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Abstract

Background: The translocation of plants or animals between populations has been used in conservation to
reinforce populations of threatened species, and may be used in the future to buffer species’ ranges from the
anticipated effects of environmental change. This population admixture can result in outbreeding, and the resulting
“hybrid” offspring can be either fitter (heterosis) or less fit (outbreeding depression) than their parents. Outbreeding
depression has the potential to undermine conservation plans that mix populations of declining or threatened
species.

Methods: We searched for literature documenting phenotypic responses to intraspecific outbreeding between
natural populations of animal and plant species. Outbreeding responses were summarised as log-response ratios
that compared hybrid with mid-parent phenotypes (528 effect sizes from 98 studies). These data included effect
sizes from both fitness components (survival, viability and fecundity traits) and other traits (e.g. morphological,
physiological, defence), and were pooled using Bayesian mixed-effects meta-analysis.

Results: There was no overall effect of outbreeding on hybrid phenotypes (overall pooled effect = +2.61%
phenotypic change relative to parents, 95% credible interval (CI) −1.03–6.60%). However, fitness component traits
responded significantly more negatively to outbreeding than traits less directly linked with fitness. Our model
predicted a significant 6.9% F1 generation benefit to outcrossing through non-fitness traits (CI 2.7–11.2%), but no
significant benefit to these traits in the F2 (3.5%; CI −4.3–12.2%). Fitness component traits were predicted to suffer a
cost (−8.8%) relative to parents in the F2 (CI −14.1– − 2.5%), but not in the F1 (+1.3%; CI −2.1–5.4%). Between-study
variation accounted for 39.5% of heterogeneity in outbreeding responses, leaving 27.1% of heterogeneity between
effect sizes within studies and 33.4% attributable to measurement error within effect sizes.

Conclusions: Our study demonstrates consistent effects of trait type on responses to intraspecific outbreeding, and
indicates the potential for outbreeding depression in the F2. However, our analyses also reveal significant
heterogeneity in outbreeding responses within and among studies. Thus, outbreeding costs will not always occur.
Conservation practitioners may be able to anticipate when such outbreeding depression should arise using an
existing decision-making framework that takes into account the context of hybridising populations.
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Background
The need to ensure natural populations have sufficient
genetic variation for their long-term sustainability has long
been recognized [1,2]. Genetic diversity provides the raw
genetic material upon which natural selection can act
allowing adaption to changes in the environment (includ-
ing current anthropogenic changes such as eutrophication
and climate change). By definition, genetic diversity in-
cludes allelic and genotypic variants conferring both detri-
mental and beneficial effects on the phenotype and fitness.
When sexual reproduction occurs among related individ-
uals, detrimental variation can be exposed as a decline in
fitness of the resulting offspring, an effect known as in-
breeding depression [3,4]. Inbreeding becomes more likely
as populations become smaller in size, and where this
leads to inbreeding depression it may contribute to the ex-
tinction of small populations [5,6]. However, the natural
movement or human-aided translocation of individuals
into an inbred population from a separate population can
result in fitness recovery, or “genetic rescue” within the in-
bred population [7-13].
Despite the potential benefits of creating hybrid popula-

tions, conservation practitioners remain cautious about
applying population translocations widely as a tool to en-
hance population sustainability [14]. This caution may be
well founded, since it has been shown that in some cir-
cumstances, population admixture can lead to a reduction
in fitness of hybrid individuals within the mixed popula-
tion, called “outbreeding depression” [8,15,16]. The basis
of such a fitness reduction is that the populations being
mixed may have become adapted to the specific environ-
ments in which they exist (extrinsic outbreeding depres-
sion), or they may have diverged genetically such that
genomic incompatibilities are exposed upon population
mixing (intrinsic outbreeding depression, also known as
the break up of co-adapted gene complexes [15,17,18]).
Hybrid viability can also be undermined by chromosomal
rearrangements that differentiate parent populations (in-
cluding inversions, translocations and centric fusions
[19-21]). These reductions in fitness can be observed
readily at one extreme of the inbreeding-outbreeding con-
tinuum, in hybrid offspring derived from mating between
individuals of different species [20,22,23].
Extrinsic outbreeding depression is driven by adaptation

of parent populations to different environments [18]. Hy-
brids individuals are expected on average to possess a
phenotype intermediate to that of the parents (considering
only additive gene effects [24]) and so may be unfit in ei-
ther or both parental environments. The potential for ex-
trinsic outbreeding depression is thought to increase with
environmental distance between parental populations, and
with duration of isolation of the parent populations in
these separate environments [21]. Intrinsic outbreeding
depression arises as a further consequence of evolution in
allopatry. Fitness often depends on the integrated func-
tioning of alleles at different gene loci (“co-adapted gene
complexes”). When parent populations have been isolated
from each other for a sufficient number of generations,
they can evolve to “find” different solutions to the problem
of adaptation that depend upon different sets of alleles
[25]. While these co-adapted gene sets may work well
within each population, their functioning can break down
if mixed in hybrid individuals with alleles with which they
have never been tested. Intrinsic outbreeding depression
occurs when hybrid fitness falls below that of the mid-
parent value [15]. Theory predicts that the potential for in-
trinsic outbreeding depression should be associated with
genetic distance between parent populations [17,26]. How-
ever, there is little consistent empirical evidence for this
[15,16,27].
Risks of both intrinsic and extrinsic outbreeding de-

pression are expected to be low where migration among
parental populations is high, or where the populations
are recently isolated. This is because the genetic com-
position of the parent populations will be more homoge-
neous, limiting the extent of adaptive differentiation and
development of the divergent genetic architectures that
lead to outbreeding depression [21,28].
A growing body of evidence exists on the phenotypic

effects of intraspecific outbreeding, and there have been
several attempts to synthesise this literature. Edmands
reviewed the relative risks of inbreeding and outbreeding
[15]. She found that outbreeding responses in the F2
may be comparable to the effects of close inbreeding,
and that F2 phenotypic responses to outbreeding were sig-
nificantly more negative than F1 responses. McClelland
and Naish [16] carried out a meta-analysis that focussed
on the phenotypic consequences of outbreeding within
and between fish species. They found overall positive re-
sponses to outbreeding, but were not able to identify fac-
tors that consistently explained variation in outbreeding
responses. Together, these two papers have improved our
understanding of responses to outbreeding, but both suffer
from problems. Edmands’ analysis was limited to study-
systems for which data were available on both responses
to inbreeding and responses to outbreeding, and did not
consider or control for within-study measurement error.
McClelland and Naish’s work was limited in taxonomic
scope. In addition, these articles neither reviewed the lit-
erature systematically nor addressed the problem of the
occurrence of multiple outbreeding effect-size estimates
within each study. Thus, there is a need for an expanded
synthesis of the evidence on outbreeding responses, in
order to guide future conservation management that re-
sults in outbreeding (including translocations).
We carried out a systematic review to determine whether

there is a net change in fitness or phenotype in hybrid
offspring arising from mating between individuals from
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separate populations. We also assessed whether outbreed-
ing responses varied through the generations following
outbreeding, varied for different trait types, or with geo-
graphical, high-level phylogenetic, environmental or life his-
tory variables.
Methods
Question formulation
The core question and scope of this systematic review
were refined at a review group meeting, held at Losehill
Hall, Derbyshire 28–29 October 2008. The review group
included representation from UK conservation agencies,
conservation charities, and scientists specialising in the
field of conservation genetics. When a draft systematic
review protocol was developed, the review group were
able to feed back on the plans for the review. This a-
priori review protocol [29] was also peer-reviewed and
published on-line. This process improved the review
structure and scope markedly, and helped to ensure rele-
vance to stakeholders who represented end-users of the
review’s results.
Literature searches
Scope of literature searches
On 5 October 2010 we searched computer databases and
online repositories (Table 1), in order to identify articles,
studies and datasets relevant to the review question.
Table 1 Electronic databases searched to identify literature o

Database name Subset of content searche
†BIOSIS previews All
†Copac National, Academic, & Specialist
Library Catalogue

Search limited to theses only

§†Countryside Council for Wales Library
Catalogue

All

†Dissertation Abstracts (Proquest dissertations
and theses)

Search limited to dissertation
and theses only

†Electronic theses online service (ETHOS) All
†ISI proceedings All

ISI Web of Science All
§†Joint Nature Conservation Committee
publications catalogue

All

§†Natural England Publications and Products
Catalogue

All

SciVerse Science Direct All

SciVerse Scopus All

Scirus Searches limited to first 50 r
from journals-only searches

§†Scottish Natural Heritage All

§ Databases or libraries held by UK public bodies (non-departmental governmental
† Database includes grey literature.
Literature search terms
We used the search strings listed in Table 2 to retrieve ar-
ticles from online databases and repositories. Where data-
base search facilities allowed, we used search strings in
Table 2 as follows. Compound search strings were gener-
ated by combining each of the search strings in groups (i)
and (ii) with each of the strings in group (iii) for a total of
9 + 15 = 24 search strings (Table 2). Search terms in group
(iv) are catch-all phrases that were used to carry out
searches without combination into more complex strings
(Table 2). Some databases provided only limited support
for compound search queries, or did not support Boolean
operators. In these cases we employed a simplified version
of the search (Additional file 1: Table S1).

Study inclusion criteria
Relevant subjects and scope
Relevant subjects were defined as individuals of any
natural population of animal or plant (or experimental
individuals derived directly therefrom), at any location
globally, and their progeny. We defined natural popula-
tions as naturally occurring, naturalised or (re-) intro-
duced populations that occupy natural habitat, and that
persist in the absence of human intervention. Studies
that described populations with alternative phraseo-
logy such as “provenance”, “land-race” or “cultivar” were
retained as potentially relevant until it could be ascertained
whether they fitted the criteria given in this section.
n intraspecific outbreeding

d Source

http://apps.webofknowledge.com/

http://copac.ac.uk/

https://www-library.ccw.gov.uk/

s http://search.proquest.com/index

http://ethos.bl.uk/

http://apps.webofknowledge.com/

http://apps.webofknowledge.com/

http://jncc.defra.gov.uk/page-2183

http://publications.naturalengland.org.uk/

http://www.info.sciverse.com/sciencedirect

http://www.scopus.com/home.url

esults http://www.scirus.com/srsapp/advanced/

http://www.snh.gov.uk/publications-data-and-research/
publications/search-the-catalogue/

organizations).

http://apps.webofknowledge.com/
https://www-library.ccw.gov.uk/
http://search.proquest.com/index
http://ethos.bl.uk/
http://apps.webofknowledge.com/
http://apps.webofknowledge.com/
http://jncc.defra.gov.uk/page-2183
http://publications.naturalengland.org.uk/
http://www.info.sciverse.com/sciencedirect
http://www.scopus.com/home.url
http://www.scirus.com/srsapp/advanced/
http://www.snh.gov.uk/publications-data-and-research/publications/search-the-catalogue/
http://www.snh.gov.uk/publications-data-and-research/publications/search-the-catalogue/


Table 2 Search strings used to query online databases

Group Search string

(i) Outbreeding related strings Outbreeding depression OR out-breeding depression OR outcrossing
depression OR
out-crossing depression OR out-mating depression OR outmating
depression

(i) (Hybridisation OR hybridization) AND (population OR interpopulation OR
inter-population) NOT (interspecific OR inter-specific)

(i) Heterosis AND population

(ii) Search strings related to the movement of individuals for conservation
purposes

Translocation AND conservation

(ii) Reinforcement AND conservation

(ii) Augmentation AND conservation

(ii) Restoration AND conservation

(ii) Genetic rescue AND conservation

(iii) Fitness related strings Fitness

(iii) Surviv* OR mortality OR longevity

(iii) Fecundity OR reproduc*

(iv) Catch-all search strings Distance-dependent fitness

(iv) Distance-dependent crossing success

(iv) Distance-dependent mating success

Boolean syntax follows the ISI Web of Knowledge template, and was adapted as necessary for use within databases using other syntax.
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In this review we focussed exclusively on outbreeding
effects on phenotype occurring within the post-zygotic
portion of the life cycle. This focus excluded pre-zygotic
mating incompatibilities from consideration, but included,
for example, progeny traits such as germination success
and egg hatching rate. We excluded studies documenting
outbreeding effects resulting from crosses amongst agri-
cultural cultivars or strains, or populations under captive
management (e.g. zoo populations). These populations
have been subjected to a different selective regime (e.g. di-
rectional selection for yield and or disease resistance,
adaptation to captivity) than may prevail in natural popu-
lations. We did, however, include studies that observed
the effects of hybridisation between natural populations
and farmed individuals of the same species. These hybrid-
isation events are relevant to the conservation of natural
populations and have been known to occur in aquaculture
and fisheries contexts, for example. We excluded studies
documenting outbreeding effects in microorganisms. This
was because (1) many groups of microorganisms are
poorly characterised from a taxonomic point of view (2)
the meaning of outbreeding differs for some of these mi-
croorganisms whose genomes may be non-recombining,
or that may engage in horizontal gene transfer, and (3)
bacteria are not themselves the target of translocation be-
tween sites or populations within the context of conserva-
tion plans. Studies focussing on crosses or hybridisation
among different recognised species (but not sub-species)
were excluded. This is because the costs and benefits of
interspecific hybridisation are better known than those
stemming from intraspecific hybridisation. In addition, the
conservation community has a greater awareness of hy-
bridisation involving multiple species because conserva-
tion actions are often arranged around particular known
species of conservation concern. Studies focussing on
crosses or hybridisation among taxa with uncertain
taxonomy at the species level were excluded, to avoid
inadvertent inclusion of studies involving interspecific
hybridisation.

Types of intervention
We considered the “interventions” listed below:

� Outbreeding resulting from experimental
translocation of individuals from a donor population
to a geographically separated recipient population.

� Outbreeding resulting from observed natural
migration between geographically separated
populations.

� Outbreeding resulting from experimental crosses
between individuals from geographically separated
populations.

� Outbreeding resulting from experimental crosses
between individuals separated by known distances
within a single population.

Types of comparator
We defined the treatment group and corresponding
reference (comparator) group on the basis of pedigree
information presented within individual studies. The
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treatment group common to the interventions above is
composed of hybrid offspring arising from outcrossing
between geographically defined populations or across
space within a population. The corresponding compara-
tor or reference group(s) are composed of less outbred
(but not deliberately inbred) individuals stemming from
either within-population crosses or such crosses occur-
ring over a smaller physical distance than those in the
treatment group. The comparison made in this review is
between the phenotype or fitness of hybrid individuals
and that of their less outbred parent lineages. Thus,
regardless of the intervention type, the phenotype or fit-
ness of parent individuals or non-hybrid offspring from
the “source populations” and that of their hybrid off-
spring were required for inclusion of any study in the
review.

Types of outcome
Relevant outcomes were measures of the phenotype or
traits of individuals within “reference” parental lineages
or “treatment” lineages resulting from outbreeding be-
tween these former. Pre-zygotic traits were excluded.
We made the assumption that phenotypes were a func-
tion of the genes of the individuals measured and their
immediate measurement environment. Thus, we also as-
sumed that phenotypes were not influenced by maternal
or other persistent environmental effects.

Types of study
Relevant studies were defined as those with treatment
and reference groups that could be identified using pedi-
gree information, and that also recorded appropriate
outcome measures. We did not include studies that used
mean d-squared to infer the extent of outbreeding using
molecular markers. This is because mean d-squared may
not provide a reliable estimate of the position of any in-
dividual on the inbreeding–outbreeding continuum [30].
We chose to exclude these studies because (1) there is
no identifiable reference class to make a comparison
with and (2) because doubt exists as to whether the
measure faithfully reflects differences in the quantity of
inbreeding or outbreeding that occurred to create an in-
dividual’s genome [30]. Articles that reviewed or meta-
analysed the existing literature were excluded from the
review, although any missing records from their bibliog-
raphies were added to the project database and assessed
against the criteria defined above.

Potential sources of heterogeneity
We investigated the relationship between outbreeding ef-
fect sizes and several sources of heterogeneity (i.e. effect
modifiers; hereafter “explanatory variables”), as described
below (see Additional file 1: Text S2 for full details).
� Taxon category High-level taxonomic category for
species; one of amphibian, bony fish, crustacean,
gastropod, insect, mammal, bivalve, nematode, plant,
reptile, tunicate

� Lifespan category Description of the longevity of
an organism e.g. short-, ≤ 2 years; or long-lived, >
2 years

� Physical distance Euclidian distance separating
outcrossed populations, km

� Hybrid generation Generation following outbreeding
in which phenotype was observed; F1, F2, etc.

� Trait type Categorical descriptor of trait; one of
defence, development, fecundity, fitness, growth-rate,
physiology, size, survival, viability, or other

� Fitness class Categorical description of whether the
phenotypic measure was a component of fitness
(fecundity, survival, viability, integrated/ compound
measures of fitness), or was more distantly related to
fitness (all other trait types)

� Trait timing Categorical description of the timing
of expression or measurement of a trait (early, mid
or late), relative to the life-history of the organism in
question

� Mating system Predominant sexual reproductive
mode of the study organism; highly inbreeding,
mixed mating, highly outbreeding

� Observation environment Categorical description
of the environment in which the phenotype was
expressed and observed; one of lab, common garden
or natural population or habitat

Article screening strategy
We assessed articles for inclusion in the review based
on an hierarchical assessment of relevance. This was
done by assessing article titles, followed by reading
the abstract of articles with relevant titles, followed
by reading the full-text of articles with relevant ab-
stracts (Additional file 1: Text S3). The objectivity of
the article assessment procedure was determined
using the Kappa coefficient of agreement applied to
independent assessments of article subsets ([31];
Additional file 1: Text S3).

Data extraction
We attempted to extract data from all articles assessed
as relevant at the full-text article assessment stage. We
approached the authors of articles to request raw data or
data summaries in cases where articles did not present
the data needed for meta-analysis.
Data for traits measured on a continuous scale were

extracted as mean values for each outcrossing class (out-
bred treatment individuals, parental comparator lineages).
We also extracted standard error estimates for these
means and recorded the number of families contributing
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to each cross class and, where the information was avail-
able, the number of individuals measured per family and/
or cross class. Where separate data were available for both
parent lineages, these were summarised as a mean (mid-
parent) value for the comparator group. Data for separate
traits were extracted separately. In some studies that used
more than two parental comparator lineages (populations)
trait summaries were not available for each separate par-
ental lineage. In these studies the comparator data were
taken as mean values (within traits) across all parent line-
ages. Equivalently, in some cases, trait data from treatment
individuals (outbred offspring) were available only as mean
values across crosses or population pairs.
Data for traits measured as counts (e.g. survival) were

extracted as successes (survival) and failures (e.g. non-
survival, death), for each of the outcrossing classes. In
cases where proportion data were presented, these were
used to estimate the original counts by multiplication
with the sample size (number of individuals) followed by
rounding to a whole number. Where proportions were
given as a mean across families with associated standard
error we treated these in the same way as for the con-
tinuous data, described above. Data extraction was not
duplicated but consistency of the extracted data was
checked and extraction of data from difficult articles was
discussed.

Study quality assessment
We assessed the quality of the relevant full-text arti-
cles by determining, for each article, a score based on
the presence or absence of attributes that indicated
its internal or external validity. The attributes that
were scored are summarised in Table 3. We assigned
points for each of the desired attributes possessed by
each study and measured any studies’ overall quality
as the sum of points scored across the component
Table 3 Attributes used to assess study quality

Design feature Study attribute

Internal validity
of study

Appropriate comparator lineages
used

Were both parental line
otherwise

Temporal controls Were outbred and less
otherwise

Were all parental lineag
comparison to F1 treatm

Sampling strategy Were multiple independ
points for only a single

External validity
of study

Environment for trait
observations

Within what environme
habitat (1 point); enviro
points; includes glassho

Observation window for inbred/
outbred individuals

Were phenotypic effect
points otherwise

Status of populations/lineages
studied

Did the study include n
were natural population
attributes. The maximum possible quality score was 7
points, one for each of the seven attributes recorded.
Assessments of study quality are not often presented
in traditional reviews and meta-analyses, but their use
is considered best practice in systematic reviews
within ecology and evolution [32].

Data synthesis
Effect size metric
We summarised outbreeding effect sizes for trait data
measured on a continuous scale (e.g. growth rate, seed
mass production, lifespan) using the log response ratio
[33]:

ES ¼ log μH=μPð Þ ð1Þ
where μH and μP are trait mean values for the outbred
(hybrid) treatment group and parental comparator
groups respectively. We estimated the study measure-
ment error variance as [33]:

mev ¼ S2 1= nH μH
2

� �þ 1= nP μP
2

� �� � ð2Þ
where nH and nP are respective sample sizes (numbers
of families) measured for the hybrid treatment and par-
ental comparator groups, and S is the pooled standard
deviation for the hybrid treatment group and the par-
ental comparator group. We used nH and nP (number
of families) to convert standard errors reported within
articles to standard deviations, separately for the treat-
ment and comparator groups. These were then pooled
to yield S. ([33]; p. 22).
Where trait data were binomially distributed we

calculated effect sizes as the log risk ratio [33]:

ES ¼ log a=nHð Þ= c=nPð Þð Þ ð3Þ
ages represented for each hybrid cross? 1 point for yes, 0 points

outbred individuals studied at the same time? 1 point for yes, 0 points

es observed via controlled crosses? E.g. F1 parental control cross for
ent cross, F2 for F2 etc.? 1 point for yes, 0 points otherwise

ent pairs or sets of populations/lineages studied? 1 point for yes, 0
pair of lineages

ntal context were progeny traits observed? Natural population or native
nmentally realistic common garden (0.5 points); lab environment (0
uses, labs, terraria, aquaria)

s tracked until at least the F2 generation of progeny? 1 point for yes, 0

atural, naturalized, or cultivated lineages? 1 point where all populations
s, 0 points where naturalized or cultivated lineages were included
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In this case we estimated the study measurement error
variance as [33]:

mev ¼ 1=a−1=nH þ 1=c−1=nP ð4Þ

In these equations, a and c are the numbers (counts) of
successes (e.g. survival or reproduction of tested individ-
uals) in treatment and reference groups. nH and nP in this
case refer respectively to the total number of individuals
tested in hybrid treatment and parental comparator
groups. Our effect sizes represent measures of intrinsic
outbreeding responses, i.e. deviation of hybrid from mid-
parent phenotypes, due predominantly to dominance and
epistatic gene effects [15,17,18].

Meta-analysis
Effect size estimates were meta-analysed using the R pack-
age MCMCGLMM [34], which provides functions for fitting
generalised linear mixed models in a Bayesian framework,
via a Markov chain Monte Carlo sampler. Models fitted by
MCMCGLMM extend to fixed- and random-effects meta-
analyses that model and take into account the study meas-
urement error variance ([35]; equivalent to weighting the
analysis by the inverse of the study measurement error
variance in a traditional meta-analysis). All models were
run for a total of 6 × 105 iterations, with a burn in of 105

iterations and a subsequent thin interval of 50 iterations.
This sampling schema leads to a total MCMC sample size
of 1000 for each fitted model. We used multivariate normal
priors with mean 0 and variance 1010 for the fixed ef-
fects. Priors for random effects were uniform improper
distributions on the standard deviation of the random
effects as recommended in [36]. Measurement error
variance estimates (mev) were fitted as a set of random
effects, and these we assumed to be known without
error. Study identities (Study) were fitted as random ef-
fects in all models, in order to capture and model variation
in outbreeding contexts. Explanatory variables of interest
were fitted as fixed effects. Note that the distinction be-
tween “fixed” and random effects is arbitrary in a Bayesian
modelling framework such as used here, where all effects
are random. However, we retain separate notation for
fixed and random effects specifications to facilitate con-
ceptual distinction between explanatory variables (“fixed”
effects of primary interest) and study identities (random
effects whose variation we wish to account for and esti-
mate). Additional file 1: Text S4 gives further details on
model specification.
In cases where individual model parameters represented

pooled effects of interest, we used posterior means and
95% credible intervals for the parameters to derive predict-
ive intervals for the effect sizes. In other cases, we pre-
dicted pooled effect sizes by summing over the posterior
distributions of their component parameters, and then
summarising these as above. The meta-effect sizes (param-
eter estimates) were considered statistically “significant”
when their 95% credible interval did not bracket 0. Results
of the meta-analyses were presented graphically using for-
est plots for effect sizes and pooled effect sizes. Model
goodness of fit was assessed via the Deviance Information
Criterion DIC; [37]. DIC is subject to variation between
separate runs of identically specified MCMCGLMM models,
due to Monte Carlo error, even in a well-fitted model.
Therefore, we carried out three replicate model runs for
each model fitted to ensure that we compared the good-
ness of fit of competing models fairly and consistently.
Models were checked to assess the degree of mixing and
convergence by visual inspection of the sampled MCMC
chains of component parameters, by evaluating chain auto-
correlation, and by determining the effective size of
MCMC chains. MCMCGLMM initiates a single MCMC
chain during model fitting. Therefore we also assessed
MCMC chain convergence using Gelman-Rubin diagnos-
tics applied to pairs of replicate model runs initiated
independently from over-dispersed starting values.
We took two approaches to fitting explanatory vari-

ables using MCMCGLMM. In the first we fitted models
with only a single fixed effect (one model for each ex-
planatory variable). The aim of fitting these models
was to explore variation in outbreeding responses
with predictors of these responses. We considered
variables to be potentially relevant in explaining out-
breeding responses when any of their component pa-
rameters differed significantly from zero. Trait type
and fitness class (fitness component and other traits)
contained redundant information; levels of trait type
were nested within levels of fitness class. Therefore,
we fitted the fitness component vs. other traits com-
parison in two ways. First as a post-hoc orthogonal
contrast within the trait.type predictor, and second
using the fitness class predictor. Variation in out-
breeding responses among trait types within the fit-
ness component trait class was investigated using
further post-hoc contrasts.
In the second approach to modelling outbreeding re-

sponses we fitted multiple explanatory variables within a
single maximal model, which had a fixed-effects specifi-
cation as follows:

Generation þ Trait:type þ Trait:timing
Taxon:category þ Lifespan:category þMating:systemþ
Quality:score

ð5Þ

We omitted fitness class from this model because this
predictor and the trait type predictor contained redun-
dant information. It was also necessary to omit physical
distance from the model reduction analysis, since we
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had incomplete information on this predictor across the
dataset. After fitting the maximal model, we then defined
a minimal model by elimination of those fixed effects that
did not contribute to improving the model fit (as judged
by changes in the deviance information criterion, DIC).
The maximal model included main effects only (no inter-
actions among fixed effects). We carried out three repli-
cate model runs for the maximal model and each nested
model derived from this, to ensure that fixed effects were
eliminated or retained based on consistent changes in
DIC. Only predictors whose exclusion resulted in a con-
sistent cost to model fit were retained in the model.
We were also interested specifically in whether our

minimal model implied either net costs or benefits to
outbreeding in different generations. Therefore we ran
an additional model that included an interaction be-
tween the explanatory variable identified by our minimal
model and hybrid generation. We give results for similar
models combining generation with each of the other ex-
planatory variables in Additional file 1: Figure S12.
We evaluated the proportion of the heterogeneity in

outbreeding responses attributable to variation among
studies, and the proportion of heterogeneity associated
with the residual variance component using the approach
of Sutton et al. [38]. However, we took the median of the
mev as our estimate of the typical measurement error vari-
ance, instead of equation 9 in [39], which gave a poor esti-
mate of central tendency of the mev for our data.

Publication bias
We used the R package METAFOR [40] to create en-
hanced funnel plots as a graphical check for the pres-
ence of funnel-plot asymmetry (indicating publication
bias). We used study-mean effect sizes to create study-
level funnel plots, since publication bias is likely to oper-
ate at the level of studies rather than individual effect
sizes within studies (effect sizes within studies are likely
to be correlated). An additional reason for doing this
was that the number of effect sizes per study in our data
was unbalanced, undermining any assessment of bias
based on the full dataset. We used the median measure-
ment error variance for the effect sizes within each study
as a “typical” study-level measurement error variance.
We also used the Egger regression to test for the pres-
ence of funnel-plot asymmetry [41], using study-level
data, as above.

Sensitivity analyses
In order to understand whether outbreeding responses
were sensitive to study quality we included our study
quality variable in both a single-predictor meta-analysis
and in the model reduction analysis, as described above.
We also trialled inverse gamma and “parameter expanded”
proper Cauchy priors for the standard deviation of the
random effects, as alternatives to the improper flat priors
that we used. Variance component estimates were found
to be insensitive to the choice of prior. Finally we tested
whether our model and its underlying assumptions was
consistent with the observed data, using posterior predict-
ive simulation [42]. Full details and results for the poster-
ior predictive simulation are given in Additional file 1:
Text S7 and Additional file 1: Figure S8.

Results
Review descriptive statistics
The primary literature search (conducted 5 October
2010) yielded 9631 papers (Table 4; Additional file 2).
The minimum set of data necessary for meta-analysis
was obtained for a total of 93 articles published between
1987 and 2010 (Table 5; Additional file 2, and Additional
file 3). Over this period, articles on phenotypic responses
to between-population outbreeding increased in publica-
tion frequency roughly linearly with time (Figure 1).
Most (58.1%) of the 93 articles in the review used plants
as study taxa (Figure 2). Fish were also well represented
in the review dataset. The numbers of effect size estimates
contributed by different taxonomic groups corresponded
approximately with the numbers of articles focussing on
these groups in the review (Figure 2). 61.2% of effect sizes
were for traits that were components of fitness (fecundity,
survival, viability and compound measures of fitness;
Figure 3).

Quantitative synthesis
Study-mean effect sizes were evenly distributed in funnel
plots (Additional file 1: Figures S5, S6), and showed no
obvious signs of asymmetry indicative of publication
bias. The Egger test for funnel plot asymmetry was non-
significant (intercept = 0.41, p = 0.166).

Meta-analyses with a single explanatory variable
On average, hybrid offspring experienced neither a
phenotypic benefit nor a cost to outcrossing (+2.6%
phenotypic change relative to parents; 95% credible
interval −1.0–6.4%; pMCMC (Bayesian p-value) = 0.156;
Figure 4a).
The trait type, fitness class (whether a trait was a

component of fitness or not), trait timing, generation,
taxon category and observation environment predictors
contained individual factor levels with which outbreed-
ing responses varied significantly (Figure 4; Additional
file 1: Table S9). Of these, only trait type, fitness class
and trait timing improved overall model goodness-
of-fit, as judged by DIC (Table 6). Physical distance
separating parent populations improved model fit,
according to DIC, but parameters for this explanatory
variable did not differ significantly from 0. No other



Table 4 Summary of the article assessment procedure

Stage of article
assessment

Total number
assessed

Subset assessed in
duplicate (% of total)

Number passing
assessment

Agreement level, к
(interpretation according to [43])

Title assessment 9631 600 (6.2) 905 0.61 (Substantial)

Abstract assessment 905 200 (22.1) 285 0.49 (Moderate)

Fulltext assessment 285 40 (14.0) 93* 0.83 (Almost perfect)

Objectivity of article assessment was determined using the Kappa coefficient of agreement via independent assessments of a subset of articles [31].
*17 articles could not be assessed and were excluded at this stage due to being written in a language other than English, because of unanswered data requests,
or because the original source material could not be located or no longer existed. Data were either unavailable or not extractable for a further 13 articles.
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variables were significant predictors of outbreeding re-
sponses (Figure 4; Table 6; Additional file 1: Table S9).
Outbreeding responses varied significantly with trait

type. Growth-rate and “other” trait types showed the
greatest hybrid benefit following outcrossing (Figure 4d;
Additional file 1: Table S9). Defence, survival and viabil-
ity trait types showed the most negative responses to
outbreeding. Orthogonal contrasts within the trait type
predictor indicated that fitness component traits (sur-
vival, viability, fecundity traits and compound measures
of fitness) responded more negatively to outbreeding
than all other traits (pMCMC = 0.024; Figure 5). This
difference appeared to be driven by survival and viability
traits, which responded significantly more negatively to
outbreeding than the remaining fitness component traits
(pMCMC = 0.004; Figure 5). The outbreeding responses
of viability traits did not differ significantly from those
of the remaining later acting survival traits (pMCMC =
0.76; Additional file 1: Table S12).
The more negative response of fitness components to

outbreeding was borne out by our fitness class predictor,
which grouped trait types depending on whether they
were components of fitness or not. Outbreeding responses
were consistently less positive for traits that were compo-
nents of fitness relative to other traits (pMCMC < 0.001;
Figure 4c, Additional file 1: Table S9). Fitness component
traits showed outbreeding responses that were close to the
mid-parent value (0.0% phenotypic change relative to the
mid-parent), and not consistently different from zero
(Figure 4c, Additional file 1: Table S9). The remaining
non-fitness component traits conferred a consistent bene-
fit to hybrids on outcrossing (by 6.6%).
Traits that acted during the middle or later stages of the

lifecycle showed significantly more positive responses to
outbreeding compared with early acting traits (pMCMC =
0.006 and 0.004 respectively). The absolute outbreeding
response in late-acting traits was also significantly greater
than zero (the mid-parent phenotype; Figure 4e).
F1 hybrids experienced a (non-significant) benefit to

outbreeding (3.7% benefit in phenotype relative to the
mid-parent value; pMCMC = 0.064;). In the F2, hybrids
experienced a significantly lower phenotypic response to
outbreeding than F1 hybrids (Figure 4b; pMCMC <
0.001; Additional file 1: Table S9). F2 and F3 hybrids
experienced a net cost to outbreeding (−4.7% and −15.9%),
but these responses were not consistently different from
the mid-parent phenotype (Figure 4b). Results for the F3
generation were supported by only a very small number of
articles and effect sizes.
There was little evidence that outbreeding responses

were explained by high-level taxonomy. Only mammals
showed outbreeding responses that differed significantly
from parent phenotypes (pMCMC = 0.01; Figure 4f ), and
this taxonomic group was represented by data from only
four articles.
The association of physical distance with outbreeding

responses was very small, and not significantly different
from zero (−0.5% phenotypic change for each log unit of
distance; pMCMC = 0.368). Only ~80% of articles reported
useable data on physical distance.
Observation environment was not a consistent pre-

dictor of the outbreeding response. However, we found
that phenotypic responses to outbreeding observed in
lab environments were of consistently lower magnitude
than those observed in natural populations or habitats
(Figure 4k; pMCMC = 0.002; Additional file 1: Table S9).
Neither population status, nor study quality score were
consistent predictors of outbreeding responses (Figure 4;
Table 6).

Meta-analysis with multiple explanatory variables
We used a model reduction approach to determine the set
of explanatory variables that best predicted the data. The
best-fitting minimal model contained only the trait type
predictor (Figure 4d; Additional file 1: Tables S10 & S11).
Figure 6 shows outbreeding responses for different fit-

ness classes (representing trait type; fitness components
or not) in different generations. We could not fit a
model including an interaction between trait type and
generation because some trait types contained data from
only one generation. F1 fitness component traits showed
little response to outbreeding (+1.3% relative to parent
lineages; Figure 6). However, fitness component traits
showed a significantly negative response to outbreeding
in the F2 (−8.8%). The remaining non-fitness component
traits showed a consistently positive response to out-
breeding during the F1 (+6.9%), and also a positive re-
sponse during the F2 (+3.5%; Figure 6).



Table 5 Summary of species and studies included in this review

Database record number Species Taxon category Source No. effect sizes

24 Litoria peronii Amphibian [44] 1

195 Rana temporaria Amphibian [45] 2

4211 Boeckella dilatata Crustacean [46] 1

214 Tigriopus californicus Crustacean [47] 4

258 Tigriopus californicus Crustacean [48] 12

458 Tigriopus californicus Crustacean [49] 66

31 Tigriopus californicus Crustacean [50] 6

10135 Gambusia holbrooki Bony fish [51] 5

10138 Heterobranchus longifilis Bony fish [52] 10

10130 Labeo rohita Bony fish [53] 2

189 Micropterus salmoides Bony fish [54] 8

10150 Micropterus salmoides Bony fish [55] 4

209 Micropterus salmoides Bony fish [56] 4

802 Oncorhynchus gorbuscha Bony fish [57] 2

3933 Oncorhynchus gorbuscha Bony fish [58] 2

263 Oncorhynchus gorbuscha Bony fish [59] 2

10133 Oncorhynchus mykiss Bony fish [60] 10

239 Oncorhynchus mykiss Bony fish [61] 14

9192 Oncorhynchus mykiss Bony fish [62] 8

2400 Oncorhynchus tshawytscha Bony fish [63] 8

10097 Poeciliopsis occidentalis occidentalis Bony fish [64] 7

10896 Salmo salar Bony fish [65] 2

11269 Salmo salar Bony fish [66] 14

10834 Salmo salar Bony fish [67] 4

3269 Salmo salar Bony fish [68] 5

10094 Salmo trutta Bony fish [69] 2

10154 Salvelinus alpinus Bony fish [70] 4

11273 Physa acuta Gastropod [71] 4

33 Physa gyrina Gastropod [72] 1

771 Oedipoda germanica Insect [73] 2

141 Ovis canadensis Mammal [74] 3

2488 Panthera leo Mammal [12] 1

3471 Peromyscus leucopus Mammal [75] 4

11140 Puma concolor Mammal [7] 4

2412 Argopecten circularis Bivalve [76] 2

2413 Argopecten circularis Bivalve [77] 1

3514 Caenorhabditis briggsae Nematode [78] 2

424 Agrostemma githago Plant [79] 2

10860 Antirrhinum majus Plant [80] 4

9631 Arnica montana Plant [81] 1

10533 Aster amellus Plant [82] 4

118 Avena barbata Plant [83] 5

354 Brassica cretica Plant [84] 1

154 Calylophus serrulatus Plant [85] 12

54 Campanula americana Plant [86] 6

Whitlock et al. Environmental Evidence 2013, 2:13 Page 10 of 21
http://www.environmentalevidencejournal.org/content/2/1/13



Table 5 Summary of species and studies included in this review (Continued)

9624 Campanula americana Plant [87] 3

10095 Castilleja levisecta Plant [88] 2

151 Chamaecrista fasciculata Plant [89] 4

3764 Clarkia tembloriensis Plant [90] 8

339 Cochlearia bavarica Plant [91] 3

197 Dalechampia scandens Plant [92] 6

3323 Delphinium nelsonii Plant [93] 12

22 Digitalis purpurea Plant [94] 8

11205 Echinacea angustifolia Plant [95] 2

3373 Espeletia schultzii Plant [96] 2

505 Eucalyptus globulus Plant [97] 5

502 Eupatorium perfoliatum Plant [98] 5

502 Eupatorium resinosum Plant [98] 5

3307 Gentiana pneumonanthe Plant [99] 3

515 Gentianella germanica Plant [100] 1

10096 Gentianella germanica Plant [101] 6

11035 Geum urbanum Plant [102] 8

10531 Helianthus verticillatus Plant [103] 7

123 Hypochoeris radicata Plant [104] 10

3369 Ipomopsis aggregata Plant [105] 8

1267 Lobelia cardinalis Plant [106] 1

488 Lobelia siphilitica Plant [107] 3

404 Lotus scoparius Plant [108] 1

3325 Lychnis flos-cuculi Plant [109] 5

11152 Lychnis flos-cuculi Plant [110] 3

10662 Macadamia tetraphylla Plant [111] 2

10567 Mercurialis perennis Plant [112] 1

47 Panax quinquefolius Plant [113] 4

424 Papaver rhoeas Plant [79] 1

4224 Phlox drummondii Plant [114] 3

1852 Pinus banksiana Plant [115] 2

1706 Pinus pinaster Plant [116] 3

172 Piriqueta caroliniana Plant [117] 12

11042 Plantago lanceolata Plant [118] 6

64 Ranunculus reptans Plant [119] 18

170 Ranunculus reptans Plant [120] 3

3363 Sabatia angularis Plant [121] 9

411 Sarracenia flava Plant [122] 2

231 Scorzonera humilis Plant [123] 1

9737 Senecio pterophorus Plant [124] 3

392 Shorea cordifolia Plant [125] 6

424 Silene alba Plant [79] 2

10585 Silene latifolia Plant [126] 4

73 Silene latifolia Plant [127] 6

167 Silene vulgaris Plant [128] 6

332 Silene vulgaris Plant [129] 12
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Table 5 Summary of species and studies included in this review (Continued)

392 Syzygium rubicundum Plant [125] 6

278 Thymus vulgaris Plant [130] 3

182 Viola pumila Plant [131] 2

182 Viola stagnina Plant [131] 2

65 Zostera marina Plant [132] 2

4539 Zootoca (Lacerta) vivipara Reptile [133] 3

4060 Botryllus schlosseri Tunicate [134] 18

The fifth column refers to the number of effect size estimates contributed by each study.
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Heterogeneity in outbreeding responses
The study variance component (describing heterogeneity
in outbreeding response among studies) was 0.0145 in the
minimal model (Table 6), and accounted for 39.5% of total
heterogeneity in outbreeding responses. The within-study
(between effect size) variance accounted for 27.1% of het-
erogeneity. The remaining heterogeneity (33.4%) was at-
tributable to measurement error variance (variation within
effect sizes).

Discussion
In this review we have shown that hybrids arising from
intraspecific outbreeding express phenotypes that do not
differ from those expected given parent phenotypes
(+2.6% phenotypic change; pMCMC = 0.156). However,
we also identified predictors with which outbreeding re-
sponses were associated significantly, and heterogeneity
in responses among studies.

Reasons for heterogeneity
There was significant heterogeneity in outbreeding re-
sponses among studies. This among-study variation in
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Figure 1 Publication frequency of articles presenting data on
phenotypic responses to outbreeding over time. The articles
shown are limited to those included in this systematic review.
outbreeding responses could be due to species-specific
or population-specific effects, or other study-specific
contexts. In other words, part of this heterogeneity may
be attributable to unmeasured, but biologically signifi-
cant case-specific variables. These might include popula-
tion demographic history and isolation, genetic architecture
and differential adaptation between hybridising populations
[17,21]. This study-level contextual variation must be taken
into account when interpreting the relationships between
explanatory variables and outbreeding responses described
in this review.
We found that trait type explained variation in out-

breeding responses, and was the single best predictor of
these responses. Fitness components (especially survival
and viability) had consistently lower outbreeding re-
sponses than other traits. In the only other meta-analysis
on outbreeding responses [16], McClelland and Naish
found that overall positive responses to outbreeding in
fish species were driven largely by the responses of mor-
phological traits. This observation is consistent with our
result that non-fitness traits show a significantly more
positive response to outbreeding than fitness component
traits. Our result implies that the traits most important
in regulating population size, growth rate and persist-
ence may be those affected most negatively by outbreed-
ing. In animals, fitness traits are also those influenced
most strongly by inbreeding depression [135]. This effect
is thought to be driven by differences in the extent of
dominance variance between fitness and other traits, or
in the average directionality of dominance interactions
[135]. However, these arguments cannot be extended
easily to explain our result. In fact, they lead to the ex-
pectation that fitness traits should respond more posi-
tively to outbreeding than other traits, at least where the
source populations are inbred. We suggest that our
result implies that fitness component traits are under-
pinned to a greater extent by epistatic interactions
among loci than is the case for other traits. This sugges-
tion is consistent with the observation that fitness is less
heritable than other traits, and the idea that this lower
heritability is associated with a greater non-additive
component to the phenotype (reviewed in [136]). More
broadly, this finding suggests that it may be unrealistic
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Figure 2 Representation of different high-level taxonomic categories within the systematic review. (a) Frequencies of effect sizes by
taxonomic category. (b) Frequencies of studies by taxonomic category.
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to understand fitness responses to outbreeding by con-
sidering only extrinsic outbreeding effects (i.e. taking
into account only additive genetic variation).
We found that hybrid generation was also significantly

associated with phenotypic responses to outbreeding.
Specifically, there was a cost to outbreeding in the F2
and F3 relative to the F1. This shift in the hybrid out-
breeding response over generations is expected from
theory [17]. Between-population outbreeding creates
between-population heterozygosity across the genome
in the F1. This process can mask the expression of
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Figure 3 Frequency of trait types within our outbreeding
response effect size data. Bars with black shading refer to
components of fitness (viability, fecundity, survival, compound
measures of fitness); open bars refer to other traits.
deleterious alleles that have drifted to high frequency in
either of the parent populations, resulting in an improved
hybrid phenotype (and potentially greater fitness, i.e.
heterosis) relative to either parent population. In the F2
generation segregation reduces the between-source he-
terozygosity by half, while recombination breaks up fa-
vourable epistasis present in either source population.
Thus we expect a decrease in the expected phenotype in
F2 compared with F1 individuals. From a conservation
perspective, the crucial question is whether the absolute
fitness of F2 or later generation hybrids is lower or greater
than the mid-parent value. If the hybrids are less fit than
their parents (outbreeding depression), then there has
been a true cost to hybridisation, and this may comprom-
ise conservation plans that result in population admixture
and hybridisation. Our observation that F2 individuals
have decreased phenotypic performance relative to F1
individuals is consistent with the synthesis presented
by Edmands [15]. However, in their meta-analysis,
McClelland and Naish found positive responses to out-
breeding (relative to parental lineages) in both the F1 and
F2 [16]. This result runs counter to our observation. We
suggest that the difference arose because we were able to
control for between-study variation in outbreeding re-
sponses, by fitting study-level random effects, allowing a
more sensitive comparison of F1 and F2 responses. How-
ever it may be that McClelland and Naish’s inclusion of
outbreeding between species, inclusion of outbreeding be-
tween farmed lineages, or focus on fish could also explain
the difference in outcomes.
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Figure 4 Variation of outbreeding responses with explanatory variables (effect modifiers). Outbreeding responses are given as proportion
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A breakdown of trait responses by generation indi-
cated approximate parity of F1 fitness with the mid-parent
phenotype (Figure 6). Other (non-fitness component)
traits showed a consistent expected benefit following out-
breeding during the F1. During the F2, fitness components
suffered a significant net cost relative to parent fitness.
These results suggest that there may be absolute fitness
costs to outbreeding in the F2 (outbreeding depression).
However, we must be cautious about this suggestion
for two reasons. First, there were only 22 studies with



Table 6 Model fitting summaries for meta-analyses containing a single fixed-effects explanatory variable

Model Fixed effects DIC Vs
DIC

Δ
DIC

Range in
DIC

Study variance
component

Residual variance
component

Min. effective
samples

Max. auto-
correlation

1 ~ Intercept −576.1 - - 1.7 0.0200 0.0110 889 0.058

2 ~ Generation −573.4 −576.1 2.7 1.7 0.0204 0.0110 1000 0.027

3 ~ Fitness class −610.9 −576.1 −34.8 1.8 0.0187 0.0102 1000 0.044

4 ~ Trait type −619.4 −576.1 −43.4 1.3 0.0145 0.0099 908 0.032

5 ~ Trait timing −586.6 −576.1 −10.5 0.4 0.0196 0.0107 1000 0.050

6 ~ Taxon category −571.0 −576.1 5.0 1.0 0.0187 0.0111 883 0.061

7 ~ log(physical
distance)

−467.8 −464.6 −3.2 0.6 0.0246 0.0107 856 0.077

8 ~ Lifespan category −575.6 −576.1 0.5 1.2 0.0194 0.0110 1000 0.028

9 ~ Mating system −574.5 −576.1 1.5 1.2 0.0205 0.0110 1000 0.044

10 ~ Population status −576.7 −576.1 −0.7 1.2 0.0201 0.0109 770 0.041

11 ~ Observation
environment

−573.6 −576.1 2.4 2.4 0.0178 0.0110 840 0.086

12 ~ Quality score −575.8 −576.1 0.3 3.4 0.0200 0.0109 1000 0.032

DIC (column two) gives the deviance information criterion. “Vs. DIC” gives the DIC for the corresponding model including only an intercept term. “Δ DIC” gives the
difference in DIC between columns two and three. Range in DIC gives the range in DIC among three replicate model runs, as an indication of the extent of Monte
Carlo error in DIC estimates. Study and residual variance components are variance estimates for study and residual random effects. “Min. effective samples” gives
the minimum number of effective samples for the parameters in the model. “Max. auto-correlation” gives the maximum absolute sample autocorrelation at lag 1
for any parameter in the model.
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observations on F2 hybrid performance. Second, we
do not know whether these 22 studies made observa-
tions using species and population pairs that are rep-
resentative of all possible intraspecific outbreeding
contexts. The effects in Figure 6 strengthen our ar-
gument that epistasis has a relatively greater role in
underpinning fitness component traits. We observed
overall outbreeding depression (fitness costs) in the
F2, but no such F2 costs in traits that were not fit-
ness components. The former result is highly suggest-
ive of a role for epistasis, whereas the generational shift in
hybrid phenotype for non-fitness component traits may
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Figure 5 Outbreeding responses vary between fitness
component and all other traits, and between survival traits
(survival and viability) and other traits within the fitness
component category (fecundity traits and integrated or
multiplicative measures of fitness). Posterior means and credible
intervals were estimated as contrasts within the trait type predictor.
X-axis scale, point estimates, error bars and abbreviations as in
Figure 4.
be consistent with the loss of between-source heterozy-
gosity [17].
Outbreeding responses for early acting traits were sig-

nificantly lower than those for mid- and late-acting
traits. It is possible that this result was caused by mater-
nal effects, such that F1 phenotypes are a function of
maternal parent phenotypes, and F2 phenotypes are a
function of maternal F1 phenotypes [24,137]. This re-
sponse to the maternal environment during outbreeding
can result in F2 phenotypes exceeding F1 phenotypes.
Early acting traits showed an F2 decline in phenotype
(relative to F1) closely similar to that of mid and late
-0.4 -0.2 0.0 0.2 0.4
Outbreeding response

F1, fitness components

F2, fitness components

F1, other traits

F2, other traits

81 264

18 61

58 169

12 32

nST nES

Figure 6 Fitness class (fitness component or remaining trait
types) and generation (F1 or F2) predict variation in
outbreeding responses. Fitness components were defined as
viability, survival, fecundity traits or integrated/ multiplicative
measures of fitness. Posterior means and credible intervals were
estimated by fitting a fitness class × generation interaction. X-axis
scale, point estimates, error bars and abbreviations as in Figure 4.
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acting traits (Additional file 1: Figure S12). These results
indicate that maternal effects may be weak relative to
the effects of the decline of between-source heterozygos-
ity in the F2, or the break-up of internal co-adaptation.
Most (86.6%) of the effect sizes for early acting traits were
viability traits (early survival). Outbreeding responses for
these traits did not differ significantly from those of other
(mid and late acting) survival traits. Thus, an alternative
explanation for the more negative outbreeding responses
observed in early acting traits may be that they were
(almost all) survival traits.
The genetic divergence that underpins outbreeding re-

sponses depends in part on the extent of demographic
connectivity between the populations by migration. We
did not record migration rates per se, although we did
record physical distance between crossed populations, as
a proxy for this. We detected only very limited (and
non-significant) variation in the outbreeding response
with physical distance. This may be because physical dis-
tance scales differently with dispersal ability (and hence
potential connectivity) for each species. Alternatively,
there may be no relationship, or a non-linear relation-
ship between outbreeding responses and physical separ-
ation of inter-mating populations.

Review limitations
Review scope
The scope of our systematic review was limited to intra-
specific, post-zygotic outbreeding effects that involved at
least one natural population, and excluded taxonomically
complex outbreeding contexts. Thus, we cannot generalise
our results to comment on taxonomically complex sit-
uations (hybrid swarms and speciation complexes),
outbreeding between species, outbreeding exclusively
between farmed populations, agricultural or horticul-
tural cultivars or strains, or pre-zygotic outbreeding
barriers.
Our effect size was a measure of intrinsic outbreeding

responses [15,18], i.e. the deviation of hybrid phenotype
from the mid-parent phenotype. Thus we cannot use our
results to comment on the extent or magnitude of extrin-
sic responses to outbreeding (deviations in hybrid per-
formance from either of the parents, due to additive gene
effects).
Where populations mix under natural (uncontrolled)

conditions, a broader range of crosses would be pro-
duced than the set of hybrid types that we considered.
For example F1 hybrids could backcross with individuals
that have a pure parental ancestry. Progeny of back-
crosses between F1 and parental lineages are expected to
possess between-source heterozygosity equivalent to F2
and later generation hybrids but with a reduced epistatic
cost [17]. Thus, backcrossing may allow beneficial alleles
to escape deleterious hybrid genetic backgrounds, and
introgress into populations that have received managed
immigration. However, where internal co-adaptation is
between nuclear and cytoplasmic genomes, backcrossing
may restore epistatic fitness loss only in one backcross
direction [50].

Sources of bias
Visual inspection of funnel plots and a test of funnel plot
asymmetry indicated little evidence for publication bias
(either towards phenotypic outbreeding costs, or towards
outbreeding benefits). Identification of publication bias
from funnel plots may be prone to error in smaller
meta-analyses (e.g. containing ~ 10 studies; [138]), but our
data were based on 98 studies, and should be less sensi-
tive to this issue of sample size. Bias would have most
effect on our results and conclusions if any studies not
included in our review (e.g. unpublished work, sources
of grey literature that we did not consider) reported out-
breeding responses that differed systematically from
those in the studies that we did include. However, out-
breeding responses may be biased in either of two direc-
tions: towards fitness costs (outbreeding depression), or
towards fitness gains (heterosis), depending on assump-
tions made by the researcher. Thus, it is not obvious
that any bias in outbreeding responses should influence
our meta-analyses systematically.
The nested structure of our meta-analytic model pre-

cluded an assessment of the sensitivity of the results to
the “file drawer problem” by traditional routes, e.g. by
quantifying the number of missing non-significant studies
required to make the observed pooled effect sizes non-
significant (“fail-safe n”; [139]). The value of calculating a
fail-safe n for the significance of fixed effects within our
models could, in any case, be called into question, given
the study-level heterogeneity in outbreeding responses.

Limitations of the primary research literature
We found relatively few studies that followed later gener-
ation responses to outbreeding (F3 and later hybrid gener-
ations). Thus the available evidence provides a poor basis
for understanding the longer-term consequences of intra-
specific outbreeding (i.e. the outbreeding responses of
greatest potential interest to conservation practitioners).
Only 20.4% of articles included in our review observed
outbreeding responses within natural populations. This
represents a shortcoming of the literature, given that the
effects of outbreeding may differ between natural and lab
environments (Figure 4k). Wherever possible, investiga-
tors should seek to conduct studies on phenotypic out-
breeding effects either in natural populations or habitat, or
under conditions that approximate as far as possible those
within natural populations. Many articles also lacked clarity
with regard to their crossing designs, their level of replica-
tion (attempted and realised), and to what hierarchical level
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in the sampling design measurement error referred (e.g. in-
dividual level, family level, treatment level).
Review conclusions
Implications for managing between-population
outbreeding
The available evidence has implications for several sorts of
conservation measures that result in between-population
outbreeding. These measures include “range restoration”,
where individuals are translocated (re-introduced) within
the existing native range of a species [140,141], “rein-
forcement” where individuals are translocated to a particu-
lar population that is in decline, in order to bolster that
population demographically [141,142], and assisted migra-
tion e.g. [143], in cases where the translocated individuals
come from multiple source populations. The conservation
practitioner is interested in whether between-population
outbreeding influences the outcome of these conservation
measures, increasing or decreasing population growth or
viability. The results of this review do not relate directly to
the effect of outbreeding on demographic sustainability.
However, our review contributes to this understanding by
synthesising the effects of outbreeding on phenotypes of
hybrid offspring relative to parent lineages. These pheno-
types, including fitness components, are expected to con-
tribute to the growth and viability of populations.
The available evidence indicates that between-population

outbreeding may lead to phenotypic benefits in the F1, but
could also lead to absolute costs to fitness in the F2 and
later generations (the latter result is based on 18 studies;
Figure 6). However, not all outbreeding will lead to out-
breeding depression in the F2 generation. This is evident if
we consider the study-level heterogeneity in outbreeding
responses, which imply scatter in outbreeding responses
around the typical F2 fitness response. In addition, there
are good reasons for supposing that outbreeding depression
may be more likely for some population pairs than for
others. Previous studies have suggested that outbreeding
depression is likely when outbreeding populations have
been isolated for many generations (especially if they
occupy divergent environments), are genetically diver-
gent or are differentiated in chromosome structure or
number [21,26]. These factors influence (or are mea-
sures of ) the underlying basis of outbreeding depres-
sion, i.e. adaptive differentiation, and internal (epistatic)
co-adaptation within the genome. Therefore, the avail-
able evidence suggests that conservation practitioners
should avoid mixing population pairs that meet these
conditions, since there is an enhanced risk that their
admixture would lead to outbreeding depression [21].
Frankham et al. [21] give specific guidelines and a deci-
sion making tool to assist in identifying population
pairs whose mixture may risk outbreeding depression.
Implications for research
The heterogeneity in outbreeding responses we observed
among studies suggests that future research should strive
to document as carefully and as fully as possible the fac-
tors that may lead to this variation. These could include
the level of demographic isolation (present and historical)
that a population has been exposed to, generation time, ef-
fective population size, the extent of cytogenetic differ-
ences between crossing populations, and the degree of
environmental differentiation between hybridising popula-
tions (relative to other populations in a species’ range).
This would allow future reviews to model this heterogen-
eity and to begin to understand the causes of between-
species and between-population differences in outbreeding
responses. In addition, researchers should aim to observe
hybrid offspring and parental lineages in environments
that are as close to natural as possible. More generally,
other aspects of study design that improve the internal
and external validity of line-cross analyses and investi-
gations into phenotypic outbreeding responses (Table 3)
should be incorporated into future studies. For example,
we suggest that prospective authors of outbreeding studies
should aim to follow the fitness effects of between-
population outbreeding into at least the F2 generation,
and ideally to incorporate non-inbred backcrosses into
their designs as well. Where resources allow, researchers
should carry out control crosses within parental popula-
tions (e.g. F1, F2 etc. within population controls) as the
gold standard for comparison with hybrid offspring.
Ideally, researchers would also follow non-outbred crosses
within both parent populations as comparators for hybrid
performance. Wherever possible, investigators should
measure total fitness rather than individual components of
fitness (i.e. the contribution to future generations resulting
from the aggregate effects of survival and reproduction).
These improvements to study design should yield a clearer
view of the conditions under which either heterosis, or
outbreeding depression may occur following between-
population outcrossing.
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