should be considered at 

two scales: intra- (local) and inter- (regional) mini-basin scale. At the intra-mini basin or local scale, 

conformable packages up to 12 m of deep meandering fluvial channel deposits and associated 

overbank deposits are developed, which may thin, pinch-out or become truncated towards salt 

highs. When traced down the axis of a mini-basin, individual stories extend for a few hundred 

metres, and form part of amalgamated channel-belt packages up to 60 m thick that can be traced 

for at least 25 km parallel to palaeoflow. Where salt movement outpaces sediment accumulation, 

progressive low angle unconformities are developed along the flanks of salt highs. Significantly, in 

mini-basins with high sand supply, sandstone bodies are present across salt highs where they 

show increased amalgamation, decrease in thickness due to truncation and no change in internal 

sandstone body character. 

 

At inter mini-basin or regional scale, spatial and temporal variations in accommodation space 

generated by differential salt movement strongly influence facies distributions and facies 
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correlation lengths. Broad lithostratigraphic packages (5 to 50 m thick) can be correlated within 

mini-basins, but correlation of these units between adjacent mini-basins is problematic. 

Knowledge of fluvial system development at a regional scale is critical as, fluvial sediment 

distribution is focussed by topography generated by growing salt bodies, such that adjacent mini-

basins can have significant differences in sandstone body thickness, distribution and lateral extent. 

 

The observations from the Chinle Formation indicate that lithostratigraphic-based correlation 

schemes can only be applied within mini-basins and cannot be used to correlate between adjacent 

mini-basins or across a salt mini-basin province. The key to predicting sandstone body 

development is an understanding of the timing of salt movement and reconstructing fluvial 

drainage system development. 
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1 Introduction 

Syn-sedimentary halokenesis has the potential to reconfigure sediment routing systems within 

sedimentary basins and may influence whether fluvial systems by-pass or deposit within salt-

controlled mini-basins (e.g. Banham & Mountney 2013a). In many cases the 3D geometry of the 

salt body and associated basins are difficult to determine and often change spatially and 

temporally within mini-basins (e.g. Barde et al. 2002a, b; Prochnow et al. 2006; Banham & 

Mountney 2014; Ribes et al 2015) such that developing predictive models for the distribution of 

fluvial deposits in salt mini-basins is difficult. It is important to do so however, as fluvial deposits 

form significant hydrocarbon reservoirs in salt mini-basins, and in many cases reservoir 

distribution and architecture is a key uncertainty (e.g. Smith et al., 1993; Barde et al., 2002a,b; 

Newell et al., 2012). The importance and range in type of salt-related depositional systems mean 

that whilst a number of predictive models for alluvial sediment distribution in salt-mini-basins 

have been developed (e.g. Matthews et al 2007; Banham and Mountney 2013a,b, 2014) they have 

yet to be tested rigorously.  

  

The exceptional exposure of the fluvial deposits of the Upper Triassic Chinle Formation in the 

north eastern part of the Paradox Basin Utah (Fig. 1) means that they have been studied 

extensively, with particular reference to the influence of salt movement on sedimentation (Jones, 

1959; Blakey and Gubitosa 1984; Hazel 1994; Prochnow et al. 2005, 2006; Matthews et al. 2004, 

2007; Banbury 2005; Trudgill 2011). Despite this work a number of uncertainties remain with 

respect to the nature of the interaction between sedimentation and salt body movement. In 

particular, there is a lack of knowledge associated with the correlation and time equivalence of 

individual facies and facies belts within and between mini-basins. Previous studies have taken 

either a lithostratigraphic approach to examining alluvial architecture and correlating within and 

between mini-basins (e.g. Hazel, 1994; Matthews et al. 2004, 2007) or studied specific areas of 

individual mini-basins (Prochnow et al. 2005, 2006). We focus on the detailed alluvial architecture 

and correlation within and between mini-basins in the Chinle Formation and assess the influence 

of salt movement in controlling alluvial architecture. Our interpretations differ from previous 

workers in that we suggest that a lithostratigraphic approach to correlation within Chinle salt mini-

basins cannot be supported and that the relationship between alluvial systems and salt movement 

is more complex than has been recognised previously. This has important implications for 
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understanding controls on alluvial architecture in actively deforming basin fill successions and for 

subsurface correlation both within and between reservoir intervals in adjacent salt mini-basins.  

 

Geological Background 

The Paradox Basin covers an area of approximately 50,000 km2 and is a located in southeast Utah 

and southwest Colorado (Hazel 1994; Barbeau 2003; Fig. 1). This asymmetric foreland basin 

formed during the Pennsylvanian to Permian by flexural loading of the Uncompahgre Uplift to the 

northeast (White and Jacobson 1983; Barbeau 2003; Trudgill 2011; Fig. 1). The Uncompahgre 

Uplift trends northwest-southeast, is adjacent to the deepest part of the Paradox Basin, and is 

believed to have been the main sediment source for the Pennsylvanian–Triassic sediments in the 

adjacent parts of the basin (Mack and Rasmussen 1984). 

 

Salt structures are restricted to the north-eastern part of the basin (Fig. 1), trend northwest-

southeast and show a wide range of styles from pillows to salt walls (Figs 2, 3; Doelling et al. 2002; 

Matthews et al. 2007; Trudgill 2011). Salt movement initiated shortly after deposition in the late 

Pennsylvanian coincident with inception of the Uncompahgre Uplift (Baars and Stevenson 1981; 

Doelling 1988). This resulted in the development of a series of northwest-southeast trending salt 

walls generated above northwest trending basement faults (Hazel 1994). Salt movement 

propagated progressively basinwards (to the southwest) through time due to sediment loading, 

resulting in the diachronous filling of mini-basins between salt walls with the main phase of 

movement occurring from the late Pennsylvanian through to the late Triassic (Doelling 1988; 

Trudgill et al. 2004; Banbury 2005; Paz 2006; Trudgill 2011). Numerous workers have examined the 

relationship between salt movement and sediment deposition recognising stratigraphic thinning, 

inter and intra-formational tilted unconformities and variations in stratigraphic architecture within 

the late Pennsylvanian to late Triassic succession including the Honaker Trail, Cutler, Moenkopi 

and Chinle formations (Shoemaker and Newman, 1959; Stewart et al., 1972; Blakey and Gubitosa, 

1984; Hazel, 1994; Doelling and Ross, 1998; Doelling, 2001, 2002; Doelling et al., 2002; Matthews 

et al., 2004, 2007; Trudgill et al., 2004;Banbury 2005; Lawton and Buck, 2006; Trudgill 2011; 

Banham and Mountney 2013b, 2014; Venus et al. 2015; Fig. 2). However, only recently have a 

range of generic models for fluvial architecture in salt mini-basins been developed (Banham and 

Mountney 2013a) and the aim of this paper is to examine the Chinle Formation fluvial architecture 

within this context. 
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The Chinle Formation was deposited between latitudes 5-15°N in middle to late Triassic times 

(Blakey and Gubitosa 1983). The climate at the time of deposition varied from humid/sub-humid 

in the lower part of the Chinle to arid/semi-arid in the upper half of the section (Blakey and 

Gubitosa 1984; Hasiotis 2002; Prochnow et al. 2006). The Chinle Formation within the Moab 

region unconformably overlies the Moenkopi Formation and is overlain by the aeolian Wingate 

Sandstone. 

 

Chinle Formation Stratigraphy in the north-eastern Paradox Basin 

The regional lithostratigraphy of the Chinle Formation has been erected outside of the north-

eastern part of the Paradox Basin (Stewart et al 1972; Blakey and Gubitosa 1983, 1984) and cannot 

be readily applied to the study area (Stewart et al 1972; Doelling 1985; Hazel 1994). A local 

lithostratigraphic terminology was established by Hazel (1991, 1994) for sections adjacent to the 

Kane Creek Anticline (KCA) and was extended by Matthews et al (2004, 2007) across the north-

eastern part of the Paradox Basin (Fig. 4). Matthews et al (2007) recognised 5 lithostratigraphic 

units in ascending order, the lower Chinle, lower-slope, black-ledge, upper-slope, and Hite bed. 

Due to the significant facies variations that occur within the salt mini-basins we believe this 

lithostratigraphy cannot be applied to each mini-basin, consequently we have simplified the 

lithostratigraphy to recognise three informal lithostratigraphic units: the lower Chinle, main Chinle 

and Hite Sandstone Unit. The distribution of these units is shown in Figure 5. As both the lower 

Chinle and Hite Sandstone Unit (previously termed Hite Bed; Fig. 4) have been described in detail 

previously (Matthews et al 2004, 2007; Prochnow et al 2005, 2006) a brief outline is given for each 

unit below, together with the main Chinle unit that forms the main focus of this work. 

 

Lower Chinle 

The lower Chinle, also referred to as the Mottled Strata and/or White Grit (Stewart et al. 1972; 

Hazel 1994) comprises fine to coarse grained quartz-rich sediment. The unit ranges from 0 to a 

minimum of 50 m in thickness. It locally overlies the Moenkopi Formation with an angular 

unconformity adjacent to salt structures but away from salt structures particularly in the west of 

the study area it has a conformable contact. The lower Chinle where present in mini-basins is 

generally a few metres thick and is normally conformably overlain by main Chinle strata displaying 

a distinct change in colour and facies type. In the Big Bend area of the Courthouse Syncline and 
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along the west side of the Moab Valley salt wall (MVSW) it has an angular unconformable 

relationship with the overlying main Chinle unit (Matthews et al. 2004, 2007). In the Big Bend 

area, the lower Chinle thickens locally to 50 m and is strongly bioturbated with well developed 

paleosols described in detail by Prochnow et al. (2006).  

 

Main Chinle 

Within the main Chinle we include the different lithostratigraphic units recognised by Hazel (1991, 

1994) namely Kane Springs sand bodies one, two and three and the lower-slope, black-ledge and 

upper-slope units of Matthews et al (2004, 2007). The main Chinle unit ranges from 35 to 130 m 

across the study area with the thickest sections located adjacent to active salt structures (Fig. 5a). 

Fluvial channel sandstone bodies form prominent black-weathering ledges that occur within all 

mini-basins throughout the main Chinle and are not restricted to specific stratigraphic intervals.  

 

Hite Sandstone Unit 

The Hite Sandstone Unit is an aeolian and fluvially-reworked aeolian package which occurs 

beneath the Wingate Formation. Although the contact between the Hite Sandstone and Wingate 

sandstone is recognised regionally as an unconformity surface (Stewart et al. 1972; J-0 of 

Pipiringos and O’Sullivan 1978), an angular unconformity is only present adjacent to the Moab 

Valley and Kane Creek salt structures, elsewhere in the study area the contact appears 

conformable. The Hite Sandstone Unit ranges from 2 to 13 m in thickness and is present in all 

sections. It normally has a sharp contact (occasionally erosional) with the underlying main Chinle 

unit (Dubiel, 1987; Hazel 1991, 1994; Matthews et al. 2007). 

 

Study area and Methodology 

To analyse the large scale interaction of drainage patterns and sedimentation around several salt 

bodies, 27 graphic sedimentary logs (Figs. 1 and 2) were recorded across the salt mini-basin 

province, together with photopanels, correlation panels and measurements of sand body 

geometries. Salt wall development produced a series of mini-basins approximately 10 km in width 

(Fig. 2). The King’s Bottom and Courthouse mini-basins are the main ones discussed here (Figs. 2, 

3, 4). Note that the Courthouse Mini-basin includes the Big Bend Mini-basin of previous authors 

(e.g. Matthews etal. 2004, 2007, Prochnow et al. 2006; Banham and Mountney 2013b). The 
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following sections summarise the different facies identified and their distribution throughout the 

area.  

 

Facies Analysis 

Aspects of the sedimentology and ichnology of the Chinle Formation in the study area have been 

described in detail previously by Blakey and Gubitosa (1983, 1984), Doelling (1985); Dubiel et al. 

(1991), Hazel, (1991, 1994), Hasiotis (2002), Prochnow et al. (2005, 2006) and Matthews et al. 

(2004, 2007). The following analysis is a summary of our observations and those of previous 

workers where appropriate. Three facies associations are identified based on lithology, 

sedimentary structures, geometry, and nature of bedding contacts. Facies association distribution 

and palaeocurrent data for the studied logs are shown in Figure 5, log location and thickness data 

are given in Table 1. 

 

Channel-Fill Sandstone Facies Association 

Description 

This facies association comprises fine to medium sandstones, with coarse grained pebbly lags and 

mudstones that form up to 12 m thick channel-fill units (Figs. 6 and 7). The base of the units 

comprises intraclasts of mudstone, sandstone, woody debris and shell material. Channel-fill units 

are 10 to 12 m thick and comprise low angle dipping surfaces (4 to 11°) that bound 0.5 to 2 m thick 

packages of fine to medium grained sandstones. Sedimentary structures within the sandstones are 

dominated by horizontal to low angle planar stratification often with a primary current lineation 

with subordinate sets of trough cross-strata up to 50 cm thick (average 30 cm). Up to 10 m thick 

mudstone-dominated sets of inclined heterolithic strata (composed of alternating claystone, 

siltstone and fine sandstone beds up to 15 cm thick) occur either overlying or lateral to sandstone-

dominated channel-fill units (Fig. 6A, B) and commonly display localized soft-sediment 

deformation (Fig. 8). Fine-grained sandstones with current ripples and climbing ripple sets occur 

near channel-fill margins or towards the top of channel-fill bodies. Parallel laminated mudstones 

up to 2 m thick may overlie heterolithic packages. Palaeocurrent data taken from trough cross-

strata show a wide range of directions (Fig. 5). 
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Sandstones are preserved as either isolated, single-story bodies (50 to 500 m wide, 1 to 10 m 

deep) or amalgamated, multi-story, multilateral sheets (Fig. 6A,B). The latter are up to 60 m thick 

and can be traced for > 10000 m parallel to the axes of mini-basins.  

 

Interpretation 

This facies association represents the deposits of a sandy and mixed sandy heterolithic 

meandering fluvial system. The low angle dipping surfaces developed within the channel-fill 

sandstone bodies represent up to 12 m thick lateral accretion packages developed within actively 

migrating point bar deposits (Jordan & Pryor 1992). The intraclast lags are developed at the toe of 

lateral accretion sets and record erosion and reworking of overbank mudstones and lacustrine 

material. Mudstone-dominated heterolithic units represent deposition in an abandoned channel 

still open to flow, whilst parallel laminated mudstones developed above the heterolithic packages 

represent a clay plug developed in an abandoned, closed channel (Jordan & Pryor 1992). The wide 

range in palaeocurrent data support an interpretation as a series of stacked point bar deposits. 

 

Floodplain Facies Association 

The floodplain facies association comprises four facies: splay, shallow lacustrine, paleosol and 

bioturbated floodplain  

 

Splay facies  

Description 

Sheet-like units of parallel laminated mudstones, siltstones and subordinate micaceous, fine-

grained sandstones form this facies. Sandstones form 1 to 20 cm thick, sharp-based beds with 

planar parallel lamination and/or current ripples that may stack to form beds up to 70 cm thick 

(Fig. 6E). Fining upward fine sandstone to mudstone cycles 5 to 35 cm thick are often developed 

with occasional root traces and/or desiccation cracks on bed tops. Bioturbation is sporadic and 

when present includes horizontal burrows generated by beetles and soil-dwelling insects (Hasiotis, 

2002). 

 

Interpretation 

The fine grained and parallel laminated nature of this facies indicates deposition from suspension 

in a low-energy environment. Parallel laminated and current-rippled sandstones record rapid sand 

deposition from high-velocity unidirectional flows and are interpreted as splays associated with 
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overbank flooding from fluvial channels. Root traces and/or mud cracks indicate subaerial 

exposure and desiccation, with bioturbation indicating sporadic colonisation by beetles and 

insects. 

 

Shallow lacustrine facies  

Description 

Finely parallel laminated mudstones and siltstones with occasional fine grained sandstones up to 5 

m thick comprise this facies and are restricted largely to the Big Bend area and east of this region. 

Occasional thin (<20 cm) limestone beds are present. Bed tops may contain horizontal burrows 

attributable to insect larvae (Hasiotis, 2002) and occasional root traces. The facies passes 

gradationally, both vertically and laterally, into overbank mudstones. 

 

Interpretation 

The occurrence of insect-larvae burrows imply that the fine-grained, finely laminated deposits 

were deposited from suspension in shallow water in perennial lakes (e.g., Hasiotis, 2002). Root 

traces indicate lake margin plant development and/or periodic exposure. Fine grained sandstone 

beds represent distal overbank flood events. Limestone beds record periods with calcium 

carbonate precipitation during phases of low clastic input.  

 

Paleosol facies 

Description 

This facies is developed mostly in mudstones and siltstones and occasionally on poorly sorted 

sandstones and gravels. It is 10 to 200 cm thick and characterized by abundant root traces with 

associated mottling, haloes and calcareous rhizocretions (Fig. 6D). Subordinate burrows also occur 

attributable to crayfish and soil-dwelling insects (Hasiotis, 2002). Sand-filled mud cracks and ferric 

concretions are present locally. Primary bedding is largely to completely destroyed by root traces. 

The intensity of bedding-fabric destruction, colour, and relative proportions of different pedogenic 

structures is variable (e.g., Prochnow et al., 2005, 2006). 

 

Interpretation 

Root traces and associated pedogenic structures indicate paleosol development. The occurrence 

of mud cracks suggests episodic drying and desiccation, with soil dwelling traces indicating 

moderate soil moisture content associated with a fluctuating water table (Dubiel et al., 1991). 
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Variations in the intensity of bedding-fabric destruction, colour, and relative proportions of 

different pedogenic structures between paleosols reflect differing degrees of development, 

related to the duration and/or palaeogeographic location of soil formation (e.g., Prochnow et al., 

2005, 2006). 

 

Bioturbated floodplain facies 

Description 

This facies is largely restricted to the lower Chinle in the Big Bend area. Bioturbation is developed 

in medium to very coarse-grained, channel-fill sandstones, mudstones and sheet sandstones of 

the fluvial channel and overbank facies associations. Burrowing is approximately perpendicular to 

primary bedding although the pervasive nature of burrows has resulted in partial or complete 

destruction of bedding (Fig. 6C). The dominant trace fossils are crayfish dwelling burrows 

(Camborygma; Hasiotis, 2002), which form subvertical tubes up to 25 cm in diameter and 2 m 

long. Subordinate root traces and pedogenic mottling are also present. 

 

Interpretation 

Crayfish dwelling burrows indicate deposition in poorly drained subaerial environments with a 

high (1 to 2 m below surface) and fluctuating water table (Hasiotis, 2002). Abundant crayfish occur 

in humid to hot, wet seasonal climates (Hasiotis, 2002). Bioturbation intensity reflects the rate of 

sedimentation with more intensely bioturbated packages accumulating more slowly. The facies is 

interpreted to represent floodplain and/or marginal-lacustrine environments. 

 

Aeolian Sandstone Facies Association 

Description 

This facies association comprises well sorted, well-rounded, fine- to medium-grained sandstones 

that form laterally extensive (>1 km) sheet sandstones 0.5 to 5.5 m. Sandstone sheets are irregular 

to sharp based and comprise either fine horizontal laminae or high-angle trough and tabular cross-

strata with alternating fine- to medium-grained sandstone laminae. Thin (<10 cm) mudstone and 

siltstone beds with sand-filled mud cracks and occasional root traces occur within the sheet 

sandstones. This facies association is restricted to the Hite Sandstone Unit at the top of the Chinle 

Formation. 

 

Interpretation 
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Well sorted and well rounded sandstone grains forming high angle cross-strata with alternating 

grain sizes on foresets, represent grainfall and grainflow deposits of aeolian dunes, with horizontal 

wind-ripple laminae representing sand sheet deposits (Dubiel, 1987; Hazel 1991, 1994; Matthews 

et al. 2007). Mudstone and siltstone beds correspond to wet interdune deposits.  

 

Thickness and Distribution of Stratigraphic Units 

Analysis of thickness data and facies distributions from regional cross-sections and photopanels 

allows constraints to be placed on the timing of salt movement during Chinle deposition in the 

Paradox Basin (Figs. 5, 7-11). The lower Chinle and Hite Sandstone Unit are present in most 

sections. The lower Chinle is normally 1 to 5 m in thickness but is significantly thicker immediately 

adjacent to the MVSW and in the Big Bend area (section 19), where in the former the section is 15 

m thick and in the latter >50 m thick (Prochnow et al. 2006). The Hite Sandstone Unit has a 

relatively uniform thickness ranging between 2 and 13 m with an average of 8 m. 

 

The thickness of the Chinle Formation in areas where no subsurface salt movement took place 

during deposition e.g. west of the KCA (e.g. sections 1, 2 and 3 of Fig. 2), ranges between 94 and 

110 m. On both flanks of the KCA significant thinning of strata occur (Fig. 5a). From the western 

flank, the section thins progressively eastwards from 100 to 60 m over a distance of 9.5 km 

(sections 4, 5 and 6; Fig. 5a). In the King’s Bottom Mini-basin a decrease in thickness from 140 to 

60 m occurs over a distance of 10 km from section 13 adjacent to the MVSW southwestwards to 

section 6, 500 m east of the anticlinal crest (sections 13, 22 and 7; Figs. 5a, 7). 

 

There is a general increase in thickness from 62 to 86 m of the Chinle Formation westwards from 

the Uncompaghre Uplift (sections 18 to 21, Fig. 5a) with a marked, but localised thickness increase 

in the Big Bend area (section 19). The thickness increase in the Big Bend area occurs primarily 

within the lower Chinle and does not appear to be associated with a visible salt structure (e.g. 

Prochnow et al. 2006). It has been attributed to localised salt dissolution at depth (Matthews et al 

2007; Trudgill et al. 2011) creating a smaller mini-basin within the larger Courthouse Mini-basin. In 

the Courthouse Mini-basin, the base of the Main Chinle is not seen, but interpretation of seismic 

reflection data suggest an increase in thickness towards the axis of the syncline and thinning onto 

the crest of the MVSW (Trudgill 2011; Fig. 5).  
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A cross-section taken close to the axis of the King’s Bottom Syncline (KBS) is illustrated in Fig. 5b. 

All measured sections range between 78 and 106 m in thickness. Sections 8 and 10 are both 

located on the present day axis of the KCA and display thicknesses of 97 and 91 respectively. These 

values are similar to those from sections unaffected by salt movement in the western part of the 

study area (e.g. sections 1, 2, 3 and 9; Fig. 5), indicating that KCA related uplift did not affect these 

areas during Chinle Formation deposition. 

 

The section constructed parallel to the MVSB running north from section 13S (Fig. 5c), shows a 

marked decrease in thickness from 140 to 38 m over 4.7 km (from section 13S to 26) with an 

increase to 62 m northwards to section 16 over a distance of 10.3 km. A marked decrease in 

thickness from 140 to 44 m over a distance of 250 m is present south of section 13S to section 25 

where the upper part of the main Chinle is present. 

 

Facies Association Distribution and Palaeocurrent Data 

Facies association distribution and palaeocurrent data from the logged sections are shown in 

Figure 5. The lower Chinle comprises channel-fill deposits interbedded with extensively 

bioturbated floodplain deposits. Palaeocurrent data are sparse often due to modification of 

sedimentary structures by post-depositional bioturbation and soil development. Published data 

from the Big Bend area show an overall northwesterly transport direction (Prochnow et al 2006). 

Two sections (12 and 13) for the Kings Bottom Mini-basin indicate both southwesterly and 

northeasterly directed transport.  

 

The main Chinle sections show a wide range of facies association distributions. In the cross-section 

of the Kings Bottom Mini-basin (Figs. 5a, 7), meandering channel sandstone bodies are well 

developed towards the crest of the KCA (sections 6, 7 and 22; Figs. 5a, 7, 8). Floodplain deposits 

increase towards the east of the mini-basin (section 13) where they predominate in the upper part 

of the section and define separate discrete channel sandstone bodies in the lower section. Despite 

a wide range in scatter and variability within and between individual sections, a general north to 

northeasterly transport direction can be determined for sections 6, 7 and 22 on the flank of the 

anticline. In contrast, the principal and consistent transport direction in the eastern flank of the 

mini-basin (section 13S) is towards the west/southwest. West of the KCA, palaeocurrent data 

show a wide distribution with no overall prevalent transport direction (Fig. 5a). 
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In the Courthouse Mini-basin east of the MVSW, floodplain deposits dominate the majority of the 

studied sections (Figs. 5A, 6 and 9). Channel-fill deposits occur in the lower part of the sections in 

the Big Bend area and form the main facies association west of Big Bend although only a partial 

section is preserved (section 27 on Fig. 5A). On either side of the Cache Valley Salt Wall (CVSW) 

occasional, isolated single storey channel-fill deposits are developed within thick floodplain 

sections (Figs. 6F and 9). Paleoflow indicators although sparse, suggest a general northeasterly 

flow direction in all sections east of the MVSW. 

 

In the cross-section parallel to the KCA and KBS (Fig. 5b), channel-fill deposits dominate in all 

sections forming an amalgamated meander-belt deposit that can be traced for at least 25 km. Two 

1.5 km long photopanels which illustrate the lateral extent of the amalgamated channel-belt are 

shown in Figure 10. Floodplain deposits are present in all sections, particularly towards the top 

immediately below the Hite Sandstone Unit, and may define discrete single storey channel bodies 

or bound laterally and vertically amalgamated sandstone bodies. Palaeocurrent data show a wide 

range. The southern section (section 9), located in an area unaffected by salt movement, shows a 

clear northeasterly trend from two sandstone bodies. Data for other individual sections show 

distinct differences between interbedded and overlying sandstone bodies with all directions 

except due south recorded (e.g. sections 10, 12, 23 and 24). Despite the wide scatter in direction, 

an overall northerly transport direction can be inferred for the majority of sections. 

 

In the section parallel to the MVSW (Figs. 5c, 11), amalgamated channel-belt deposits form a 

prominent weathering package (Unit B in Fig. 11) that overlies and is overlain by a floodplain 

dominated units (Units A and C respectively). The amalgamated sandstone body can be traced 

between all five sections (Fig. 5c) and is thickest in section 13S and thins to both the south (section 

25) and north (sections 15 and 26) before increasing in thickness towards section 16. Paleoflow is 

directed to the west in both sections 13 and 15 and shows a wide spread in section 16. 

 

General observations from the studied sections indicate that amalgamated channel-belt deposits 

dominate in the Kings Bottom Mini-basin, such that the mini-basin is the primary focus for 

transport and deposition of fluvial systems during main Chinle deposition (Fig. 5). Outside of the 

Kings Bottom Mini-basin fluvial channel deposits are less amalgamated and largely comprise one 

to three storeys separated by discrete floodplain intervals (Fig. 9). A regional decrease in fluvial 
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channel presence occurs towards the top of all sections with floodplain deposition predominating 

prior to deposition of the Hite Sandstone Unit. Paleocurrent data within the salt mini-basins 

suggest an overall north to northwesterly paleoflow albeit with significant variability, whereas 

outside the salt-affected area (west of the KCA), flow directions are highly variable. East of the 

MVSW although floodplain deposition dominates throughout most sections, scattered channel 

deposits do occur in the lower part of sections with flow towards the NW. A gradual increase in 

channel occurrence occurs towards the MVSW from east to west (Figs. 5A, 9).  

 

Syn-sedimentary Salt Movement and Alluvial Architecture 

Variations in thickness, stratigraphic architecture, channel-belt distribution and localised 

development of unconformities suggest that salt movement strongly influenced sedimentation in 

the Kings Bottom Mini-basin (Figs. 5, 7, 9 and 10). Outside of this mini-basin, evidence for salt-

movement during Chinle deposition is limited. West of the KCA the influence of salt on 

stratigraphy is minimal, with no thickness changes, control on channel type, amalgamation or 

paleoflow direction (Fig. 5a). In the Courthouse Mini-basin local salt dissolution influenced Lower 

Chinle sedimentation in a small depression (4 x 3 km) in the Big Bend area (Prochnow et al 2006; 

Matthews et al. 2007), although interpretation of subsurface well log data suggests a possible 

extension of Lower Chinle deposits to the NW (Banbury 2005). Salt movement had a relatively 

minor influence on main Chinle deposition in this area as indicated by slight thickening (section 19; 

Fig. 5a). However, whilst exposed sections of the main Chinle in the Courthouse Mini-basin outside 

of the Big Bend area show no evidence for significant thickness variations, an increase in channel 

development west of the Big Bend area is recorded in section 27 (Fig. 5A). Although it is possible 

that salt movement influenced sediment deposition in the western part of the Courthouse Mini-

basin towards the MVSW, as indicated by seismic reflection data (Trudgill 2011) and increased 

channel presence in partly exposed sections, lack of exposure and limited subsurface data 

preclude a clear understanding of this area. East of the Courthouse mini-basin it is clear that the 

CVSW had no influence on Chinle deposition with similar section thicknesses and stratigraphy 

developed on either side of the salt wall (Figs. 5A, 9). 

 

The section parallel to the MVSW (Figs 5C, 11) illustrates clear thickness variations and 

stratigraphic control related to topography of the MVSW. This together with the section across the 

Kings Bottom Mini-basin (e.g. Figs. 5A, 7) indicates that a complex 3D topography developed 



14 
 

across the mini-basin during main Chinle deposition. In contrast, the section parallel to the KBS 

close to the centre of the mini-basin shows little to no thickness variation and contains the 

thickest accumulation of amalgamated channel-belt deposits in the study area (Figs. 5B, 10). A 

detailed analysis of the relationship between alluvial architecture in the King’s Bottom Mini-basin 

is given below. 

 

Western flank of King’s Bottom Mini-Basin 

Along the western margin of the King’s Bottom Mini-basin localised development of angular 

unconformities together with sandstone body truncation and pinch out across the KCA are 

inferred to be related salt movement (Figs. 7, 8). Figures 8A and B show the overall thinning of the 

main Chinle on to the crest of the KCA, with Figures 8C and D illustrating details of different 

stratigraphic units. Four stratigraphic units (numbered 1 to 4 in Figs. 7, 8B and 8D) and four 

erosion surfaces (labelled ES1 to ES4 in Figs.7, 8B and 8D) can be identified. ES1 represents the 

unconformity surface between the Chinle and the Moenkopi Formation and is overlain by the 

lower Chinle and Unit 1. Unit 1 can be traced across the KCA (Figs. 7. 8A,B), but shows a decrease 

in thickness from 24 to 10 m resulting from a combination of onlap onto the anticline crest, 

aggradation over the crest (and potential linkage with fluvial systems west of the KCA) and 

truncation beneath ES2 due to erosion following salt movement.  

 

ES2 can be traced down-dip into an equivalent, expanded conformable succession. Unit 2 has a 

relatively uniform thickness ranging from 28 m on the eastern edge of the exposure to 23 m where 

approximately 5 m of stratigraphy have been removed beneath ES3/4 on the crest of the KCA. Unit 

2 comprises a conformable section of channel-belt deposits that pass laterally from the syncline 

across the crest of the KCA. This reflects relatively constant aggradation across both the mini-basin 

and KCA during deposition of Unit 2 and which ceased due to uplift and truncation beneath ES3 

related to salt movement. The top of unit 2 is truncated by ES3 in the centre of the exposure (Fig. 

8B and C) and amalgamates laterally with ES4 to form a composite erosion surface towards the 

crest of the anticline. The Unit 3 channel sandstone package overlies ES3 and is truncated and 

eroded beneath ES4 before reaching the crest of the KCA (Fig. 8B and C). This suggests that prior 

to truncation, Unit 3 extended further westwards across the KCA but that the unit was eroded 

beneath ES4 due to uplift associated with salt movement. ES4 records the greatest amount of 

erosion within the main Chinle succession cutting down and removing approximately 10 m of Unit 

3 stratigraphy and amalgamating with ES3 across the crest of the KCA. ES4 is overlain by unit 4 
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which comprises horizontally bedded floodplain mudstones and splay sandstones passing upwards 

conformably into the Hite Sandstone Unit and the overlying Wingate Sandstone. In contrast to the 

underlying units, Unit 4 deposition was relatively uniform across the KCA indicating that salt 

movement had ceased. 

 

The erosion surfaces developed across the KCA can be traced from the crest of the anticline down-

dip into the syncline where they bound conformable packages of channel sandstone bodies (Fig. 

8). The down-dip extent of truncation decreases upwards through the stratigraphy, with the basal 

erosion surface (ES1) having the largest lateral extent and ES4 at the top of the last channel 

sandstone body, having the smallest lateral extent. In addition the amount of material eroded 

from each stratigraphic unit increases upwards between each erosion surface. The combination of 

a decrease in the lateral extent of erosion together with increased erosion across the crest of the 

KCA through time indicates that salt movement was focussed into an increasingly smaller area of 

the KCA. The progressive decrease in unit thickness between erosion surfaces indicates a relative 

increase in the frequency of salt movement between ES1 and ES4, assuming a constant 

sedimentation rate, which is reasonable given there is no obvious change in depositional style 

throughout the succession. 

 

Eastern margin of King’s Bottom Mini-basin 

Along the eastern flank of the Kings Bottom Mini-basin, the north-south trending section running 

parallel to the MVSW also shows significant variations in sandstone body thickness (Figs. 5C and 

11). North of logged section 13, the section can be split into 3 units: Unit A a lower floodplain 

dominated succession, Unit B the main amalgamated sandstone body and Unit C, an upper 

floodplain dominated succession. The base of Unit A is not exposed across the whole panel but the 

unit thins significantly to the north where it is truncated beneath Unit B (Fig. 11D). Internally Unit 

B shows a complex fluvial architecture with amalgamation and truncation of channel bodies (Fig. 

11C) and thins progressively northwards from 65 to 17 m over 4.5 km between sections 13 and 26 

(Fig. 5c). Unit C shows a similar decrease in thickness from 55 to 15 m between the same sections. 

Both Units B and C increase in thickness to 35 and 30 m respectively to the north between sections 

26 and 15 (Fig. 5c).  

 

The southeast section of the correlation panel (Fig 5c), between sections 13S and 25 shows a rapid 

decrease in section thickness. An angular unconformity is present between the lower and main 
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Chinle (described previously by Hazel 1994, and Matthews et al. 2007), and Units A and B thin 

rapidly to the south with only the upper part of B developed at the base of section 25. At the top 

of section 25 and elsewhere across the whole panel, Unit C passes conformably into the Hite 

Sandstone Unit, which in turn has a conformable contact with the overlying Wingate Sandstone. 

 

It is clear that salt movement influenced channel sandstone development immediately adjacent to 

the MVSW. The development of a thick section of main Chinle sediments across the MVSW, 

together with westerly-directed palaeocurrents (Fig. 5C) indicate that a topographic low was 

present within the MVSW through which fluvial systems were routed, linking the Kings Bottom 

and Courthouse mini-basins. It is likely these fluvial systems then linked with the generally 

northerly flowing channel systems developed in the axis of the Kings Bottom Mini-basin (Fig. 5B). 

 

As well as the presence of the topographic low in the MVSW, salt movement is also indicated by 

the development of angular unconformities between the lower and main Chinle between sections 

13S and 25 and between sections 15 and 26 where Unit A is also missing beneath Unit B. This 

suggests that local movement of parts of the MVSW was sufficient to generate unconformities on 

the flanks of topographic highs, but that sedimentation was continuous in the topographic low 

between the salt wall highs. The absence of obvious angular unconformities coupled with the 

decrease in thickness of Units B and C onto MVSW highs suggests that salt movement was 

relatively slow but continuous throughout deposition of these units. The conformable nature of 

the Hite Sandstone Unit suggests that salt movement had ceased prior to deposition. 

 

Summary of Alluvial Architecture and Salt Movement 

Angular unconformities and thickness changes record salt movement across the KCA and within 

the MVSW. The main period of salt movement occurred immediately prior to and after deposition 

of the lower Chinle, with a gradual decrease in activity during deposition of the main Chinle and 

cessation by the time of Hite Sandstone Unit deposition. Salt movement beneath the KCA was 

pulsed and relatively rapid in contrast to the MVSW where movement was relatively slow but 

continuous. 

 

At a regional, inter mini-basin scale, the main influence of salt movement on alluvial architecture 

was to focus fluvial systems through relative topographic lows developed adjacent to and across 

growing salt structures such as the MVSW and along mini-basin syncline axes (Courthouse and 
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King’s Bottom mini-basins). The restriction of fluvial systems to these topographic lows led to the 

accumulation of thick, amalgamated multi-storey channel-belt sandstone bodies up to 60 m thick, 

up to 5 km wide (transverse to syncline axis) and a minimum of 25 km in length (parallel to the 

syncline axis) in the King’s Bottom Mini-basin. 

 

At a local, intra-basin scale, salt movement controlled the lateral extent and shape of sandstone 

bodies along the flanks of mini-basins. In particular, when sediment accumulation outpaced salt 

movement fluvial systems were able to onlap and aggrade over salt highs. In contrast, when salt 

movement outpaced sediment accumulation angular unconformities were developed across salt 

structures. Significantly, as sediment accumulation outpaced salt movement on both flanks of the 

King’s Bottom Mini-basin, thick sandstone bodies (up to 30 m) are preserved on top of salt highs 

(e.g. Fig. 7). In addition these sandstone bodies tend to have less heterolithic and floodplain 

material due to reworking, in contrast to the more expanded sections in adjacent topographic 

lows where floodplain and heterolithic material has greater preservation potential (Fig. 7). 

 

The Hite Sandstone Unit at the top of the Chinle is continuous across all mini-basins with a 

relatively constant thickness. This suggests that salt movement had effectively ceased by the end 

of Chinle deposition. A general decrease in channel-belt development occurs towards the top of 

the main Chile and into the Hite Sandstone Unit in all studied sections (Fig. 5), which studies of the 

regional sedimentology and paleosol development suggest can be ascribed to deposition under an 

increasingly arid climate (Blakey & Gubitosa, 1984; Dubiel 1987, 1994; Prochnow et al. 2006). 

 

Discussion 

Paleogeographic reconstructions 

Using the studied sections and photopanels, a series of palaeogeographic maps have been 

constructed for 3 periods during main Chinle deposition in the study area (Fig. 12). The 

reconstructions are intended to represent general changes seen in the sections through the main 

Chinle and represent the early to mid main Chinle (Fig. 12a), late mid main Chinle (Fig. 12b) and 

late Chinle just below the Hite Sandstone Unit (Fig.12c). The reconstructions highlight that: 1) the 

KCA and MVSW were the only active salt structures during main Chinle deposition, 2) there is a 

general decrease in fluvial activity through time, 3) there is a general decrease in fluvial input from 

the east through time, 4) a progressive abandonment of the fluvial system that passed through the 
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MVSW occurs, and 5) amalgamated channel-belt deposition is focussed into the King’s Bottom 

Mini-basin. In addition the variable influence of the KCA is shown with expansion of the 

amalgamated channel-belt westwards across the axis of the KCA to link periodically with fluvial 

systems in the non-salt affected part of the Chinle basin (Figs. 12a,b). 

 

The sedimentological observation that there was little or no sediment input from an easterly 

source during Chinle deposition is important. Previous workers have suggested that the 

Uncompaghre Uplift, which formed the western part of the Ancestral Rocky Mountains, was the 

principal source area for Chinle rivers along the north eastern flank of the Chinle basin (e.g. Hazel 

1994; Blakey 1997; Matthews et al. 2007; Dubiel and Hasiotis 2011). It is also clear from stratal 

relationships however, that the Uncompaghre Uplift had been onlapped and buried prior to and 

during Chinle deposition (e.g. Banbury 2006; Trudgill et al 2011). Consequently, to account for the 

presence of fluvial channel systems in the study area, it is likely they were derived from an area to 

the south and east of the present study area with sediment transport aided by focussing of 

drainage systems within salt valleys. 

 

Fluvial Planform 

Previous work on the Chinle Formation in the northeastern Paradox Basin has interpreted 

alternating braided and meandering channel deposits to be present across the area (Hazel 1994; 

Matthews et al. 2004, 2007; Prochnow et al. 2006). However, the distinction between braided and 

meandering planforms in these studies is based primarily on the recognition of either 

predominantly downstream accretion (braided) or lateral accretion (meandering). Building upon 

the observations of Jackson (1978), Bridge (1985) and Jordan and Prior (1992) it is now recognised 

that in both modern and ancient amalgamated sandy meander belts the dominant form of 

accretion is downstream (Shukla et al. 1999; Hartley et al. 2015). We suggest that all the fluvial 

deposits in the Chinle Formation were deposited by large (up to 12 m deep) meandering rivers and 

that the variation in grain size is related to whether actively migrating point bars are preserved 

(sandstone dominated) or abandoned channel-fill deposits are preserved (heterolithic lateral 

accretion packages). The rapid lateral and vertical transitions between sandstone and heterolithic 

packages together with the variability in palaeocurrent directions supports this (e.g. Figs. 5-8, 10). 

An important implication of this interpretation is that no significant regional climatic or tectonic 

controls on channel planform can be inferred. 
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Chinle Formation Lithostratigraphy and Systems Tracts 

The palaeogeographic reconstructions presented here differ significantly from previous work on 

the Chinle Formation in the same area. Matthews et al (2004, 2007) essentially took a 

lithostratigraphic based sequence stratigraphic approach to correlation within the Chinle 

Formation. They suggested that three lithostratigraphic units, a lower mudstone unit termed the 

Lower Slope, a sandstone unit termed the Black Ledge and an upper mudstone unit termed the 

Upper Slope (see Fig. 4 for lithostratigraphic schemes) are present in each mini-basin and could be 

correlated throughout the study area. They suggested that each lithostratigraphic unit was 

generated by changes in accommodation related to tectonic activity, with mudstones deposited 

during periods of high accommodation and braided fluvial sandstones developed during periods of 

low accommodation.  

 

Our field observations and correlation panels (Figs 5, 7, 8 and 11), suggest that distinct facies 

assemblages previously interpreted as lithostratigraphic units are restricted to specific mini-basins. 

The main amalgamated channel belt sandstone unit is restricted to the King’s Bottom Mini-basin 

although it may extend eastwards into the Courthouse Mini-basin linking through the low in the 

MVSW. Due to a lack of exposure this cannot be constrained. The main channel-belt sandstone 

unit does amalgamate with sandstones to the west across the KCA (e.g. Fig. 7), in an area 

unaffected by salt movement. Discrete channel belts occur only in the lower part of the 

Courthouse Mini-basin at Big Bend and are absent east of the CVSW (Fig. 5A), whereas channel-

belts are present throughout much of the main Chinle succession west of the KCA. The variability 

in channel-belt development indicates that a lithostratigraphic correlation scheme based on 

alternating sandstone and floodplain units cannot be supported in the study area. In addition 

these observations suggest there is no overall large-scale tectonic control on facies association 

development in the main Chinle, and that the principle control on sediment accumulation and 

sandstone distribution was syn-sedimentary salt movement. 

 

Controls on Sandstone Body Distribution in Salt Provinces 

The analysis of the Chinle Formation succession suggests that active salt basins influence fluvial 

systems at two different scales. At a regional scale i.e. the scale of the salt province, the key role 

that salt structures play is to focus fluvial drainage pathways (Fig. 13). The presence or absence of 

fluvial channel belts within mini-basins is controlled by salt highs deflecting drainage into mini-

basins. At a local, mini-basin scale, the role of salt structures is to influence fluvial architecture 
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with expanded sections in the centre of mini-basins and amalgamated and truncated sections 

developed onto and across salt highs. Lithostratigraphic packages within mini-basins can be 

correlated with reasonable accuracy parallel to the axis of mini-basins, however lithostratigraphic 

packages are more difficult to correlate up to and across salt highs due to tilting, truncation and 

amalgamation (Fig. 13). The correlation of lithostratigraphic packages at a regional scale is 

problematic due to inherent differences in the development of stratigraphic successions in 

adjacent salt-controlled basins related to focussing of fluvial drainage systems and variable 

subsidence rates. 

 

Most reconstructions of fluvial systems within salt provinces restrict channel development to the 

centre of mini-basins (e.g. Banham and Mountney 2013a). The examples illustrated here show 

that this is not always the case, and that fluvial sandstone bodies can develop immediately 

adjacent to salt highs where they may occur within rim synclines (e.g. Banham and Mountney 

2013b) or on top of salt highs (Fig. 13B). Both the MVSW and the KCA salt highs have 

amalgamated channel belt sandstones developed across the top of these structures (Figs. 7, 8, 11, 

13B). Sandstone bodies present on the top of the KCA are related to the earlier parts of the 

stratigraphy (Units 1 and 2 of Fig. 8), when sediment accumulation outpaced uplift of the KCA. 

Sandstones present on the top of the MVSW occur within the central part of the main Chinle and 

onlap and cover the MVSW topographic high (Unit B in Fig. 11). The internal architecture of the 

sandstone bodies in both cases is complex and involves subtle truncation surfaces and 

amalgamation related to tilting due to salt movement. Importantly, in both examples, evidence for 

the development of extensive palaeosols or floodplain facies on salt highs as predicted in a 

number of mini-basin facies models (e.g. Matthews et al 2007; Banham & Mountney 2013a; Venus 

et al. 2015), is absent. 

 

Work on the stratigraphic unit that underlies the Chinle Formation allows constraints to be placed 

on the influence of salt movement and sediment input pathways through time within the Paradox 

Basin area (Fig. 13). Banham & Mountney (2013b) in a study of the Moenkopi Formation, showed 

that fluvial channel belts were initially located east of the CVSW In the Fisher and Parriott mini-

basins (Fig. 3), but that by the end of Moenkopi deposition these salt mini-basins had grounded 

and that fluvial deposition was focussed west of the CVSW in the Big Bend area (Fig. 13). Our work 

on the Chinle supports this and shows that fluvial systems became increasingly focussed into the 

more westerly mini-basins (western part of the Courthouse Mini-basin and the King’s Bottom 
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Mini-basins), prior to cessation of salt movement during the latter stages of Chinle Formation 

deposition. Overall, therefore, there is a progressive westerly migration of the locus of movement 

and the associated focussing of fluvial drainage systems through time, such that understanding the 

timing of salt movement, grounding of mini-basins and their control on fluvial system location is 

crucial for predicting sandstone body distribution in actively deforming salt basins. 

 

Conclusions 

A study of the Chinle Formation has been undertaken in the northeast Paradox basin, Utah, in 

order to assess the influence of syn-sedimentary salt movement on the development and 

distribution of fluvial systems. This study is largely focussed on the main Chinle and Hite Sandstone 

Unit that overlie the lower Chinle succession. Three facies associations are recognised: fluvial 

channel, floodplain and aeolian. Fluvial channel and floodplain facies are strongly influenced by 

salt movement and dominate the main Chinle succession whereas the aeolian succession is 

present only within the uppermost part of the Chinle Formation in the Hite Sandstone Unit. This 

latter unit is present cross the region, indicating that salt movement had ceased. 

 

Our work suggests that sandstone body development proximal to salt bodies should be considered 

at two scales: intra- (local) and inter- (regional) mini-basin scale. At an intra-basin scale, the 

distribution of fluvial channel belts in the main Chinle is controlled by syn-sedimentary salt 

topographywith conformable packages of up to 12 m deep meandering fluvial channel deposits 

and associated overbank deposits developed parallel to the axes of salt mini-basins. Towards salt 

highs, in mini-basins where salt movement outpaces sediment accumulation sandstone bodies 

may thin, pinch-out or become truncated beneath low angle angular unconformities. In mini-

basins with high sand supply, up to 30 m thick amalgamated sandstone bodies occur across salt 

highs where they show a decrease in thickness relative to equivalent sandstone bodies in adjacent 

mini-basin due to truncation, no change in internal sandstone body character and an absence of 

interbedded floodplain packages. All of these characteristics contrast with published models that 

suggest that floodplain and paleosol deposits should dominate across these relatively high areas.,  

 

At a regional scale, salt-induced topography focuses fluvial drainage system development to such 

an extent that adjacent mini-basins commonly show significant differences in stratigraphy, such 

that the lithostratigraphic and systems tract based approaches to correlation commonly used in 

the study area and in other continental salt basins may lead to the production of erroneous 
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correlation schemes. In addition, in the study area the a progressive westerly migration of the 

locus of salt movement and diachronous shifting of fluvial drainage systems through time, 

indicates that understanding the timing of salt movement, grounding of mini-basins and their 

control on fluvial system location is crucial for predicting sandstone body distribution in actively 

deforming salt basins 
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Figures 

 

Fig. 1 Location map illustrating the position of the study area within the Salt Anticline Region of 

south-eastern Utah and western Colorado. Modified from Blakey & Gubitosa (1984), Doelling 

(1985) and Hazel (1994). Pink areas indicate breached salt wall structures; red lines indicate 

anticlines developed above subsurface salt structures. 

 

Fig. 2 Major present-day structural features and outcrop of the Chinle Formation within the 

northern Paradox Basin, Utah (after Huntoon et al. 1982; Doelling, 2001; Matthews et al. 2007). 

Numbered stratigraphic sections shown in Figure 5 are labelled A-A’, B-B’ and C-C’. Dashed line 

indicates location of structural cross-section shown in Figure 3. KBMB – King’s Bottom Mini-Basin, 

CMB – Courthouse Mini-Basin, PMB – Parriott Mini-Basin, FMB – Fisher Mini-Basin. 

 

Fig. 3 Regional cross section across the northeastern Paradox Basin showing present-day stratal 

architecture across major salt structures (modified from Trudgill et al., 2004). The line of cross 

section is located as the dashed line in Figure 2. 

 

Fig. 4 Stratigraphic chart showing nomenclature used in this study and comparison with previous 

work. 

 

Fig. 5 Cross-sections showing facies association distribution and paleocurrent data from the 

studied sections in the Chinle Formation. Location of sections are shown in Figure 2. Locations 

noted* were measured using a laser range finder. The section shown in Fig. 5A is oriented 

orthogonal to salt structures, Fig 5B runs parallel to the axis of the King’s Bottom Syncline and Fig. 

5C runs immediately adjacent to the Moab Valley Salt Wall.  

 

Fig. 6 Field photographs illustrating facies associations. A) and B) Main Chinle, channel-fill facies 

association from the axis of the Kane Creek Mini-basin (section 12) with interbedded sandstone 

and heterolithic lateral accretion sets. C) Lower Chinle crayfish burrows from the bioturbated 

floodplain facies, Big Bend area (section 19). D) Main Chinle, paleosols for the floodplain facies 

association, section 11. E) Main Chinle, typical floodplain facies association (section 17). 
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Fig. 7 Log correlation panel across the King’s Bottom Mini-basin. For location of numbered sections 

see Fig. 2. Box indications area of photopanel shown in Fig 8A/B between sections 6 and 7. ES1 to 

ES4 refer to numbered erosion surfaces. Numbers indicate units referred to in text. 

 

Fig. 8 Photopanels of sections in King’s Bottom Mini-basin between sections 6 and 7 on Figure 5A. 

A) Uninterpreted B) Interpreted. Panel is 2 km in width and located on the west side of Kane 

Springs Creek, close to orthogonal to the axis of the KCA (the axis of which is located just to the 

western edge of the panel). Note the changes in dip, decrease in thickness and truncation of 

multistorey sandstone packages to west. White box outlines area shown in C and D. Numbers 

indicate units referred to in text (Unit 4 includes the Hite Sandstone Unit) and ES1 to ES4 refer to 

numbered erosion surfaces. Arrows with numbers in A show location of logged sections 6 and 7. C 

and D: Detail of area highlighted in box in 8B. SLA = slumped lateral accretion, LA = lateral 

accretion. Numbers correspond to depositional units (Unit 4 includes Hite Sandstone Unit) and ES 

refer to erosional surfaces 1 to 4. Horizontal arrow shows onlap location of channel package in 

Unit 1. 

 

Fig. 9 Photopanels of sections east of the MVSW. A) Photograph of the area adjacent to where 

section 18 (Fig. 5a) was measured at the eastern end of the section.  Note the dominance of 

floodplain deposits, thin, sheet-like splay sandstones and lack of well developed channel 

sandstone bodies. B) Section 19 (Fig. 5a), in the Big Bend area showing reasonably well developed 

single storey to amalgamated channel sandstone bodies  separated by laterally extensive 

floodplain packages and developed above the angular unconformity with the Lower Chinle. C) 

Section 21 (Fig. 5a), immediately west of the CVSW, showing floodplain dominated sedimentation 

and no channel sandstone bodies. Black arrows mark the base of the main Chinle in all sections.  

 

Fig. 10 Photopanels oriented parallel to the axis of KCA and KBS. A) Section taken from Jacobs 

ladder in the east to the Colorado River valley in the west, section is 1.6 km in length. Note the 

dominance of amalgamated sandstone bodies throughout the Chinle succession, clay-rich lateral 

accretion packages form the weathered out units. Note the difficulty in correlating individual 

sandstone bodies over distances greater than a few hundred metres. B) Section running east-west 

along Long Canyon for 1.5 km in length. Note the lateral extent of sandstone bodies with lateral 

pinch outs and amalgamation of different bodies. The downstream accreting bodies tend to be 

more sand prone and form prominent beds, lateral accretion dominated bodies tend to be slightly 
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finer grained and are more strongly weathered. White arrows mark the base of the Chinle, the top 

is taken at the base of the blocky Wingate Sandstone unit.  

 

Fig. 11 Uninterpreted (A) and interpreted (B) photopanel along the western edge of the MVSW. A, 

B and C refer to units discussed in the text. Note the thinning of the Chinle packages to the north. 

C – Detail of the amalgamated channel-belt package highlighted in B and D detail of the pinch out 

to the north, arrows mark base of Chinle. Numbers in B refer to measured sections. 

 

Fig 12 Schematic palaeogeographic reconstructions illustrating 3 stages in the development of the 

main Chinle unit in the study area, A) early to mid main Chinle, B) late mid main Chinle and C) late 

Chinle just below the Hite Sandstone Unit. Pink – floodplain, light grey – amalgamated channel 

belts. Active (dark grey) and inactive (light grey) salt structures are shown. MVSW – Moab Valley 

Salt Wall, KCA – Kane Creek Anticline, KBMB – King’s Bottom Mini-basin. 

 

Fig. 13 A) Three dimensional block model looking west of the Salt Anticline area illustrating the 

development of fluvial sandstone bodies through the Triassic stratigraphy (Chinle and Moenkopi 

Formations), with details highlighting different stratal geometries developed adjacent to salt 

structures. LC – Lower Chinle mini-basin developed in the Big Bend area. KCA – Kane Creek 

Anticline, MVSW – Moab Valley Salt Wall, CVSW – Caste Valley Salt Wall. KBMB 0 King’s Bottom 

Nini-basin, CMB – Courthouse Mini-basin. Monekopi Formation thickness, facies and stratal 

geometries are influenced by movement of the CVSW (Banham & Mountney 2013b) but the Chinle 

displays no changes in thickness. Note that not all channel belts were active at the same time. 

B) Schematic cross-section across the King’s Bottom Mini-basin highlighting the amalgamation of 

channel sandstone bodies across the crest of the anticline through truncation related to uplift of 

the KCA and thickening of floodplain intervals into the adjacent mini-basin. Note that through time 

the unconformities progressively decrease in lateral extent as salt movement became increasingly 

focussed towards the crest of the KCA. 

 

 


