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Originality-Significance Statement 

The authors confirm that all of the work is original. Ammonia oxidizing bacteria (AOB) and 

archaea (AOA) contribute to the emission of the greenhouse gas N2O. Our study corroborate 

current understanding of the metabolic pathways leading to higher N2O production by AOB 

than by AOA, but provides candid assessments of their possible  contribution to N2O 

emissions through high resolution gas kinetics and product stoichiometry measured under 

physiologically realistic and ecologically relevant conditions; low cell density and gradual 

depletion of oxygen. The data also shed new light on the physiological role of the 

denitrification pathway in AOB; indicating that it plays a negligible role in sustaining their 

respiratory metabolism; accounting for less than 1.2% of the electron flow even under severe 

oxygen limitation. A more plausible physiological role for denitrification is redox balancing, 

which would explain the high N2O production rates at 4 mM TAN than at 1 mM. An important 

environmental implication is that the N2O yield of AOB increases with increasing ammonium 

concentration, and that fertilizer application level controls the N2O/NO2
- product ratio of 

nitrification in agricultural soils. 
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Summary 

Ammonia oxidising bacteria (AOB) are thought to emit more nitrous oxide (N2O) than 

ammonia oxidising archaea (AOA), due to their higher N2O yield under oxic conditions and 

denitrification in response to oxygen (O2) limitation. We determined the kinetics of growth 

and turnover of nitric oxide (NO) and N2O at low cell densities of Nitrosomonas europaea 

(AOB) and Nitrosopumilus maritimus (AOA) during gradual depletion of TAN (NH3 + NH4
+)  

and O2. Half-saturation constants for O2 and TAN were similar to those determined by 

others, except for  the half-saturation constant for ammonium in N. maritimus (0.2 mM), 

which is orders of magnitudes higher than previously reported. For both strains, cell-specific 

rates of NO turnover and N2O production reached maxima near O2 half-saturation constant 

concentration (2-10 µM O2) and decreased to zero in response to complete O2-depletion. 

Modelling of the electron flow in N. europaea demonstrated low electron flow to 

denitrification (≤1.2% of the total electron flow), even at sub-micromolar O2 concentrations. 

The results corroborate current understanding of the role of NO in the metabolism of AOA 

and suggest that denitrification is inconsequential for the energy metabolism of AOB, but 

possibly important as a route for dissipation of electrons at high ammonium concentration.  
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Introduction 

Emissions of nitric oxide (NO) and nitrous oxide (N2O) from soil and marine environments 

are mainly driven by heterotrophic denitrification and aerobic ammonia oxidation (e.g. Hu et 

al., 2015; Santoro et al., 2011; Hink et al., 2016). The pathways leading to N2O and NO 

emissions from ammonia (NH3) oxidising organisms are only partially understood and differ 

between ammonia oxidising bacteria (AOB) and archaea (AOA). Both groups oxidise 

ammonia to hydroxylamine by ammonia monooxygenase (Prosser, 1989; Vajrala et al., 

2013), which is further oxidised to nitrite (NO2
-) by hydroxylamine dehydrogenase (EC 

1.7.2.6; formerly known as hydroxylamine oxidoreductase) in AOB (Hooper et al., 1978). 

Hydroxylamine dehydrogenase has not been identified in AOA, where hydroxylamine 

oxidation is proposed to involve NO as an essential intermediate. NO is thought to support 

oxidation of hydroxylamine to two molecules of NO2
-, one of which is reduced to NO, 

mediated by nitrite reductase (encoded by nirK; Kozlowski et al., 2016a). NO has been 

speculated to be an enzyme-bound intermediate in AOB (Arp and Stein, 2003; Bock and 

Wagner, 2006). However, the reaction stoichiometry is identical in both groups (Eq. 1). 

 NH3 + 1.5O2 → NO2
- + H+ + H2O  (Eq. 1) 

While both groups possess a nitrite reductase, most AOB also possess a gene encoding a 

nitric oxide reductase, thus enabling them to sustain respiratory metabolism under oxygen 

(O2) limitation, using NO2
- and NO as alternative electron acceptors, performing so-called 

nitrifier denitrification (Arp and Stein, 2003; Stein, 2011). Genes encoding a nitrous oxide 

reductase have not been identified in the genomes of any cultured ammonia oxidiser, which 

is consistent with physiological observations (e.g. Chain et al., 2003; Norton et al., 2008; 

Walker et al., 2010; Campbell et al., 2011; Tourna et al., 2011; Spang et al., 2012). Thus, 

nitrifier denitrification (by AOB) is hypothetically a strong contributor to N2O emission from 

soils, for which there is some circumstantial evidence (Wrage et al., 2001, Kool et al., 2011; 

Zhu et al., 2013).  
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During unrestricted aerobic growth, AOB emit a relatively low fraction of the oxidised NH3-N 

as N2O-N (N2O yield: N2O-N per NO2
--N generated from NH3-N oxidised), ranging from 

~0.1% in Nitrosospira strains (Jiang and Bakken, 1999; Aakra et al., 2001) to ~1% in the 

type strains Nitrosospira multiformis ATCC 25196 and N. europaea ATCC 19718 (Jiang and 

Bakken, 1999; Anderson et al., 1993). Anderson et al. (1993) also reported that 2.6% of 

NH3-N oxidised is emitted as NO by N. europaea. N2O production under fully oxic conditions 

may result from nitrosation reactions involving both hydroxylamine and NO2
- (Zhu-Barker et 

al., 2015) or incomplete oxidation of hydroxylamine by hydroxylamine dehydrogenase 

resulting in the production of some NO in addition to the main product NO2
- (Hooper and 

Terry, 1979; Hooper et al., 1997). Nitrifier denitrification by AOB invariably increases in 

response to O2 limitation (Goreau et al., 1980; Remede and Conrad, 1990; Anderson et al 

1993; Dundee and Hopkins, 2001; Wrage et al., 2001; Zhu et al., 2013; Stieglmeier et al., 

2014), most likely through activation of denitrification enzymes whose expression is not 

completely repressed by oxygen (Whittaker et al., 2000; Yu and Chandran, 2010), the rate 

possibly being controlled by competition for electrons between denitrification enzymes and 

terminal oxidases (Anderson et al 1993). AOA produce N2O during unrestricted aerobic 

growth through so-called ‘hybrid formation’, which is assumed to result from a chemical 

nitrosation reaction involving the ammonia oxidation intermediates hydroxylamine and NO 

(Stieglmeier et al., 2014; Kozlowski et al., 2016a). N2O yield appears to be in the lower 

range of that for AOB; i.e. 0.004 – 0.23% (Jung et al., 2011; Santoro et al., 2011; Kim et al., 

2012; Jung et al., 2014; Stieglmeier et al., 2014) with no or only marginal increase observed 

under O2 limitation (Jung et al., 2011; Löscher et al., 2012; Stieglmeier et al., 2014, Qin et 

al., 2017). Both emissions of NO and the capacity to consume external NO have been 

observed in AOA cultures, consistent with NO being an intermediate during ammonia 

oxidation (Martens-Habbena et al., 2015; Kozlowski et al., 2016a). 

NO turnover and N2O production are therefore tightly connected to oxidation of NH3 to NO2
- 

in both AOA and AOB, since electrons used during respiration are delivered by the oxidation 
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of hydroxylamine. As a consequence, AOB cannot sustain nitrifier denitrification under 

complete anoxia, as confirmed by Anderson et al. (1993) for N. europaea, but this is 

apparently contradicted by Kozlowski et al. (2016a; 2016b), who invariably observed sharp 

increases in NO and N2O production after fast O2 depletion in micro-respirometry 

experiments with high cell densities.  

To determine the effect of O2 availability on NO turnover and N2O production by AOB and 

AOA over longer time scales and at lower cell densities, a robotised incubation system 

(Molstad et al., 2007) was used. Batch cultures (AOB: N. europaea, AOA: N. maritimus) with 

low initial cell concentrations were monitored over periods of 4 - 10 days as they gradually 

became limited by either O2 or NH3. The experiments were designed to determine the 

affinities for O2 and ammonium, the product stoichiometry as controlled by the concentration 

of O2, and to test specific hypotheses regarding the contrasts between AOA and AOB 

described above. N2O yield in AOB was predicted to increase strongly with decreasing O2 

concentration, but not in AOA. Furthermore, it was hypothesised that cell-specific rates of 

N2O production by both AOB and AOA decrease to zero in response to complete depletion 

of O2 and that AOA are unable to scavenge NO in the absence of O2. The nitrifier 

denitrification rate in AOB was hypothesised to be controlled by competition for electrons 

between terminal oxidases and nitrite and nitic oxide reductases, which was tested by 

comparing observed and modelled cell-specific electron flow to nitrifier denitrification as a 

function of O2 concentration. 

Results 

Kinetics of ammonia oxidation, oxygen consumption and NO and N2O production 

Concentrations of NO2
-, O2, NO, N2O and N2 were determined during batch growth of N. 

maritimus and N. europaea as either O2 or total ammonia nitrogen (TAN, NH4
+ + NH3) was 

depleted, depending on their initial concentrations (Fig. 1). In vials with 4 mM TAN (N. 

europaea only; Fig. 1A, D, G and J), TAN was in excess for all initial O2 concentrations, 
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resulting in depletion of O2 and NO2
- production in proportion to cumulative O2 consumption. 

In contrast, cultures containing medium with 1 mM TAN depleted either O2 (vials initially with 

~5 and 7 % O2), TAN (0.5 and 1 % O2) or both (3 % O2).  

In the vials with 7% O2, O2 consumption increased exponentially during the first 3 and 6 days 

of incubation of N. europaea and N. maritimus, respectively, until limited by declining 

concentrations of TAN. O2 concentrations continued to decline after TAN depletion, but this 

was due to sampling dilution only (Supporting Information Fig. S4). These data were used to 

estimate specific growth rate (µ), cell-specific O2 consumption rate (VO2) and growth yield (Y) 

during assumed unrestricted, exponential growth (Supporting Information Table S1). VO2 

values for N. europaea were similar at 1 and 4 mM TAN at ~7 fmol O2 cell-1 h-1. Estimated µ 

and Y for the 1 mM TAN treatment were ~0.04 h-1 and ~9.5 x 1012 cells mol-1 NO2
-, 

respectively, but both were ~23% lower for the 4 mM TAN treatment. This suggests some 

inhibition of N. europaea by NH4
+/NH3 at the higher TAN concentration. N. maritimus specific 

growth rate was of the same order as that of N. europaea and VO2 and Y were one order of 

magnitude lower and higher, respectively (Supporting Information Table S1). The initial cell 

densities were 0.5*106 and 1*106 cells mL-1 for N. europaea and N. maritimus, respectively. 

Final cell densities in the vials with 5 and 7% O2 were 107 mL-1  for N. europaea (1 mM TAN) 

and 5.5*107 mL-1 for N. maritimus.   

Nitrite and cell density were measured less frequently than gas concentrations, but based on 

the validated relationship between cumulative O2 consumption, NO2
- accumulation and cell 

density, O2 measurements were used to estimate both NO2
- concentration and cell density at 

each gas sampling point and the rates between each gas sampling. Thus, measured rates 

(TAN oxidation or gas production/consumption) could be converted to cell-specific rates. The 

cell-specific O2 consumption rates were used to estimate apparent maximum rates (Vmax) 

and half-saturation concentrations for O2 (kmO2) and TAN (kmTAN) according to two-substrate 

kinetics (Table 1 and Fig. 2). Further validation of the double Michaelis-Menten model is 

shown by regression of model predictions against measurements (Supporting Information 

This article is protected by copyright. All rights reserved.



8 
 

Fig. S5). kmO2 was similar for N. europaea and N. maritimus incubated with 1 mM NH4
+ (2.35 

and 2.13 µM, respectively). The estimated kmO2 for N. europaea would be 3.2 µM, if 

molecular diffusion towards the cell surface was ignored. This was inconsequential for N. 

maritimus. kmTAN was ~0.2 mM for N. maritimus and ~3 times higher for N. europaea (Table 

1). The high Vmax value estimated for N. europaea at 1 mM TAN (16.1 fmol O2 cell-1 h-1) 

could not be realised in this experiment, since the initial TAN concentration was only ~2 x 

kmTAN. At 4 mM TAN (~7 x kmTAN), however, O2 consumption rates close to Vmax would be 

expected. Instead, O2 consumption rates and growth rates were lower at 4 than at 1 mM 

TAN and Vmax estimated using the 4 mM TAN data was only 7.3 fmol O2 cell-1 h-1 (Supporting 

Information Fig. S8), presumably due to partial inhibition by NH4
+/NH3 at 4 mM TAN as 

suggested above. 

NO turnover 

Production of NO by N. europaea was detectable from the beginning of the incubation, with 

higher rates in the treatments with low initial O2 concentrations (Figs. 1G and H). 

Accumulation of NO in N. maritimus cultures was delayed and not detected before cultures 

had accumulated ~5 µmol NO2
- vial-1 (~0.1 mM NO2

-; Figs. 1F and I). Thus, NO production 

by N. europaea was clearly enhanced by O2 limitation, while this was not the case for N. 

maritimus (Fig. 3). In response to O2 depletion, N. europaea was able to reduce the NO 

concentration in some treatments (vials with 1 mM TAN and 0.5 and 1 % O2. Fig 1G and H). 

In contrast, N. maritimus was clearly unable to consume NO once O2 was depleted. In 

response to TAN depletion (vials with initial concentrations of 5 and 7% O2), both strains 

depleted NO rapidly. N. europaea grown at 4 mM TAN produced one order of magnitude 

more NO than at 1 mM. The contrasting NO kinetics of N. maritimus versus N. europaea 

resembles that observed by Kozlowski et al. (2016a) for the contrast between N. viennensis 

(AOA) and N. multiformis (AOB); the AOB organism increased its NO production gradually 

with declining oxygen concentration, while the AOA did not. However, in response to 
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complete oxygen depletion, Kozlowski et al. (2016) observed a sharp increase in NO for 

AOA, while this was clearly not the case for our strain.    

The ability to consume NO in response to TAN depletion is better illustrated by cell-specific 

NO production rates after accounting for sampling dilution and NO autoxidation (Figs. 3A 

and B). The cell-specific NO production rate was more than one order of magnitude higher in 

N. europaea than in N. maritimus and the two strains responded somewhat differently to O2 

and TAN depletion. Production of NO by N. europaea increased with decreasing O2 

concentration, reaching a maximum at O2 concentrations around kmO2 (~2 µM). At very low 

O2 concentration (<1 µM), there was net consumption (reduction) of NO in N. europaea, but 

this ceased when O2 concentration approached zero (insert in Fig. 3A). These phenomena 

were not observed in N. maritimus, whose NO production appeared to peak at high cell 

densities, rather than being dependent on O2. Both strains were able to reduce NO in 

response to TAN depletion as also observed for N. maritimus by Martens Habenna et al. 

(2015).  

N2O production kinetics and yield 

Accumulation of N2O was detectable immediately after incubation initiation of all cultures and 

production ceased as ammonia oxidation rate decreased, due to O2 and/or TAN limitation 

(Figs. 2J, K and L). N2O remained in the headspace in all cultures until the end of the 

incubation, and N2 production was not detected. The apparent reduction of N2O after TAN 

depletion was due to losses from sampling (dilution of the headspace by helium replacing 

sampled gas). In contrast, N2O concentration remained almost constant after O2 depletion. 

This reflects low but continued N2O production, probably driven by minor inputs of O2 at 

each sampling (~40 nmol per sampling).  

The cell-specific rate of N2O production in both strains increased with decreasing O2 

concentration, reaching maximum values at O2 concentrations around the apparent kmO2, 

and rapidly declined towards zero at lower O2 (Figs. 3C and D). The two strains reacted 
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differently to TAN depletion: while N2O production by N. europaea declined with declining 

TAN concentration (vials with 3, 5 and 7% O2), N2O production by N. maritimus appeared 

unaffected by TAN concentration until this approached kmTAN (~0.2 mM). This contrast 

between the two strains is better illustrated in Fig. 4, showing the relation between specific 

N2O production rate (VN2O) and VO2. In N. maritimus, VN2O was almost proportional to VO2 for 

all treatments within the VO2 range 0 - 0.6 fmol O2 cell-1 h-1. It should be noted that O2 

consumption rate in the 5 and 7% O2 treatments became limited by TAN rather than O2, 

while the opposite was the case for the 0.5 and 1% O2 treatments. Thus, N2O production in 

N. maritimus declined in proportion to the rate of nitrification, independent of the limiting 

factor (O2 or TAN). This was not the case for N. europaea, where trajectories were widely 

different for the different O2 treatments, with higher VN2O at lower O2 tension.  

N2O yield (YN2O) was estimated for each time increment. YN2O increased as O2 concentration 

approached zero for both N. europaea and N. maritimus (Fig. 5), although the levels were 

widely different (N. maritimus < N. europaea 1 mM TAN < N. europaea 4 mM TAN). As 

noted above, YN2O for N europaea fell towards zero as TAN was depleted (3, 5 and 7% O2 

treatments, Fig. 5A), while this was not the case for N. maritimus (Fig. 5C). 

Electron flow to nitrifier denitrification 

NO and N2O production in N. europaea were modelled based on the assumption that they 

are controlled by the competition for electrons between terminal oxidases and denitrification 

enzymes, as controlled by O2 concentration. Since measured N2O could be derived from 

both nitrifier denitrification and incomplete oxidation of hydroxylamine, the latter was 

included in the model along with nitrifier denitrification and the total rate of N2O and NO 

production (measured) was converted to electron flow (2 electrons per N2O-N, 1 electron per 

NO), to be compared with model predictions. A simplified model was obtained by assuming 

identical affinity for cytochrome oxidase (kmD = kmTO, see Experimental procedures Eqs. 5 and 

6); hence the two pathways only compete for electrons by having different Vmax. Fig. 6 
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compares electron flow to nitrifier denitrification (VeD) based on measurements and 

predictions of the fitted model (r2 = 0.48; Supporting Information Fig. S6). The model 

captured the declining VeD with declining TAN (treatments with 5 and 7% O2) and increasing 

VeD with declining O2 concentration, but failed to capture the declining VeD with declining O2 

concentration within the very low range (inserted panel in Fig. 6). Further, the model 

predicted 2- to 3-fold lower VeD than that measured in the 4 mM TAN experiment (Supporting 

Information Fig. S10). 

The alternative model, assuming that terminal oxidases (TO) and denitrification enzymes (D) 

have different affinities for cytochrome C552, was tested by simulating steady state 

concentrations of reduced cytochrome c552 (C*
552) (Supporting information Fig. S8). This 

gave a similar response to that shown, assuming maximum electron flow to denitrification 

enzymes (VmaxeD) and to terminal oxidases (VmaxeTO) to be 3 and 20 fmol e- cell-1 h-1, 

respectively, and kmD = 70*kTO, i.e. that TO has a stronger affinity than D (for C*
552) (see 

Experimental procedures Eqs. 5 and 6). The discrepancy between model and measurement 

for the O2 concentration range 0 - 4 µM (inserted panel in Fig. 6) could be eliminated by 

reducing kmO2 to 0.4 µM and increasing VmaxeD by a factor of 4, which is effectively assuming 

expression of high affinity terminal oxidases and more denitrification enzymes in response to 

low O2 concentrations.  

It is worth noticing that the estimated VeD (as measured) was very low compared to the total 

electron flow (VeD + VTO); the percentage of electrons directed to denitrification was ~0.3% 

for [O2]s ≥ 50 μM, increasing gradually with declining O2 concentrations to reach a maximum 

of ~1.2 % at [O2]s = 4 μM (Supporting Information Fig S7).  

Discussion 

Use of a robotised incubation system enabled monitoring of O2, NO, and N2O kinetics by 

frequent sampling of headspace gas of parallel batch cultures of model archaeal and 

bacterial ammonia oxidisers as they grew and gradually depleted O2 and/or TAN. This 
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enabled determination of kinetic parameters for O2 consumption as a function of 

concentrations of O2 and TAN, assuming a simple dual-substrate Michaelis-Menten function 

(see Experimental Procedures Eq. 4). With one exception, the half-saturation constants were 

in reasonable agreement with values found by others: a kmO2 ~2 µM O2 for N. maritimus is 

comparable with 3.9 µM O2 determined by Martens-Habbena et al. (2009), and in the lower 

the range of 1 - 15 µM O2 determined for N. europaea (Loveless and Painter, 1968) and N. 

europaea-NOB-mixed cultures (Laanbroek and Gerards, 1993; Laanbroek et al., 1994). 

Similarly, kmTAN = 0.57 mM TAN for N. europaea is in the lower range of previously 

determined values (0.55 - 3.56 mM TAN; Laanbroek and Gerards, 1993; Laanbroek et al., 

1994; Martens-Habbena et al., 2009). However, the kmTAN value of 0.21 mM TAN for N. 

maritimus is three orders of magnitude higher than that determined by Martens-Habbena et 

al. (2009). This major difference is not easy to explain. The strain, growth medium and 

incubation temperature (30 oC) were the same and generated near-identical estimated 

maximum specific growth rates (0.027 versus 0.028 h-1) in batch culture and comparable 

half-saturation constants for O2 (2.2 versus 3.9 µM O2). However, Martens-Habbena et al. 

(2009) estimated kmTAN by measurement of NH4
+ uptake rates and O2 consumption rates 

following addition of NH4
+ to suspensions of starving cells at high cell density. Their kmTAN 

values therefore reflected the influence of TAN concentration on specific cell activity rather 

than on specific growth rate in our study. Their cultures, unlike ours, were not stirred, which 

may have influenced diffusion of oxygen or ammonia, particularly at high cell densities, and 

their O2 concentrations were higher (150 - 170 µM O2) than in our experiments, in which the 

cells depleted TAN at O2 concentrations of ~20 and 40 µM O2 (in the 5 and 7% initial O2 

treatments, Fig. 3), but this is unlikely to explain the high kmTAN in our experiment. The ability 

of our strain to grow with agitation at similar maximum specific growth rate to the static 

cultures of Martens-Habbena et al. (2009) suggests some evolution or ‘domestication’ of the 

strain during repeated subculturing. This raises the possibility that the strain may also have 

adapted in other ways to continued laboratory since its use in the study by Martens-Habbena 

et al. (2009). The explanation for these contrasting results is crucial, since our data could be 
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taken to challenge the accepted view that all AOA have significantly higher affinity for TAN 

than AOB. 

The O2 consumption rate of N. europaea grown at 4 mM NH4
+ was much lower than that 

predicted by the Vmax of 17.6 fmol O2 cell-1 h-1 and kmTAN of 0.57 mM TAN determined in the 1 

mM TAN experiment. In theory, this discrepancy could be due to substrate inhibition of 

ammonia monooxygenase or anabolic processes (carbon dioxide fixation, protein synthesis). 

However, previously estimated inhibition constants (ki) of ammonia oxidation determined 

from wastewater sludges were 290 – 1,600 µM free NH3 (Park and Bae, 2009) were several 

orders of magnitude higher than our highest concentration of 4 mM TAN (equivalent to ~0.14 

µM free NH3). A more plausible explanation is that the capacity of ammonia monooxygenase 

exceeds that of the anabolic processes (or hydroxylamine dehydrogenase) at high 

concentrations of TAN (Supporting Information Fig. S9). If so, the cells would potentially 

accumulate hydroxylamine at high TAN, albeit within limits imposed by hydroxylamine 

toxicity. Interestingly, Schmidt et al. (2004) reported accumulation of hydroxylamine by N. 

europaea up to steady state concentrations of 0.8 M (cytoplasm + periplasm) when provided 

with 2 mM NH4
+, although hydroxylamine appeared to be bound to proteins and could only 

be detected after SDS extraction. Hydroxylamine kinetics deserve further study given their 

potential importance as an electron donor when cells are exposed to sudden anoxia 

(discussed below), as well as for the apparent lag in metabolic activity in response to NH4
+ 

additions to starved AOB (Chandran and Smets, 2008). Interestingly, the apparent excess 

capacity for ammonium oxidation would necessitate down-regulation of the expression of 

amo genes or activity of AMO in response to high ammonium concentration. In addition, the 

electron shunt from c554 to terminal oxidases and/or denitrification enzymes (Fig 7, red 

arrow) could be a necessary dissipation of electrons (suggested by Stein et al., 2013) to 

stabilise the redox status of the cells during upshifts in ammonium concentration.        

Many studies have demonstrated increased N2O production by N. europaea and other AOB 

in response to O2 limitation (reviewed by Colliver and Stephenson, 2000; Arp and Stein 
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2003), recently demonstrated to depend on the presence of genes coding for nitric oxide 

reductase (Kozlowski et al., 2016b). The phenomenon is commonly ascribed to 'nitrifier 

denitrification', i.e. that an increasing fraction of the electrons is passed to nitrite and nitric 

oxide reductase as the activity of terminal oxidases become limited by low O2 concentration 

(Fig. 7). Nitrifier denitrification is thought to be a significant source of N2O emission from 

soils, based on indirect evidence provided by the dual isotope signature (15N, 18O) of N2O 

(Kool et al., 2011; Zhu et al., 2013). The dual isotope method probably overestimates nitrifier 

denitrification, however, since it is based on the erroneous assumption that the nitrite 

produced by ammonium oxidation can only be denitrified by ammonia oxidizing bacteria, not 

by heterotrophic denitrifiers (Kool et al, 2011). Our ambition was to shed some light on the 

denitrification capacity of AOB by stringent monitoring of O2, NO and N2O while the cultures 

were allowed to deplete either O2 or TAN. As expected, VNO and VN2O increased with 

decreasing O2 concentration, reaching maximal values at O2 concentrations around kmO2 

(Figs. 2A and C, Table 1). As O2 concentration decreased further, VN2O declined towards 

zero, while VNO reached negative values (net reduction) within the concentration range 0 - 1 

µM O2, but returned to zero as O2 was completely depleted. Net reduction of NO is 

consistent with NO as an intermediate in nitrifier denitrification, and the absence of NO 

reduction once O2 is depleted is consistent with the view that ammonia oxidation is the only 

source of electrons to drive nitrifier denitrification. VN2O and VNO decreased with depletion of 

TAN (treatments with initial 3, 5 and 7 vol% O2 in headspace, Fig. 3A and C). In treatments 

with initial 3, 5 and 7 vol% O2, VO2 decreases primarily due to TAN depletion, while in the 

other treatments, the decrease is primarily due to O2 depletion. The latter treatments sustain 

considerably higher VN2O at intermediate VO2, but all treatments decrease to zero as VO2 

approach zero. This is further illustrated Fig. 5, where N2O yield is reduced in response to 

depletion of TAN, and increase in response to O2 depletion.  

To extend this study beyond empirical observations of the kinetics, NO- and N2O-production 

were modelled as the sum of two processes: 1) incomplete oxidation of hydroxylamine 
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(resulting in a constant fraction of oxidised ammonium released as NO and N2O) and 2) NO- 

and N2O-production via nitrifier denitrification, which depends on competition for electrons 

between TO and D (Fig. 7). The simplified model, which assumed that the terminal oxidases 

(TO) and denitrification enzymes (D) have identical affinities for cytochrome C552, was indeed 

able to capture some of the variation in VeD in the different treatments (Fig. 6) and the 

parameters illustrate the overwhelming competitive strength of terminal oxidases compared 

to denitrification: VmaxeTO = 640*VmaxeD. Arguably, the reason for the preferential VeTO (versus 

VeD) could also be different affinities  for cytochrome C552 (TO stronger than D). Exploration 

of this with a more elaborate model, which assumed different affinities of TO and D for C552 

and assumption of VmaxeTO = 6*VmaxeD, and kmD = 70*kTO, gave a reasonable fit (Supporting 

Information Fig S8).  

The two modelling approaches are gross simplifications of the control of electron flow, but 

further elaborations of branched electron flow regulation (see Otten et al., 1999) were 

considered meaningless in the absence of direct observations to support such efforts. 

Nevertheless, modelling provided hypothetical explanations for the marginal denitrification 

capacity of N. europaea: it could either be due to a much lower pool of D than TO, or that the 

two enzyme systems have widely different affinities for cytochrome oxidases (kmTO<<kmD). 

Regardless of the mechanism, the empirical data strongly suggest that a marginal fraction of 

the electron flow is directed to D in N. europaea, which underscores speculation by Arp and 

Stein (2003) that the primary role of the denitrification enzymes is not to sustain respiratory 

metabolism in response to O2 depletion.  

An interesting aspect of the modelling is the discrepancy for O2 concentrations <4 µM: while 

the model predicted increasing VeD with decreasing O2 concentrations, the data showed the 

opposite trend (inserted panel Fig. 6.). The discrepancy could reflect a regulatory response 

to O2 depletion. Plausible responses to O2 depletion would be expression of high affinity TO 

and increased expression of denitrification enzymes, as observed by Beyer et al. (2009). To 

explore this, the model response to lowering the kTO and increasing VmaxeD (See 
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Experimental procedures Eqs. 5 and 6) was tested. This showed that the observed 

increasing VeD with increasing O2 concentration (in the range 0 - 4 µM) could be obtained by 

combining an increase in VmaxeD by a factor of 4 and a reduction of kmO2 from 6 to 0.4 µM O2 

(Supporting information Fig. S7). We acknowledge that the known genetic repertoire for TO 

in N. europaea is limited (Chain et al., 2003), possibly lacking genes for high affinity TO.  

As mentioned earlier, the electron shunt from HAO to terminal oxidases and/or D (Fig. 7) 

could be a mechanism of importance for redox balancing at high ammonium concentration, 

since the cells’ capacity to oxidise ammonium at high concentrations apparently exceeds 

their catabolic capacity. Interestingly, this could explain the high N2O yield at 4 mM (Fig. 3). 

A failure of our model to capture this phenomenon could be the gross simplifications made, 

for instance by assuming a single pool of cytochrome C552.     

Our results demonstrate that N. europaea has a rather modest capacity to denitrify and rates 

decrease to zero as O2 is depleted, as hypothesised. This is somewhat different from the 

results of Kozlowski et al. (2016a; 2016b), who observed substantial N2O production after 

complete depletion of O2. However, their experimental approach was very different, involving 

concentrated cell suspensions (~109 cells mL-1) enclosed in micro-respirometry chambers 

without headspace, leading to depletion of O2 from 250 to 0 µM within 5 - 15 minutes. In 

cultures provided with NH4
+, they observed high N2O production rates as O2 reached 

undetectable levels (net NO accumulation was marginal compared to N2O), but the rates 

decreased gradually throughout the anoxic phase of the experiments, which lasted only 20 - 

30 minutes. Their observed initial N2O production rate for N. europaea, immediately after O2 

depletion, was ~0.5 µM min-1, which is equivalent to 30 amol N2O cell-1 h-1 (assuming 109 

cells mL-1, as reported). In terms of electron flow to denitrification (assuming that all N2O is 

produced by denitrification), this is equivalent to an electron flow rate of 120 amol cell-1 h-1, 

which is remarkably similar to the maximum rates observed at low O2 concentrations in our 

experiments (90 - 95 amol cell-1 h-1; Fig. 6). N2O production rates in two other AOB 

(Nitrosomonas sp is79A3 and Nitrosomonas urea) were initially 10 - 15 times higher, but 
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were only sustained for minutes, decreasing gradually to ~0.5 µM min-1 within 5 - 10 minutes 

(equivalent to the initial rates for N. europaea). Our tentative interpretation of these micro-

respirometry results is that observed N2O production during apparent anoxia could be driven 

by depletion of hydroxylamine (or other sources of electrons). For a cell to sustain an anoxic 

electron flow rate of 100 amol h-1 for one hour, it would have to contain a minimum of 25 

amol hydroxylamine at the time of O2 depletion (4 mol electrons available per mol 

hydroxylamine), which is equivalent to an average concentration of 25 mM in the cytoplasm 

+ periplasm (cell volume ~1 µm3). In comparison, Schmidt et al. (2004) claim that the steady 

state concentration of hydroxylamine in N. europaea when growing aerobically at 2 mM NH4
+ 

is around 800 mM (of which 5% was soluble). Thus, fast depletion of O2, as experienced in 

short term micro-respirometry experiments, is unlikely to deplete the intracellular 

hydroxylamine pool, hence nitrifier denitrification under anoxic conditions observed by 

Kozlowski et al. (2016a, 2016b) was plausibly sustained by a gradual oxidation of 

hydroxylamine (or other alternative sources of electrons). In our experiment, O2 depletion 

took hours rather than minutes (Fig. 1), which is likely to have resulted in gradual depletion 

of hydroxylamine (or any other alternative source of electrons) long before O2 depletion, 

explaining the apparent conflict between the two studies.  

Modelling of electron flow in N. maritimus would hardly be appropriate, since the organism is 

equipped with nitrite reductase, but not nitric oxide reductase, and the NO produced by 

nitrite reductase is hypothesised to be consumed as a co-substrate in the oxidation of 

hydroxylamine to NO2
- (Kozlowski et al., 2016a). The observed kinetics of NO versus 

nitrification rates allowed inspection of this hypothesis, which would predict a positive 

feedback on cell-specific nitrification rate via NO accumulation, provided that NO is a free 

“intermediate”. The results provide little support for such a positive feedback, however (Figs. 

1,2,3), which could indicate close interaction between nitrite reductase and Cu-“P460” (the 

hydroxylamine oxidizing enzyme), i.e. that NO is transferred directly between the two 

enzymes. Another conspicuous observation is that N. maritimus was able to deplete NO in 
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response to the gradual depletion of TAN, but not when depleting oxygen (Fig 1, Fig 3B). 

This does not necessarily conflict with the model by Kozlowski et al. (2016a), but suggests 

that their model is incomplete regarding NO turnover in these organisms.  

 Concluding remarks 

Our study corroborate current understanding of the metabolic pathways leading to higher 

N2O production by AOB than by AOA. The novelty lies in the provision of a candid 

assessments of their possible contribution to N2O emissions through high resolution gas 

kinetics and product stoichiometry measured under physiologically realistic and ecologically 

relevant conditions; low cell density and gradual depletion of oxygen. The data also shed 

new light on the physiological role of the denitrification pathway in AOB; indicating that it 

plays a negligible role in sustaining their respiratory metabolism; accounting for less than 

1.2% of the electron flow even under severe oxygen limitation. A more plausible 

physiological role for denitrification is redox balancing, which would explain the high N2O 

production rates at 4 mM TAN than at 1 mM. An important environmental implication is that 

the N2O yield of AOB increases with increasing ammonium concentration, and that fertilizer 

application level controls the N2O/NO2
- product ratio of nitrification in agricultural soils.          

.          

 

      

Experimental procedures 

Culture strains and medium preparation 

The AOB Nitrosomonas europaea ATCC 19718 was cultivated in mineral salts medium 

(Skinner and Walker, 1961) containing 1 mM or 4 mM (NH4)2SO4 (equivalent to 50 and 200 

µmol TAN vial-1, respectively), phenol red (0.5 mg l-1) as an indicator of pH and in addition 10 
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mM HEPES buffer (10 mM HEPES, 0.6 mM NaOH). pH was initially adjusted to 7.7 - 7.9 by 

the addition of filter-sterilised Na2CO3 that was also added regularly during the batch 

incubation to adjust the pH. The AOA Nitrosopumilus maritimus SCM1 was cultivated in 

SCM medium (Könneke et al., 2005) supplemented with 1 mM NH4Cl and buffered at pH 7.5 

– 7.6 with 10 mM HEPES buffer. Both media were filter-sterilised and 50 ml medium was 

placed in sterile 120-ml serum bottles, each containing a magnetic stirrer flea and sealed 

with Teflon-coated butyl rubber septa and aluminium caps. The headspace was replaced by 

helium and the desired volume of pure O2 was added aseptically as described in Molstad et 

al. (2007). Some carbonate (in equilibrium with carbon dioxide) may have been removed by 

gas exchange in the headspace but approximately 1 mmol and 0.5 mmol HCO3
- vial-1 

remained in N. europaea and N. maritimus cultures, respectively. These were calculated 

from the initial carbon dioxide concentration in the headspace, which was 12 – 1,300 ppmv 

(the concentrations increased throughout incubation in proportion to the oxidation of 

ammonia associated with proton production leading to slight decline in pH and also ascribed 

to the regular addition of Na2CO3 (N. europaea only), results not shown). 

Batch incubation, sampling and analysis of gas and liquid samples 

Cultures with initial O2 concentrations of 7%, 5%, 3%, 1%, 0.5% or <0.05% O2 were 

prepared with 3 - 5 replicates and were inoculated with 1% (N. europaea) or 2% (N. 

maritimus) volumes of mid-exponential phase cultures (initial cell densities were ~0.5 x 106 

cells ml-1 for N. europaea and ~106
 cells mL-1 for N. maritimus). Triplicate sterile controls with 

an initial O2 concentration of <0.05% were included for each experiment. Cultures were 

incubated in the dark at 30°C while stirring at 200 rpm to provide sufficient gas exchange 

between headspace and liquid. The incubations were performed in a robotised incubation 

system that monitors gas concentrations by taking gas samples from the headspace 

(Molstad et al., 2007; Hassan et al., 2016). In short, this was achieved by piercing the 

septum and pumping the gas through three sampling loops for injection to 1) a 

chemiluminescence detector for NO, 2) a MolSieve column for separation of N2 and O2 
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(detected by a thermal conductivity detector) and 3) a Plot column for separation of N2O 

(detected both by electron-capture and thermal conductivity detectors). After sampling, the 

pump was reversed and the volume of gas sampled replaced with helium leading to a 

dilution of the headspace and a marginal leakage of O2 and N2 into the system, which is 

accounted for when calculating gas kinetics. The exact dilution and N2 and O2 leakage were 

determined by including vials filled with high concentrations of N2 and O2 (to determine 

dilution) and with pure He (to determine leakage of N2 and O2). These data were taken into 

account when calculating the rates of gas transport between headspace and liquid. 

Small liquid samples (~100 µl) were taken under sterile conditions at intervals throughout the 

incubations for quantification of NO2
- that was reduced to NO prior to the measurement in a 

chemiluminescence NO analyser (Roco et al., 2016). Samples (~1 ml) were also taken for 

total cell enumeration by epifluorescence microscopy of DAPI stained cells when cultures 

were in mid-exponential phase as described in Lehtovirta-Morley et al. (2016a). 

Gas kinetics calculations 

As outlined in detail by Molstad et al. (2007), the gas concentration in the liquid during each 

time interval between two samplings was calculated based on the solubility of each gas (at 

the given temperature) and the measured transport rate (V; mol s-1), solving Eq. 2 for gas 

concentration in the liquid ([G]l; mol l-1): 

𝑽 = 𝒌𝑻 ∙ (𝒌𝑯 ∙ 𝑷𝒈 − [𝑮]𝐥)   (2) 

where kT is the transport coefficient (l s-1), kH is the solubility of the gas (mol l-1 atm-1) at the 

given temperature and Pg is the partial pressure of the gas in the headspace (average for 

the time increment). The transport coefficient depends on the stirring speed and, for the 

conditions used (30oC and 200 rpm stirring), was experimentally determined to be 0.1 l s-1 

(see Molstad et al., 2007). The calculation of gas concentrations in the liquid by Eq. 2 proved 

essential for O2, where it was found that [O2]l was only 30 - 60% of the equilibrium 
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concentration (kH*Pg) as the cultures depleted O2. For NO, [NO]l reached 120 - 140% of 

kH*PNO for the time intervals with rapidly increasing concentrations, but this was essentially 

inconsequential for the estimated NO per vial, since the solubility of NO is very low (0.0018 

mol l-1 atm-1 at 30oC). For N2O, [N2O]l reached ~108% of kH*PN2O for time intervals with 

rapidly increasing N2O concentrations (N. europaea). Thus, the calculation of liquid 

concentrations based on transport was essentially inconsequential for NO and N2O, but not 

for O2, which is important for determination of the affinity for O2. 

The possible consequence of transport limitation for O2 at the cellular level was assessed, 

i.e. the molecular diffusion of O2 from the bulk liquid to the cell surface. This was required 

because, at high rates of O2 consumption, it cannot be taken for granted that the 

concentration at the cell surface is the same as that in the bulk liquid (Hassan et al., 2016). 

Eq. 3 describes the concentration of O2 at the cell surface ([O2]S; mol cm-3) of a spherical 

body (simplification of the rod shaped cells) with radius r (cm; rN. europaea = 6.4*10-5 cm; rN. 

maritimus = 1.7*10-5 cm), as a function of [O2]l (mol cm-3), the flux towards the cell surface (J; 

mol s-1) and the diffusion coefficient for O2 in water (D; 2.2 *10-5 cm2 s-1). 

      [𝑶𝟐]𝒔 = [𝑶𝟐]𝒍 −
𝟏

𝟒𝝅𝒓𝑫
              (3) 

The calculation was essentially inconsequential for N. maritimus, since [O2]s remained >99% 

of [O2]l, but for N. europaea, which had higher rates of O2 consumption, [O2]s declined 

towards ~95 % of [O2]l as O2 concentration approached zero (Supporting Information Fig. 

S1).  

Interpolations  

Since cell density and NO2
- were measured with lower frequency than headspace gas 

concentration, interpolation was required to calculate NO2
- concentration and cell density for 

each time interval between gas samplings. Oxidised TAN and generated NO2
- were 

determined using the cumulative O2 consumption for individual vials. Expected O2-

This article is protected by copyright. All rights reserved.



22 
 

consumption:NO2
--production stoichiometry is 1.5:1 (see Eq. 1), which was confirmed by 

measurements (Supporting Information Fig. S2). Thus, NO2
- concentration for each time 

increment between gas samplings was estimated based on cumulated O2 consumption. The 

concentration of TAN was estimated by mass balance: TANt = TANi – Noxt, where TANt is the 

amount of TAN per vial at time t, TANi is the initial amount and Noxt is N recovered as NO2
- + 

NO + N2O at time t. The measured increase in cell density was a linear function of NO2
- 

(Supporting Information Fig. S3). Hence, for each time increment between two gas 

measurements, measured cumulative O2 consumption was used to estimate cell density, 

NO2
- and TAN concentration. These interpolations enabled modelling of electron flow 

towards the enzymatically produced N2O in N. europaea (see below). 

NO kinetics and autoxidation 

NO is unstable under oxic conditions due to autoxidation, which is a “third order” reaction 

between O2 and NO, proportional to O2 concentration and the square of NO concentration 

(Nadeem et al., 2013). As a result, apparent NO production rate (measured as an increase 

in concentration) may underestimate NO production and apparent NO scavenging 

(measured as declining NO concentration) may be falsely taken as an indication of NO 

scavenging by the organisms. To correct for this, NO autoxidation rate was calculated for 

each time increment, based on Nadeem et al. (2013), where NO autoxidation was measured 

under identical experimental condition to obtain estimates of true enzymatic net production 

or consumption of NO.  

Kinetics 

Kinetic constants for whole cell O2 consumption were estimated on the basis of the 

measured rates of O2 consumption, cell abundance and the concentrations of TAN and [O2]s 

for each time interval. Assuming that ammonia monooxygenase is the rate limiting step, two-

substrate kinetics is expected, which can be described as a double Michaelis-Menten 

function (Splittgerber, 1983):  
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𝑉𝑂2 = 𝑉𝑚𝑎𝑥 •
[𝑂2]𝑠

[𝑂2]𝑠+𝑘𝑚𝑂2
•

[𝑇𝐴𝑁]

[𝑇𝐴𝑁]+𝑘𝑚𝑇𝐴𝑁
     (Eq. 4) 

where VO2 is the rate (fmol O2 cell-1 h-1), Vmax is the maximum rate (fmol O2 cell-1 h-1), k mO2 is 

the half-saturation constant for O2 (µM O2) and kmTAN is the half-saturation constant for TAN 

(µM TAN). The parameters were estimated by non-linear regression, using the Levenberger 

Marquart algorithm in Minitab (Minitab Ltd, UK). 

N2O and NO production by N. europaea have been hypothesised to be controlled by O2 via 

competition for electrons between terminal oxidases and constitutively expressed 

denitrification enzymes (Anderson et al., 1993). This was investigated by a relatively simple 

modelling approach (for details see Supporting Information, “Modelling electron flow in N. 

europaea grown at 1 mM TAN” and “Modelling electron flow in N. europaea grown at 4 mM 

TAN”). The branch point was assumed to be the C552, which passes electrons either to 

denitrification or terminal oxidases (Fig. 7). The model assumes that the flow of electrons to 

C552 (via ubiquinol and bc1) is determined by the rate of ammonia oxidation (which is a 

function of O2 and TAN concentration) and that the electron flow to the terminal oxidases 

(TO) and denitrification enzymes (D) is a function of the concentrations of their respective 

terminal electron acceptors and the concentration of reduced C552 ([C*
552]), according to Eqs. 

5 and 6. 

𝑽𝒆𝑫 = 𝑽𝒎𝒂𝒙𝒆𝑫 ∗
[𝑪𝟓𝟓𝟐
∗ ]

[𝑪𝟓𝟓𝟐
∗ ]+𝒌𝒎𝑫

•
[𝑵𝑶𝟐

−]

[𝑵𝑶𝟐
−]+𝒌𝒎𝑵𝑶𝟐

  (Eq. 5) 

 

𝑽𝒆𝑻𝑶 = 𝑽𝒎𝒂𝒙𝒆𝑻𝑶 ∗
[𝑪𝟓𝟓𝟐
∗ ]

[𝑪𝟓𝟓𝟐
∗ ]+𝒌𝒎𝑻𝑶

•
[𝑶𝟐]

[𝑶𝟐]+𝒌𝒎𝑶𝟐
          (Eq. 6) 

where VeD and VeTO are the rates of electron flow to denitrification enzymes and terminal 

oxidases, respectively, VmaxeD and VmaxeTO are their maximum rates and their affinity for C*552 

is given by their half-saturation constants, kmD and kmTO. Numerical simulation of the steady 

state concentration of [C*
552] is required unless one assumes that kmNO2 = kmO2.  

This article is protected by copyright. All rights reserved.



24 
 

 

Acknowledgments  

The authors are members of the Nitrous Oxide Research Alliance (NORA), a Marie 

Skłodowska-Curie ITN and research project under the EU's seventh framework program 

(FP7). GN is funded by the AXA Research Fund and CGR by a Royal Society fellowship. We 

thank Lars Molstad and Peter Dörsch for their generous and invaluable technical assistance. 

We thank Martin G Klotz for a very constructive review of our paper, and especially for 

pointing out the possible electron dissipation via periplasmic cytochromes, thus providing a 

possible explanation for the high N2O at high ammonium concentrations. 

 

Conflict of interests:  

None declared 

 

This article is protected by copyright. All rights reserved.



25 
 

References 

Aakra, Å., Utåker, J.B. and Nes, I.F. (2001) Comparative phylogeny of the ammonia 

monooxygenase subunit A and 16S rRNA genes of ammonia-oxidizing bacteria. FEMS 

Microbiol. Lett. 205:237-242. 

Anderson, I.C., Poth, M., Homstead, J. and Burdige, D. (1993) A comparison of NO and N2O 

production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier 

Alcaligenes faecalis. Appl. Environ. Microbiol. 59:3525-3533. 

Arp, D. J. and Stein, L.Y. (2003) Metabolism of inorganic N compounds by ammonia-

oxidizing bacteria. Criti. Rev. Biochem. Mol. Biol. 38:471-495. 

Beyer, S., Gilch, S., Meyer, O. and Schmidt, I. (2008) Transcription of genes coding for 

metabolic key functions in Nitrosomonas europaea during aerobic and anaerobic growth. J. 

Mol. Microbiol. Biotechnol. 16:187-197. 

Bock, E. and Wagner, M. (2006) Oxidation of inorganic nitrogen compounds as an energy 

source. In The Prokaryotes. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. and 

Stackebrandt, E. (eds.). New York: Springer, pp. 457-495. 

Campbell, M.A., Chain, P.S., Dang, H., El Sheikh, A.F., Norton, J.M., Ward, N. L. et al. 

(2011) Nitrosococcus watsonii sp. nov., a new species of marine obligate ammonia-oxidizing 

bacteria that is not omnipresent in the world's oceans: calls to validate the names 

‘Nitrosococcus halophilus’ and ‘Nitrosomonas mobilis’. FEMS Microbiol. Ecol. 76:39-48. 

Caranto, J.D., Vilbert, A.C. and Lancaster, K.M. (2016) Nitrosomonas europaea cytochrome 

P460 is a direct link between nitrification and nitrous oxide emission. PNAS 113:14704-

14709. 

Chain, P., Lamerdin, J., Larimer, F., Regala, W., Lao, V., Land, M. et al. (2003) Complete 

genome sequence of the ammonia-oxidising bacterium and obligate chemolithoautotroph 

Nitrosomonas europaea. J. Bacteriol. 185:2759-2773. 

This article is protected by copyright. All rights reserved.



26 
 

Chandran, K. and Smets, B. F. (2008) Biokinetic characterization of the acceleration phase 

in autotrophic ammonia oxidation. Water Environ. Res. 80:732-739. 

Colliver, B.B. and Stephenson, T. (2000) Production of nitrogen oxide and dinitrogen oxide 

by autotrophic nitrifiers. Biotechnol. Adv. 18:219-232. 

Dundee, L. and Hopkins, D.W. (2001) Different sensitivities to oxygen of nitrous oxide 

production by Nitrosomonas europaea and Nitrosolobus multiformis. Soil Biol. Biochem. 

33:1563-1565. 

Goreau, T.J., Kaplan, W.A., Wofsy, S.C., McElroy, M.B., Valois, F.W. and Watson, S.W. 

(1980) Production of NO2
-and N2O by nitrifying bacteria at reduced concentrations of 

oxygen. Appl. Environ. Microbiol., 40:526-532. 

Hassan, J., Qu, Z., Bergaust, L. L. and Bakken, L. R. (2016) Transient accumulation of 

during denitrification explained by assuming cell diversification by stochastic NO2
-and N2O 

transcription of denitrification genes. PLoS Comp. Biol. 12:e1004621. 

Hink, L., Nicol, G.W. and Prosser, J.I. (2016) Archaea produce lower yields of N2O than 

bacteria during aerobic ammonia oxidation in soil. Environ. Microbiol. (in press). 

Hooper, A.B., Maxwell, P.C. and Terry, K.R. (1978) Hydroxylamine oxidoreductase from 

Nitrosomonas: absorption spectra and content of heme and metal. Biochem. 17:2984-2989. 

Hooper, A.B. and Terry, K.R. (1979) Hydroxylamine oxidoreductase of Nitrosomonas: 

Production of nitric oxide from hydroxylamine. Biochim. Biophys. Acta Enzymol. 571:12-20. 

Hooper, A.B., Vanelli, T., Bergmann, D.J. and Arciero, D.M. (1997) Enzymology of the 

oxidation of ammonia to nitrite by bacteria. Anton. Leeuwenhoek 71:59-67. 

Hu, H.W., Chen, D. and He, J.Z. (2015) Microbial regulation of terrestrial nitrous oxide 

formation: understanding the biological pathways for prediction of emission rates. FEMS 

Microbiol. Rev. 39:729-749. 

This article is protected by copyright. All rights reserved.



27 
 

Jiang, Q.Q. and Bakken, L.R. (1999) Nitrous oxide production and methane oxidation by 

different ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 65:2679-2684. 

Jung, M.Y., Park, S.J., Min, D., Kim, J.S., Rijpstra, W. I.C., Damsté, J.S.S. et al. (2011) 

Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of 

mesophilic crenarchaeal group I. 1a from an agricultural soil. Appl. Environ. Microbiol. 

77:8635-8647. 

Jung, M.Y., Well, R., Min, D., Giesemann, A., Park, S.J., Kim, J.G. et al. (2014) Isotopic 

signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME J. 8:1115-

1125. 

Kim, J.G., Jung, M.Y., Park, S.J., Rijpstra, W.I.C., Sinninghe Damsté, J.S., Madsen, E.L., et 

al. (2012) Cultivation of a highly enriched ammonia‐oxidizing archaeon of thaumarchaeotal 

group I. 1b from an agricultural soil. Environ. Microbiol. 14:1528-1543. 

Klotz, M.G. and Stein L.Y. (2008) Nitrifier genomics and evolution of the nitrogen cycle. 

FEMS Microbiol. Lett. 278:146-156.  

Klotz, M.G. and Stein, L.Y. (2010) Genomics of ammonia-oxidizing bacteria and insights into 

their evolution. In Nitrification. Ward BB, Arp D and Klotz MG (eds). ASM Press, pp 57-93.  

Könneke, M., Bernhard, A.E., José, R., Walker, C.B., Waterbury, J.B. and Stahl, D.A. (2005) 

Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543-546. 

Kool D.M., van Groenigen, J.W. and Wrage, N. (2011) Source determination of nitrous oxide 

based on nitrogen and oxygen isotope tracing: dealing with oxygen exchange. Meth. 

Enzymol. 496:139-160.  

Kozlowski, J.A., Stieglmeier, M., Schleper, C., Klotz, M.G. and Stein, L.Y. (2016a) Pathways 

and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in 

bacteria and Thaumarchaeota. ISME J. 10:1836-1845. 

Kozlowski, J.A., Kits, K.D. and Stein, L.Y. (2016b) Comparison of nitrogen oxide metabolism 

among diverse ammonia-oxidizing bacteria. Frontiers Microbiol. 7. 

This article is protected by copyright. All rights reserved.



28 
 

Laanbroek, H.J., Bodelier, P.L. and Gerards, S. (1994) Oxygen consumption kinetics of 

Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures 

at different oxygen concentrations. Arch. Microbiol. 161:156-162. 

Laanbroek, H.J. and Gerards, S. (1993) Competition for limiting amounts of oxygen between 

Nitrosomonas europaea and Nitrobacter winogradskyi grown in mixed continuous cultures. 

Arch. Microbiol. 159:453-459. 

Lehtovirta-Morley, L.E., Ross, J., Hink, L., Weber, E.B., Gubry-Rangin, C., Thion, C. et al. 

(2016a) Isolation of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolytic soil 

archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol. 

Ecology 92:fiw057. 

Lehtovirta-Morley, L. E., Sayavedra-Soto, L. A., Gallois, N., Schouten, S., Stein, L. Y., 

Prosser, J. I., and Nicol, G. W. (2016b). Identifying Potential Mechanisms Enabling 

Acidophily in the Ammonia-Oxidizing Archaeon “Candidatus Nitrosotalea devanaterra”. 

Applied and environmental microbiology, 82(9), 2608-2619. 

Löscher, C R., Kock, A., Könneke, M., LaRoche, J., Bange, H. W. and Schmitz, R.A. (2012) 

Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosci. 9:2419-2429. 

Loveless, J.E. and Painter, H.A. (1968) The influence of metal ion concentrations and pH 

value on the growth of a Nitrosomonas strain isolated from activated sludge. Microbiol. 52:1-

14. 

Martens-Habbena, W., Berube, P.M., Urakawa, H., José, R. and Stahl, D. A. (2009) 

Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. 

Nature 461:976-979. 

Martens‐Habbena, W., Qin, W., Horak, R.E., Urakawa, H., Schauer, A. J., Moffett, J. W. et 

al. (2015) The production of nitric oxide by marine ammonia‐oxidizing archaea and inhibition 

of archaeal ammonia oxidation by a nitric oxide scavenger. Environ. Microbiol. 17:2261-

2274. 

This article is protected by copyright. All rights reserved.



29 
 

Molstad, L., Dörsch, P. and Bakken, L.R. (2007) Robotized incubation system for monitoring 

gases (O2, NO, N2O, N2) in denitrifying cultures. J. Microbiol. Meth. 71:202-211. 

Nadeem, S., Dörsch, P. and Bakken, L.R. (2013) Autoxidation and acetylene-accelerated 

oxidation of NO in a 2-phase system: Implications for the expression of denitrification in ex 

situ experiments. Soil Biol. Biochem. 57:606-614. 

Norton, J.M., Klotz, M.G., Stein, L. Y., Arp, D.J., Bottomley, P.J., Chain, P.S., et al. (2008) 

Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidising bacterium 

from the soil environment. Appl. Environ. Microbiol. 74:3559-3572. 

Otten, M. F., Reijnders, W.N., Bedaux, J.J., Westerhoff, H.V., Krab, K. and Van Spanning, R. 

J. (1999) The reduction state of the Q‐pool regulates the electron flux through the branched 

respiratory network of Paracoccus denitrificans. Eur. J. Biochem. 261:767-774. 

Park S. and Bae W. (2009) Modelling the kinetics of ammonium oxidation and nitrite 

oxidation under simultaneous inhibition by free ammonia and free nitrous oxide. Process 

Biochem. 44:631-640.  

Qin, W., Meinhardt, K.A., Moffett, J.W., Devol, A.H., Virginia Armbrust, E., Ingalls, A.E. and 

Stahl, D.A. (2017) Influence of oxygen availability on the activities of ammonia-oxidizing 

archaea. Environ. Microbiol. Rep. 9:250-256.  

Prosser, J.I. (1990) Autotrophic nitrification in bacteria. Adv. Microb. Physiol 30:125-181. 

Remde, A. and Conrad, R. (1990) Production of nitric oxide in Nitrosomonas europaea by 

reduction of nitrite. Archiv. Microbiol., 154:187-191. 

Roco, C.A., Bergaust, L.L., Shapleigh, J.P. and Yavitt, J.B. (2016) Reduction of nitrate to 

nitrite by microbes under oxic conditions. Soil Biol. Biochem.100:1-8. 

Santoro, A.E., Buchwald, C., McIlvin, M.R. and Casciotti, K.L. (2011) Isotopic signature of 

N2O produced by marine ammonia-oxidizing archaea. Sci. 333:1282-1285. 

This article is protected by copyright. All rights reserved.



30 
 

Schmidt, I., Look, C., Bock, E. and Jetten, M.S. (2004) Ammonium and hydroxylamine 

uptake and accumulation in Nitrosomonas. Microbiol. 150:1405-1412.  

Simon, J. and Klotz, M.G. (2013) Diversity and evolution of bioenergetics systems involved 

in microbial nitrogen compound transformations. Biochim. Biophys. Acta 1827:114-135.   

Skinner, F.A. and Walker, N. (1961) Growth of Nitrosomonas europaea in batch and 

continuous culture. Arch. Mikrobiol. 38:339-349. 

Spang, A., Poehlein, A., Offre, P., Zumbrägel, S., Haider, S., Rychlik, et al. (2012) The 

genome of the ammonia‐oxidizing Candidatus Nitrososphaera gargensis: insights into 

metabolic versatility and environmental adaptations. Environ. Microbiol. 14:3122-3145. 

Splittgerber, A.G. (1983) Simplified treatment of two-substrate enzyme kinetics. J. Chem. 

Educ. 60:651-655. 

Stein, L.Y. (2011). Surveying N2O-producing pathways in bacteria. Meth. Enzymol. 486:131–

152. 

Stieglmeier, M., Mooshammer, M., Kitzler, B., Wanek, W., Zechmeister-Boltenstern, S., 

Richter, A. et al. (2014) Aerobic nitrous oxide production through N-nitrosating hybrid 

formation in ammonia-oxidizing archaea. ISME J. 8:1135-1146. 

Tourna, M., Stieglmeier, M., Spang, A., Könneke, M., Schintlmeister, A., Urich, T. et al. 

(2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. PNAS 

108:8420-8425. 

Vajrala, N., Martens-Habbena, W., Sayavedra-Soto, L.A., Schauer, A., Bottomley, P.J., 

Stahl, D.A. et al. (2013) Hydroxylamine as an intermediate in ammonia oxidation by globally 

abundant marine archaea. PNAS 110:1006-1011. 

Walker, C.B., De La Torre, J.R., Klotz, M.G., Urakawa, H., Pinel, N., Arp, D.J., et al. (2010) 

Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and 

autotrophy in globally distributed marine crenarchaea. PNAS 107:8818-8823. 

This article is protected by copyright. All rights reserved.



31 
 

Whittaker, M., Bergman, D., Arciero, D. and Hooper, A.B. (2000) Electron transfer during the 

oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. Biochim. 

Biophys. Acta 1459:346-355. 

Wrage, N., Velthof, G. L., Van Beusichem, M.L. and Oenema, O. (2001) Role of nitrifier 

denitrification in the production of nitrous oxide. Soil Biol. Biochem. 33:1723-1732. 

Yu, K. and Chandran, K. (2010) Strategies of Nitrosomonas europaea 19718 to counter low 

dissolved oxygen and high nitrite concentrations. BMC Microbiol. 10:70 

Zhu, X., Burger, M., Doane, T. A. and Horwath, W.R. (2013) Ammonia oxidation pathways 

and nitrifier denitrification are significant sources of N2O and NO under low oxygen 

availability. PNAS 110:6328-6333. 

Zhu-Barker, X., Cavazos, A.R., Ostrom, N.E., Horwath, W.R. and Glass, J.B. (2015) The 

importance of abiotic reactions for nitrous oxide production. Biogeochem. 126:251-267. 

 

This article is protected by copyright. All rights reserved.



32 
 

Figure and Table legends 

Figures 

Fig. 1. Oxygen consumption kinetics (A - C), nitrite production (D - F) and nitrogen gas 

turnover (G - L) in 50-mL batch cultures contained in gas-tight serum bottles. Cultures of 

N. europaea (incubated with 4 mM TAN: A, D, G, J; incubated with 1 mM TAN: B, E, H, K) and 

N. maritimus (incubated with 1 mM TAN: C, F, I, L) were grown in mineral salts medium at a 

range of initial O2 concentrations (see legend). O2 was depleted entirely at low initial O2 

concentrations, while TAN rather than O2 limited activity at high initial O2 concentrations (A - C). 

NO2
- concentration (D - F) is calculated on the basis of cumulative O2 consumption and was 

similar to that measured (x) (Supporting Information Fig. S2). 1 nmol NO vial-1 is equivalent to a 

concentration of 0.62 nM in the liquid. Means and standard errors of 3 - 5 replicate cultures are 

plotted. 

Fig. 2. Oxygen- and TAN-dependent O2 consumption rate by N. europaea (A, B) and N. 

maritimus (C, D) incubated with an initial TAN concentration of 1 mM. Three-dimensional 

plots (A, C) show cell-specific O2 consumption rates (single time increment, individual vials) as a 

function of O2 concentration at the cell surface ([O2]s; calculated from transport kinetics, see 

Experimental procedures) and the concentration of TAN. A double Michaelis-Menten equation 

(see Experimental procedures Eq. 4) was fitted to the data and is represented as a surface; 

measurements are shown as vertical lines from measurements to model values (red: 

measurement > model, blue: measurement < model). Two-dimensional plots (B, D) show the 

rates against O2 concentrations for the 0.5 - 3% O2 treatments at low ([O2]s, together with model 

estimates. Estimated kinetic parameters are shown in Table 1, and correlation between model 

estimates and measurements (r2≥0.98 for both strains) is shown in Supporting Information Fig. 

S5. 
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Fig. 3. Cell-specific rates of NO and N2O production by N. europaea (A, C) and N. 

maritimus (B, D) incubated with an initial TAN concentration of 1 mM. The rate of NO 

production (VNO) (A, B) is corrected for NO autoxidation and reflects enzymatic production 

(positive values) and consumption (negative values). Cultures depleted either O2 and/or TAN 

entirely, depending on the initial O2 concentration in the headspace (see legend). Limitation of 

O2 and/or TAN also affected the rate of N2O production (C, D). 

Fig. 4. Relationship between velocity of N2O (VN2O) production and O2 consumption rates 

(VO2) of N. europaea (A) and N. maritimus (B) incubated with 1 mM TAN at a range of 

initial O2 concentrations (see legend).  

Fig. 5. Oxygen-dependent N2O yield of N. europaea (incubated with 1 mM TAN, A, or with 

4 mM TAN, B) and N. maritimus (incubated with 1 mM TAN, C). N2O yield is expressed as 

N2O-N per NO2
--N generated from ammonia oxidation in cultures incubated with a range of 

initial O2 concentrations (see legend).  

Fig. 6. Electron flow to denitrification (amol e- cell-1 h-1) for N. europaea growing on 1 mM 

TAN; model predictions versus measurements. The electron flow rate to nitrifier 

denitrification (VeD) are based on measurements (NO and N2O concentration) of single time 

increment values. Model predictions are plotted as continuous lines, using the experimentally 

determined concentrations of ([O2]s and [TAN] as inputs (average values for replicate vials at 

each time point). The insert highlights the declining electron flow to nitrifier denitrification at very 

low ([O2]s concentration and the failure of the model to capture this phenomenon. The model 

parameters (see Supporting Information, “Modelling electron flow in N. europaea grown at 1 mM 

TAN”) are YHAO = 0.0019 (proportion of oxidised hydroxylamine-N released as N2O-N), kmO2 = 

11.2 µM O2 (half-saturation concentration for terminal oxidases), VmaxeTO = 640 x VmaxeD (VmaxeTO 
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and VmaxeD are the maximum rates of electron flow to terminal oxidases and denitrification, 

respectively). 

Fig. 7. Simplified electron flow in N. europaea. The 4 electrons per NO2
- produced by 

hydroxylamine dehydrogenase (HAO) are relayed to the quinone pool (Q) most plausibly via 

membrane cytochrome cm552, or via periplasmic C554 and Cm552 (see discussion by Simon and 

Klotz, 2013). Ammonia monooxygenase (AMO) draws 2 electrons from the quinone pool and 

the remaining 2 electrons are passed either to NAD (-> NADH, reducing power for CO2 

assimilation) or to periplasmic cytochrome C552 via the cytochrome bc1 complex. C552 is a 

branching point, delivering electrons either to terminal oxidases (TO) or to the denitrification 

enzymes (D), i.e. nitrite reductase and nitric oxide reductase (nirK and NorB, Arp and Stein, 

2003). Several different C552 proteins may be involved at this branching point (Klotz and Stein, 

2010). Our modelling of competition for electrons (TO versus D) assuming one common 

electron donor is therefore a gross simplification. Proton motive force is generated by bc1 and 

TO (Klotz and Stein, 2008; Kozlowski et al., 2016a), while the electron transport from HAO to Q 

may be electroneutral (Simon and Klotz, 2013).  An electron shunt from c554 to C552 is indicated 

(red dashed arrow), which has been suggested by Stein et al. (2013) as an electron neutral 

pathway to D.   

Table legend. 

Table 1. Estimated kinetic parameters for O2 consumption as a function of O2 and TAN 

concentration in N. europaea and N. maritimus. 
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Tables and Figures:  

Table 1. Estimated kinetic parameters for O2 consumption rate as a function of O2 and 

TAN concentration in N. europaea and N. maritimus. 

 
Vmax

§  

(fmol O2 cell-1 h-1) 

kO2
§  

(µM O2) 

kTAN
 § 

(mM TAN) 

N. europaea 
17.6 (0.6) 

[15.6-17.9] 

2.35 (0.13) 

[2.2-2.6] 

0.565 (0.04) 

[0.44-0.59] 

N. maritimus 
1.0 (0.01) 

[0.98-1.03] 

2.13 (0.08) 

[2.0-2.3] 

0.20 (0.02) 

[0.18-0.23] 

 

§ Kinetic parameters were estimated from cultures that were incubated with an initial TAN 

concentration of 1 mM and a range of O2 concentrations. The dataset for each strain was fitted 

with Eq. 4. Standard deviations are displayed in parentheses and 95% confidence intervals in 

brackets. 
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Fig. 1. Oxygen consumption kinetics (A - C), nitrite production (D - F) and nitrogen gas turnover (G 

- L) in 50-mL batch cultures contained in gas-tight serum bottles. Cultures of N. europaea (incubated 

with 4 mM TAN: A, D, G, J; incubated with 1 mM TAN: B, E, H, K) and N. maritimus (incubated with 1 mM 

TAN: C, F, I, L) were grown in mineral salts medium at a range of initial O2 concentrations (see legend). 

O2 was depleted entirely at low initial O2 concentrations, while TAN rather than O2 limited activity at high 

initial O2 concentrations (A - C). NO2
- concentration (D - F) is calculated on the basis of cumulative O2 

consumption and was similar to that measured (x) (Supporting Information Fig. S2). 1 nmol NO vial-1 is 

equivalent to a concentration of 0.62 nM in the liquid. Means and standard errors of 3 - 5 replicate 

cultures are plotted. 
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Fig. 2. Oxygen- and TAN-dependent O2 consumption rate by N. europaea (A, B) and N. maritimus 

(C, D) incubated with an initial TAN concentration of 1 mM. Three-dimensional plots (A, C) show cell-

specific O2 consumption rates (single time increment, individual vials) as a function of O2 concentration at 

the cell surface ([O2]s; calculated from transport kinetics, see Experimental procedures) and the 

concentration of TAN. A double Michaelis-Menten equation (see Experimental procedures Eq. 4) was 

fitted to the data and is represented as a surface; measurements are shown as vertical lines from 

measurements to model values (red: measurement > model, blue: measurement < model). Two-

dimensional plots (B, D) show the rates against O2 concentrations for the 0.5 - 3% O2 treatments at low 

([O2]s, together with model estimates. Estimated kinetic parameters are shown in Table 1, and correlation 
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between model estimates and measurements (r2
≥0.98 for both strains) is shown in Supporting 

Information Fig. S5. 

 

 

Fig. 3. Cell-specific rates of NO and N2O production by N. europaea (A, C) and N. 

maritimus (B, D) incubated with an initial TAN concentration of 1 mM. The rate of NO 

production (VNO) (A, B) is corrected for NO autoxidation and reflects enzymatic production 

(positive values) and consumption (negative values). Cultures depleted either O2 and/or TAN 

entirely, depending on the initial O2 concentration in the headspace (see legend). Limitation of 

O2 and/or TAN also affected the rate of N2O production (C, D). 
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Fig. 4. Relationship between velocity of N2O (VN2O) production and O2 consumption rates 

(VO2) of N. europaea (A) and N. maritimus (B) incubated with 1 mM TAN at a range of 

initial O2 concentrations (see legend).  
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Fig. 5. Oxygen-dependent N2O yield of N. europaea (incubated with 1 mM TAN, A, or with 

4 mM TAN, B) and N. maritimus (incubated with 1 mM TAN, C). N2O yield is expressed as 

N2O-N per NO2
--N generated from ammonia oxidation in cultures incubated with a range of 

initial O2 concentrations (see legend).  
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Fig. 6. Electron flow to denitrification (amol e- cell-1 h-1) for N. europaea growing on 1 mM 

TAN; model predictions versus measurements. The electron flow rate to nitrifier 

denitrification (VeD) are based on measurements (NO and N2O concentration) of single time 

increment values. Model predictions are plotted as continuous lines, using the experimentally 

determined concentrations of ([O2]s and [TAN] as inputs (average values for replicate vials at 

each time point). The insert highlights the declining electron flow to nitrifier denitrification at very 

low ([O2]s concentration and the failure of the model to capture this phenomenon. The model 

parameters (see Supporting Information, “Modelling electron flow in N. europaea grown at 1 mM 

TAN”) are YHAO = 0.0019 (proportion of oxidised hydroxylamine-N released as N2O-N), kmO2 = 

11.2 µM O2 (half-saturation concentration for terminal oxidases), VmaxeTO = 640 x VmaxeD (VmaxeTO 

and VmaxeD are the maximum rates of electron flow to terminal oxidases and denitrification, 

respectively). 
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Fig. 7. Simplified electron flow in N. europaea. The 4 electrons per NO2
- produced by 

hydroxylamine dehydrogenase (HAO) are relayed to the quinone pool (Q) most plausibly via 

membrane cytochrome cm552, or via periplasmic C554 and Cm552 (see discussion by Simon and 

Klotz, 2013). Ammonia monooxygenase (AMO) draws 2 electrons from the quinone pool and 

the remaining 2 electrons are passed either to NAD (-> NADH, reducing power for CO2 

assimilation) or to periplasmic cytochrome C552 via the cytochrome bc1 complex. C552 is a 

branching point, delivering electrons either to terminal oxidases (TO) or to the denitrification 

enzymes (D), i.e. nitrite reductase and nitric oxide reductase (nirK and NorB, Arp and Stein, 

2003). Several different C552 proteins may be involved at this branching point (Klotz and Stein, 

2010). Our modelling of competition for electrons (TO versus D) assuming one common 

electron donor is therefore a gross simplification. Proton motive force is generated by bc1 and 

TO (Klotz and Stein, 2008; Kozlowski et al., 2016a), while the electron transport from HAO to Q 

may be electroneutral (Simon and Klotz, 2013).  An electron shunt from c554 to C552 is indicated 

(red dashed arrow), which has been suggested by Stein et al. (2013) as an electron neutral 

pathway to D.   
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