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Abstract Introduction: The “epigenetic clock” is a DNA methylation—based estimate of biological age and is
correlated with chronological age—the greatest risk factor for Alzheimer’s disease (AD). Genetic and
environmental risk factors exist for AD, several of which are potentially modifiable. In this study, we
assess the relationship between the epigenetic clock and AD risk factors.

Methods: Multilevel models were used to assess the relationship between age acceleration (the re-
sidual of biological age regressed onto chronological age) and AD risk factors relating to cognitive
reserve, lifestyle, disease, and genetics in the Generation Scotland study (n = 5100).

Results: We report significant associations between age acceleration and body mass index, total
cholesterol to high-density lipoprotein cholesterol ratios, socioeconomic status, high blood pressure,
and smoking behavior (Bonferroni-adjusted P <.05).

Discussion: Associations are present between environmental risk factors for AD and age accelera-
tion. Measures to modify such risk factors might improve the risk profile for AD and the rate of bio-
logical ageing. Future longitudinal analyses are therefore warranted.

© 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction age [2]. From biological age, a measure of age acceleration
can be obtained based on the difference between an individ-
ual’s biological (estimated) and chronological (actual) age.
Age acceleration has been linked to a range of age-related
health outcomes, including increased Alzheimer’s disease
(AD) pathology [3], reduced cognitive and physical fitness
[4], and an increase in all-cause mortality [5]. The epigenetic
clock has therefore been proposed as a biomarker of ageing
and may be predictive of age-related disorders, such as de-
mentia [6].

Dementia is one of the leading global health concerns of
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DNA methylation is an epigenetic modification typically
characterized by the addition of a methyl group to a
cytosine-guanine dinucleotide. Both genetic and environ-
mental factors influence DNA methylation, which in turn
can regulate gene expression [1]. The “epigenetic clock™ is
an estimation of biological age derived from DNA methyl-
ation data and is strongly correlated with chronological
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factors including type 2 diabetes (T2D) and high blood
pressure (HBP) [8,9]. Moreover, resilience to age-related
brain changes (e.g., cognitive reserve) has been linked to
AD risk [10]. Factors such as educational attainment and
socioeconomic status have been proposed as proxy mea-
sures of cognitive reserve, and lower levels of these are es-
tablished AD risk factors [11,12]. Genetic studies of AD
have revealed several risk factors [13], with the APOE lo-
cus (encoding apolipoprotein E) being among the strongest
[14].

A recent review [15] suggested that up to a third of
cases of all-cause dementia might be delayed by actively
addressing its modifiable risk factors. The present study
aims to investigate the relationship between epigenetic
age acceleration and both genetic and potentially modifi-
able environmental AD risk factors. Two measures of age
acceleration were assessed in over 5000 individuals from
the Generation Scotland cohort, intrinsic epigenetic age ac-
celeration (IEAA) and extrinsic epigenetic age acceleration
(EEAA). These measures are described in greater detail in
the methods section. Briefly, [IEAA is a measure of age ac-
celeration that is independent of age-related changes in the
cellular composition of blood [16], whereas EEAA
captures the age-related functional decline of the immune
system. Age is the strongest risk factor for AD [17], and
epigenetic age is a robust predictor of chronological age.
We therefore hypothesize that individuals with poorer
profiles for AD risk factors display accelerated ageing in
comparison to those with more favorable profiles.

2. Methods
2.1. The Generation Scotland cohort

Details of the Generation Scotland: Scottish Family
Health Study (GS:SFHS) have been described previously
[18,19]. Briefly, the cohort comprises 23,960 individuals,
each with at least one family member participating in the
study. DNA samples were collected for genotype and
DNA methylation profiling along with detailed clinical,
lifestyle, and sociodemographic data. The present study
comprised 5200 individuals from the cohort for whom
DNA methylation data were available. A summary of
all variables assessed in this analysis is presented in
Table 1.

2.2. Ethics

All components of GS:SFHS received ethical approval
from the NHS Tayside Committee on Medical Research
Ethics (REC reference number: 05/S1401/89). GS:SFHS
has also been granted research tissue bank status by the
NHS Tayside Committee on Medical Research Ethics
(REC reference number: 10/S1402/20), providing generic
ethical approval for a wide range of uses within medical
research.

2.3. GS:SHFS DNA methylation

Genome-wide DNA methylation was profiled in blood
samples from 5200 individuals using the Illumina Human-
MethylationEPIC BeadChips. Quality control was conduct-
ed using R [20]. ShinyMethyl [21] was used to plot the log
median intensity of methylated versus unmethylated signal
per array with outliers being excluded upon visual inspec-
tion. The software package WateRmelon [22] was used to re-
move (1) samples in which >1% of cytosine-guanine
dinucleotides had a detection P value in excess of .05; (2)
probes with a beadcount of less than 3 in more than 5 sam-
ples; and (3) probes in which >0.5% of samples had a detec-
tion P value in excess of .05. ShinyMethyl was used to
exclude samples in which predicted sex did not match re-
corded sex. This left a sample of 5101 available for analysis.

2.4. Calculation of age acceleration

Methylation-based estimates of age were calculated using
the online age calculator (https://dnamage.genetics.ucla.edu/)
developed by Horvath [23]. Normalized GS:SHFS DNA
methylation data were used as input for the algorithm, and
data underwent a further round of normalization by the age
calculator. Two measures of age acceleration were calculated,
IEAA and EEAA. IEAA is defined as the residual term of a
multivariate model regressing estimated Horvath methylation
age [23] on chronological age, fitting counts of naive CD8+
T-cells, exhausted CD8+ T-cells, plasmablasts, CD4+
T-cells, natural killer cells, monocytes, and granulocytes esti-
mated from the methylation data. IEAA therefore does not
consider age-related changes in the cellular composition of
blood. Horvath’s measure of methylation age is also consis-
tent across multiple tissue types, including brain [23].
Conversely, the estimate of EEAA tracks age-related changes
in blood cell composition as well as intrinsic epigenetic
changes. EEAA is calculated first by calculating a weighted
average of Hannum’s DNA methylation age [24] and three
cell types whose abundance is known to change with age
(naive cytotoxic T-cells, exhausted cytotoxic T-cells, and
plasmablasts) using the approach described by Klemera and
Doubal [25]. EEAA is defined as the residual term of a univar-
iate model regressing the weighted estimated age on chrono-
logical age. EEAA correlates with age-related changes in the
cellular composition of blood, thereby capturing a degree of
immunosenescence.

2.5. Definition of AD risk factors

AD risk factors were divided into four categories: (1)
cognitive reserve, (2) disease, (3) lifestyle, and (4) genetics.
Cognitive reserve factors comprised education years and so-
cioeconomic status as measured by the Scottish Index of
Multiple Deprivation (SIMD). Education was measured as
an ordinal variable—O0: 0 years; 1: 1-4 years; 2: 5-9 years;
3: 10-11 years; 4: 12-13 years; 5: 14-15 years; 6:
16-17 years; 7: 18—19 years; 8: 20-21 years; 9: 22-23 years;
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Table 1
Summary of variables assessed in the Generation Scotland cohort
Variable N Mean SD
Chronological age (years) 5100 48.51 13.99
Horvath’s estimated age (years) 5100 52.60 11.59
Hannum'’s estimated age (years) 5100 39.42 11.68
Body mass index (BMI; kg/m?) 4977 27.03 5.37
Smoking (pack years)* 4997 9.13 17.28
High-density lipoprotein (HDL) cholesterol (mmol/L) 4948 1.49 0.42
Total cholesterol (mmol/L) 4960 5.13 1.09
Total:HDL cholesterol (ratio) 4948 3.67 1.22
N Mean IQR
Socioeconomic status (SIMD, rank) 4728 4230 2148.5-5423
Education' 4816 4 3-6
AD polygenic risk score 4994 1.7 x 107% 1.6 X 107*t01.9 X 107*
Sex (male/female) 1918/3083 - -
Type 2 diabetes (yes/no) 171/4830 - -
High blood pressure (yes/no) 768/4830 - -
AD family history (yes/no) 834/4167 - -
APOE (g€2¢2) 27 - -
APOE (€2€3) 572 - -
APOE (g2¢e4) 108 - -
APOE (€3€3) 2952 - -
APOE (g3¢4) 1126 - -
APOE (g4e4) 124 - -

Abbreviations: AD, Alzheimer’s disease; BMI, body mass index; IQR, interquartile range; SIMD, Scottish Index of Multiple Deprivation.

*The following smoking categories were available: current smoker (N = 939); former smoker, stopped within past 12 months (N = 158); former smoker,
stopped more than 12 months ago (N = 1309); never smoker (N = 2533). Data were unavailable for 62 participants.

tEducation was measured as an ordinal variable—O0: 0 years; 1: 1-4 years; 2: 5-9 years; 3: 10-11 years; 4: 12—13 years; 5: 1415 years; 6: 16—17 years; 7: 18—

19 years; 8: 20-21 years; 9: 22-23 years; and 10: >24 years.

and 10: >24 years. The SIMD is comprised of ranks for data
zones throughout Scotland from 1 (most deprived) to 6505
(least deprived). For each data zone, ranks are calculated
based on income, employment, health, education, skills
and training, housing, geographic access, and crime.
Disease-related factors comprised self-reported type 2 dia-
betes status and HBP status. Lifestyle factors comprised
smoking pack years (defined as packs smoked per day times
years as a smoker), body mass index (BMI), high-density li-
poprotein (HDL), total cholesterol, and total: HDL choles-
terol ratio. Genetic factors comprised family history
(defined as having a parent or grandparent with AD), AD
polygenic risk score (PGRS), and APOE €4 carrier status.

2.6. Calculation of AD PGRS

PGRS for AD was created for all individuals with geno-
type data in the GS:SHFS cohort. All autosomal SNPs which
passed quality control were included in the calculation of the
PGRS for AD (see Supplementary Information for quality
control parameters). PGRS for AD was estimated using sum-
mary statistics from an independent GWAS of AD (17,008
cases; 37,154 controls) conducted by the International Ge-
nomics of Alzheimer’s Project [ 13]. PGRS was estimated us-
ing the PRSice software package, according to previously
described protocols [26], with LD threshold and distance
threshold for clumping of R* > 0.25 and 250 kb, respec-

tively. After excluding SNPs within a 500-kb region of
APOE, a score was created for each individual, using all
possible remaining SNPs, in accordance with previous
GS:SFHS analyses [27].

2.7. Statistical analysis

Multilevel models were builtin R [20], assessing the rela-
tionship between epigenetic age acceleration (IEAA and
EEAA) and factors related to cognitive reserve, disease, life-
style, and genetics. In each model, the AD risk factor was
fitted as the outcome; chronological age, sex, and age accel-
eration were fitted as fixed effects; and pedigree information
was fitted as a random effect to control for genetic related-
ness within the cohort. Models were built using the
MCMCglmm() function from the MCMCglmm R package
[28]. Correction for multiple testing was applied separately
to IEAA- and EEAA-based analyses using the Bonferroni
method. Numeric variables were scaled to have zero mean
and unit variance.

3. Results
3.1. Estimation of epigenetic age

Methylation data from 5101 individuals were submitted
to the online age calculator. One individual was flagged
for an incorrect sex prediction and was omitted from
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downstream analysis, leaving 5100 individuals. A summary
of chronological and estimated ages in the GS:SHFS cohort
is provided in Table 1. Both Horvath’s and Hannum’s esti-
mates of biological age were strongly correlated with chro-
nological age (r = 0.94 and 0.93, respectively). As reported
previously [29], there was a strong effect of biological sex on
age acceleration, with men showing greater acceleration

than women (mean EEAA: males = 0.47 and
females = —0.3 years, P = 3.58 X 10712; Mean IEAA:
males = 1.13 and females = —0.71 years,

P =8.68 X 107°%.

3.2. Cognitive reserve and epigenetic age acceleration

Two cognitive reserve factors were evaluated for associ-
ation with age acceleration: socioeconomic status based on
the SIMD and education years (Table 2; Fig. 1). No signifi-
cant associations were present between these factors and
IEAA. Nominally significant negative associations (at
P < .05) were observed between EEAA and both education
and SIMD (0.076 standard deviation [SD] decrease in EEAA
per SD increase in education, P = .048; 0.05 SD decrease in
EEAA per SD increase in SIMD, P <.001).

3.3. Disease-related risk factors and epigenetic age
acceleration

We assessed the relationship between age acceleration
and two disease-related risk factors such as T2D and HBP

(Table 2; Fig. 1). No significant associations were observed
between either measure of epigenetic age acceleration and
T2D. There was a significant relationship between extrinsic
age acceleration and HBP (P = .002; 0.177 SD increase in
EEAA for individuals with HBP).

3.4. Lifestyle-related risk factors and epigenetic age
acceleration

Four factors related to lifestyle were considered: (1) BMI,
(2) smoking habits (pack years), (3) HDL, and (4) total
cholesterol (Table 2; Fig. 1). Higher values of both measures
of epigenetic age acceleration were observed with higher
BMI (IEAA: 0.089 SD increase per SD increase in BMI,
P < .001; EEAA: 0.061 SD increase per SD increase of
BMI, P < .001) and more pack years (IEAA: 0.031 SD in-
crease per SD increase in smoking pack years, P = .028;
EEAA: 0.059 SD increase per SD increase in smoking
pack years, P < .001). Greater IEAA was associated with
lower levels of HDL cholesterol (0.028 SD decrease in
IEAA per SD increase of mmol/L HDL, P = .032) and
higher levels of total cholesterol (0.036 SD increase in
IEAA per SD increase of mmol/L total cholesterol,
P =.004). A significant positive association was present be-
tween IEAA and total:HDL cholesterol ratios (0.047 SD in-
crease in IEAA per SD increase in ratio of total:HDL
cholesterol, P < .001). There were no significant associa-
tions observed between EEAA and any of the three
cholesterol-related metrics assessed.

Table 2
Age acceleration and AD risk factors
IEAA EEAA
Risk factor B 95% CI P B 95% CI P
Cognitive reserve
Socioeconomic status (SIMD, SD) —0.005 —0.034 to 0.022 1 —0.056 —0.083 to —0.026 <.001
Education* (per unit) 0.0398 —0.0037 to 0.084 .09 —0.041 —0.085 to 0.0004 .058
Disease
Type 2 diabetes (yes/no) 0.178 0.007—0.338 .06 0.142 —0.024 to 0.294 .08
High blood pressure (yes/no) 0.105 —0.016 to 0.21 .078 0.177 0.064-0.29 .002
Lifestyle
Body mass index (BMI; kg/m?) 0.089 0.06-0.11 <.001 0.061 0.03-0.087 <.001
Smoking' (pack years) 0.031 0.004-0.06 .028 0.059 0.0325-0.086 <.001
High-density lipoprotein (HDL) —0.028 —0.056 to —0.0053 .032 —0.022 —0.047 to 0.005 .098
cholesterol (mmol/L)
Total cholesterol (mmol/L) 0.036 0.007—0.06 .004 —0.027 —0.056 to —0.002 .056
Total:HDL cholesterol (ratio) 0.047 0.019-0.072 <.001 0.014 —0.015 to 0.039 .33
Genetic
AD polygenic risk score (SD) —0.002 —0.026 to 0.022 .896 —0.007 —0.03 to0 0.02 .6
AD family history (yes/no) 0.06 —0.162 to 0.279 .614 —0.007 —0.21t0 0.19 94
APOE (g4 carrier) —0.107 —0.307 to 0.119 .308 —0.103 —0.306 to 0.1 3

Abbreviations: AD, Alzheimer’s disease; BMI, body mass index; CI, confidence interval; EEAA, extrinsic epigenetic age acceleration; IEAA, intrinsic epige-
netic age acceleration; SIMD, Scottish Index of Multiple Deprivation.
NOTE. Significant associations after accounting for multiple comparisons are highlighted in bold (P < .004).
*Education was measured as an ordinal variable. 0: 0 years; 1: 1-4 years; 2: 5-9 years; 3: 10-11 years; 4: 12—13 years; 5: 14—15 years; 6: 16—17 years; 7: 18—

19 years, 8: 20-21 years; 9: 22-23 years; and 10: >24 years.

"The following smoking categories were available: current smoker (N = 939); former smoker, stopped within past 12 months (N = 158); former smoker,
stopped more than 12 months ago (N = 1309); never smoker (N = 2533), and not coded (N = 62).
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Fig. 1. Effects of AD risk factors on age acceleration. Plots are separated into four groups of AD risk factors: cognitive reserve, disease, lifestyle, and genetic.
Standardized model B coefficients (i.e., effect sizes) are presented along the y-axes, whereas risk factors are presented along the x-axes. Points are colored by
EEAA (red) and IEAA (blue). Error bars show the 95% CI. Points accompanied by an asterisk (¥) represent measures significantly associated with age accel-
eration at a Bonferroni P <.05. Abbreviations: 95% CI, 95% confidence interval; AD, Alzheimer’s disease; BMI, body mass index; EEAA, extrinsic epigenetic
age acceleration; HBP, high blood pressure; HDL, high-density lipoprotein cholesterol; IEAA, intrinsic epigenetic age acceleration; PGRS, polygenic risk score;
SIMD, Scottish Index of Multiple Deprivation; T2D, type 2 diabetes. Effect sizes represent SD increase/decrease in epigenetic age per 1 SD increase/decrease in
risk factor (disease positive for HBP and T2D, positive APOE €4 carrier status, and positive family history of AD).

3.5. Genetic risk factors and epigenetic age acceleration

Three genetic risk factors for AD were assessed for asso-
ciation with age acceleration: (1) family history, (2) AD
PGRS, and (3) APOE €4 carrier status (Table 2; Fig. 1).
No significant associations were present between any of
the genetic risk factors assessed and either measure of epige-
netic age acceleration.

3.6. Correction for multiple testing

Applying a Bonferroni correction separately for the
IEAA and EEAA regressions (0.05/12 = adjusted P <
.0042) identified significant IEAA associations with
BMI and total:HDL cholesterol ratio (BMI adjusted
P < 0.001; total:HDL cholesterol ratio adjusted
P < .001) and significant EEAA associations with
SIMD, BMI, HBP status, and smoking (SIMD adjusted
P < .001; BMI adjusted P < .001; HBP adjusted
P = .002; and smoking adjusted P < .001). Of these,
increased age acceleration was associated with increased

total: HDL cholesterol ratios, BMI, smoking levels, social
deprivation, and HBP status.

4. Discussion

In the present study, we hypothesized that age accelera-
tion might be associated with AD risk factors in the Gener-
ation Scotland cohort. Using both intrinsic (cell-adjusted)
and extrinsic (immune system—associated) estimates of
epigenetic age acceleration in a cohort of 5100 individuals,
we identified significant associations between multiple AD
risk factors and age acceleration. Several of the AD risk fac-
tors associated with age acceleration are potentially modifi-
able lifestyle factors, suggesting the rate of epigenetic
ageing can be altered through behavioral changes.

Biological age has been linked to an increased risk of all-
cause mortality and is strongly correlated with chronological
age [5]. The epigenetic clock has been proposed as a
biomarker of ageing as well as a predictor of an individual’s
health and susceptibility to age-related health outcomes
[3,5]. As chronological age increases, so does the risk of
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dementia. Individuals with greater age acceleration (i.e.,
with greater epigenetic age relative to chronological age)
have slightly poorer cognitive ability [4] and a modest in-
crease in burden of pathological hallmarks of dementia [3].

Of the risk factors assessed, BMI and smoking levels
were associated (at a nominal significance threshold) with
both estimates of age acceleration. BMI has previously
been associated with an increased risk of dementia and
AD when it is high in middle age and low in old age
[30,31]. Consistent with our findings, others have observed
an association between higher BMI and increased age
acceleration using both Hannum- and Horvath-based algo-
rithms [23,24,32]. Previous studies have failed to find
associations between smoking levels and epigenetic age
acceleration [16,33]. Our findings of a significant positive
association between self-reported smoking and both mea-
sures of age acceleration may be attributable to our larger
sample size (N = 4997 individuals compared with
maximum N = 978 individuals with smoking data available
[33]), although only EEAA was significantly associated with
smoking after correction for multiple testing.

In the present study, factors relating to cholesterol were
associated with age acceleration based on the intrinsic
(cell-adjusted) estimate of epigenetic age acceleration (at
a nominal significance threshold for HDL cholesterol and
total cholesterol). HDL levels were negatively correlated
with epigenetic age acceleration, whereas both total choles-
terol levels and total:HDL cholesterol ratio were positively
correlated with age acceleration. To our knowledge, signif-
icant associations between methylation-based estimates of
age acceleration and total:HDL cholesterol ratios have
not been reported to date. Consistent with our findings,
others have observed an association between lower HDL
cholesterol and increased age acceleration [32]. A relation-
ship between increased age acceleration and both total and
HDL cholesterol levels using a transcriptomic estimate of
biological age has also been reported [34]. HDL choles-
terol, colloquially known as “good cholesterol,” primarily
functions in lipid transport. Higher levels of HDL choles-
terol have been linked to a reduction in cardiovascular dis-
ease risk [35] as well as a decreased risk of AD and
dementia [36,37]. Conflicting evidence exists for the
association between mid-life levels of total cholesterol
and dementia risk [38,39]; however, studies have
consistently reported an inverse association between total
cholesterol levels and AD risk in elderly individuals [40-
42]. Longitudinal analyses have revealed different
trajectories of BMI in dementia cases compared with
controls [31]. Similarly, longitudinal analyses have also
indicated that mid- to late-life trajectories of cholesterol
levels are related to both APOE genotype [43] and demen-
tia status [44]. APOE, a strong genetic risk factor for AD,
also functions in lipid transport. The association between
cholesterol levels and AD risk, coupled with the functions

of APOE and other genetic risk factors (e.g., SORLI) [13],
supports the role of lipid metabolism and transport in de-
mentia [45,46].

For the proxy measures of cognitive reserve, both educa-
tional attainment and socioeconomic status were associated
with EEAA. Of the two, however, only socioeconomic status
remained significant after Bonferroni correction. Those with
fewer education years showed increased age acceleration, as
did individuals from more deprived socioeconomic back-
grounds. Individuals with increased levels of education
have displayed delays in the age of onset of dementia [47].
Lower levels of education are also associated with an
increased risk of transitioning from a cognitively normal to
a cognitively impaired state [48]. Consistent with our find-
ings, others have reported a similar pattern between EEAA
and educational attainment [32,49]. Moreover, an inverse
relationship has previously been reported between
socioeconomic status and a measure of age acceleration
also based on the algorithm by Hannum et al. [24,50]. The
manifestation of biological differences linked to social
deprivation is possibly due to the association between
socioeconomic status and other, more biologically direct,
risk factors for dementia. For example, several lifestyle-
related AD risk factors have been shown to be associated
with socioeconomic status, including smoking and BMI
[51,52].

Of the disease-related AD risk factors, there were no as-
sociations between T2D and either measure of age acceler-
ation. However, a significant association was observed
between HBP status and the extrinsic estimate of age accel-
eration. Hypertension is prevalent among older individuals,
and its link with dementia is well established [53,54].
Consistent with our findings, others have reported an
association between blood pressure and EEAA [32]. It
should be noted, however, that the study cohort was limited
to postmenopausal women.

No significant associations were observed between either
measure of age acceleration and any of the genetic risk fac-
tors assessed. Epigenetic age acceleration effects of environ-
mental factors such as smoking and cholesterol may be more
visible in blood because of direct contact with the tissue.
Although genetic risk factors should be consistent across
all tissues, it is possible that they only influence epigenetic
age acceleration in cell types in which AD pathology is pri-
marily observed (i.e., brain tissue).

After Bonferroni correction, only BMI, cholesterol ratios,
smoking, HBP status, and socioeconomic status were associ-
ated with age acceleration. With the exception of socioeco-
nomic status, all are traits that can directly impact on
cardiometabolic health. This highlights a well-established
overlap between AD risk and that of cardiovascular disease
[54].

With a sample size in excess of 5000 individuals, this is
among the largest single-cohort studies of DNA
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methylation—based ageing to date. Recent analyses of DNA
methylation—based ageing have been undertaken with sam-
ple sizes of a similar scale, using multiple cohorts [50,55].
An advantage of the present study is that the cohort is
derived from a single population. This minimizes the
likelihood of confounders such as genetic and phenotypic
stratification, which might be observed in studies
comprising multiple populations. Moreover, the use of a
comprehensively genotyped and phenotyped cohort has
permitted the assessment of both genetic and
environmental AD risk factors and their relationship with
epigenetic ageing. This resource is further strengthened by
the potential for data linkage to medical records and
recontact of participants, making future longitudinal
analyses possible. The cross-sectional design of the present
study poses a limitation as it does not permit the assessment
of longitudinal changes in age acceleration in response to
altered lifestyle habits. However, such a study might be
informative in determining whether the trajectory of biolog-
ical age can be modified through efforts to reduce the risk of
AD and other forms of dementia. An additional limitation re-
lates to the absence of AD biomarker data in the Generation
Scotland cohort. Deriving high-quality measurements for
biomarkers such as tau and amyloid-f3 in live subjects can
be invasive and costly. However, the recent development
of high-performance assays for plasma-based tau and amy-
loid-B may provide a noninvasive, cost-effective alternative
for future analyses [56,57]. With the exception of BMI,
significant associations were specific to either IEAA or
EEAA. This discordance is possibly due to differences in
the two estimates of age acceleration. As described in the
methods section, IEAA does not reflect differences in blood
cell composition that may be due to age while these differ-
ences are incorporated into the estimate of EEAA. HBP,
smoking and socioeconomic status were associated with
EEAA, but not IEAA. This may reflect a relationship be-
tween these risk factors and immunosenescence. There
were no available measurements for immunosenesence-
related markers in the Generation Scotland cohort. However,
others have reported inverse associations between socioeco-
nomic factors and interleukin-6 and C-reactive protein—two
markers of immunosenescence [58,59]. Moreover, several
studies have reported an association between hypertension
and elevated levels of C-reactive protein [60]. In contrast, to-
tal:HDL cholesterol ratio was associated with IEAA but not
EEAA, possibly reflecting a relationship between this factor
and “pure” epigenetic ageing (i.e., tissue-agnostic ageing).
In conclusion, we reported associations between both
intrinsic and extrinsic measures of epigenetic age accelera-
tion and environmental AD risk factors. However, no associ-
ations were present for the genetic risk factors assessed. At a
nominal (P <.05) significance threshold, IEAA was associ-
ated with all of the lifestyle-related factors assessed, whereas
EEAA was associated with HBP, BMI, smoking, and both

cognitive reserve factors assessed. After Bonferroni correc-
tion, BMI, cholesterol ratios, smoking, HBP, and socioeco-
nomic status remained significantly associated with
epigenetic age acceleration. These have all been linked to
cardiovascular disease risk, as well as AD risk [15,61].
Risk factors such as cholesterol levels, smoking, blood
pressure, and BMI can be modulated by behavioral
changes with regard to exercise, dietary intake, and
smoking behavior. The epigenetic clock is a robust
predictor of chronological age, and the greatest risk factor
for AD is advanced age [17]. Individuals displaying acceler-
ated ageing have demonstrated increased AD neuropa-
thology and lower cognitive test scores [3,4]. In the
present study, we observed a relationship between age
acceleration and AD risk factors. It is reasonable to
suggest that by improving one’s AD risk profile where
possible, the biological ageing process could be “slowed.”
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RESEARCH IN CONTEXT

1. Systematic review: Previous studies have identified a
relationship between epigenetic ageing and age-
related outcomes, including Alzheimer’s disease
pathology and reduced cognitive performance. In
this study, we present the largest study of DNA
methylation-based ageing to date. We assessed the
relationship between the epigenetic clock and both
genetic and environmental Alzheimer’s disease risk
factors in a cohort of over 5000 individuals.

2. Interpretation: We identified significant associations
between epigenetic age acceleration and lifestyle-
related risk factors, but not genetic risk factors.
Potentially modifiable factors were including body
mass index, total:high-density lipoprotein choles-
terol ratios, smoking, high blood pressure, and
socioeconomic status.

3. Future directions: We hypothesize that behavioral
changes with an aim to modify such risk factors
may improve individual risk profiles for Alzheimer’s
disease, potentially decreasing the rate of epigenetic
age acceleration. As this hypothesis cannot be ad-
dressed due to the cross-sectional design of the
present study, longitudinal analyses are warranted.
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