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ABSTRACT 26 

Measuring dispersal in rare sessile benthic species is important in the development 27 

of conservation measures such as MPA networks. However, efforts to understand 28 

dispersal dynamics for many species of conservation concern are hampered by a 29 

lack of fundamental life-history information. Here we present the first description of 30 

larvae of the fan mussel, Atrina fragilis, and examine key life-history traits that affect 31 

dispersal. Larval identification was accomplished using complementary molecular 32 

and morphologic techniques. Atrina-specific primers were designed by aligning 33 

Atrina COI sequences available in GenBank. As none of these were from UK 34 

specimens, primers were designed in the most conserved regions found across A. 35 

fragilis and its closest relative A. chautardi. A monthly time-series of zooplankton 36 

samples (2014–2015) suggests that A. fragilis follows the same pattern in spawning 37 

observed for other pinnids at temperate latitudes, with peak spawning in summer 38 

and winter. Average shell growth was estimated to be 6 µm d-1 based on presumed 39 

daily growth lines on larval shells. Measurements of the larval shell visible through 40 

the juvenile shell indicate a length of up to 770 µm at settlement. Using presumed 41 

daily growth lines, this translates into a pelagic larval duration of around 4 months.  42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 
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INTRODUCTION 51 

 52 

In benthic marine species with a sedentary adult life stage, the transport of 53 

planktonic larvae is central in determining the distribution, dynamics and viability of 54 

populations (Underwood & Fairweather, 1989; Sale et al., 2005; Botsford et al., 55 

2009; D’Aloia et al., 2013). However, for the majority of marine species larval 56 

transport remains poorly understood (Salinas-de-León, Jones & Bell, 2012) due to a 57 

lack of fundamental life-history information, such as the season of spawning, 58 

duration of the planktonic phase and behavioural traits of larvae (Brussard, 1991; 59 

Hendriks, van Duren & Herman, 2005). Moreover, for many rare species the inability 60 

to identify planktonic stages precludes the collection of such information. 61 

 In the present study we develop methods for identifying larvae of the fan 62 

mussel, Atrina fragilis (Pennant, 1777), and examine key life-history traits that affect 63 

dispersal. This is one of the largest and rarest bivalve molluscs occurring in northern 64 

European waters (Woodward, 1985) and the only member of the Pinnidae to inhabit 65 

UK waters. In the UK it is protected under law (UK Gov, 1981) and has been 66 

highlighted as one of the most threatened species requiring targeted conservation 67 

(JNCC, 2010). Atrina fragilis is sensitive to the effects of benthic fishing gears and its 68 

distribution is believed to have been impacted by the industrialization of fishing over 69 

the past half century (e.g. Fryganiotis, Antoniadou & Chintiroglou, 2013). The only 70 

known population in Scottish waters that may currently be described as an 71 

aggregation was discovered in 2009, during routine monitoring of a spoil-site in the 72 

Sound of Canna (SoC), which is an over-deepened (> 200 m) glacial trench with 73 

muddy and sandy sediments lying between the Isles of Rum and Canna in the Small 74 

Isles archipelago off the west coast of Scotland. The biology of A. fragilis is not well 75 
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understood, with information on its reproduction and early life-history particularly 76 

sparse. No descriptions of A. fragilis larvae exist in the literature.  77 

Bivalve larvae are notoriously difficult to identify using classic morphological 78 

methods, particularly during their early stages (e.g. Garland & Zimmer, 2002; 79 

Hansen & Larsen, 2005). Nonetheless, various early taxonomists attempted 80 

systematic classification of bivalve larvae from their morphology (Bernard, 1895; 81 

Borisiak, 1909; Lebour, 1938; Rees, 1950; Yoshida, 1956; Miyazaki, 1962), while 82 

subsequent researchers produced keys with shape, dimensions, umbo character, 83 

colour, hinge-line length and hinge morphology to distinguish between species 84 

(Loosanoff, Davis & Chanley, 1966; Garland & Zimmer, 2002). Morphological 85 

identification is greatly facilitated by descriptions of sympatric bivalves that allow the 86 

comparison of morphological features and by knowledge of the bivalve fauna of an 87 

area (Garland & Zimmer, 2002; Rees, 1950). However, greater certainty in larval 88 

identification, particularly for the early stages where morphological identification is 89 

most challenging, is now possible through genetic approaches (Garland & Zimmer, 90 

2002; Larsen et al., 2005; Fonseca et al., 2010). DNA barcoding, a molecular 91 

method that uses short species-specific DNA fragments within a particular gene to 92 

identify organisms, is an efficient, robust and standardized tool (Hajibabaei et al., 93 

2011). This technique requires an established reference library comprising DNA 94 

sequences from the same genomic region, so that the unknown query sequence can 95 

be identified and validated when compared with sequences generated from closely 96 

related species (Yoccoz, 2012).  97 

Various authors have noted the large size and distinctive triangular shape of 98 

the larvae of pinnids (Bernard, 1895; Jørgensen, 1946; Rees, 1950; Ota, 1961; 99 

Malchus, 2004; Allen, 2011; Malchus & Sartori, 2013). Descriptions of varying detail 100 
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exist for the larvae of Atrina japonica (Ota, 1961; Ohashi et al., 2008), A. pectinata 101 

(Ota, 1961), A. zelandica (Booth, 1979), Pinna carnea, P. rudis and A. seminuda 102 

(Allen, 2011). For all of these, the larvae are of similar distinctive gross morphology 103 

and, where reported, share similar hinge structures. However, late-stage larvae are 104 

most often the focus of the work, with few mentions of early-stage larvae and no 105 

accounts of how hinge structure changes with ontogeny.  106 

The spatial extent of larval transport is governed by the interplay between 107 

abiotic factors that affect the horizontal and vertical rate of water movements, and 108 

biotic factors such as the vertical movements of larvae and the duration of the 109 

pelagic phase (Cowen & Sponaugle, 2009; Selkoe & Toonen, 2011). Determining 110 

pelagic larval duration (PLD) requires a means of age estimation. Growth lines, 111 

which can be defined as abrupt or repetitive changes in the character of an accreting 112 

tissue (Clark, 1974), have been used to estimate the age of adult bivalves 113 

(Thompson, Jones & Dreibelbis, 1980; Jones & Quitmyer, 1996; Moltschaniwskyj & 114 

Cappo, 2009). Hurley, Tremblay & Couturier (1987) demonstrated that growth lines 115 

visible in the larval shells of Placopecten magellanicus were deposited on a daily 116 

basis and these structures have been used to investigate life-history parameters, 117 

such as PLD, in the early stages of other bivalves (Chıćharo & Chıćharo, 2000, 118 

2001).  119 

Dispersal distances often fall short of those predicted from PLD alone, 120 

suggesting that other phenomenon, such as the behaviour of larvae and/or 121 

hydrodynamic patterns, can act to limit dispersal (Shanks, Grantham & Carr, 2003; 122 

Shanks, 2009). In addition, since oceanic circulation patterns along with the intensity 123 

of weather systems vary on a seasonal basis, the timing of spawning can have a 124 

direct impact on dispersal potential (Edwards et al., 2007). Although bivalve larvae 125 
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have limited swimming ability (a few mm s-1; Chia, Buckland-Nicks & Young, 1984), 126 

they can alter their vertical position to varying degrees in response to changes in 127 

factors such as light and gravity (Bayne, 1964; Weidberg et al., 2015), hydrostatic 128 

pressure (Bayne, 1963), temperature, salinity and food concentration (Raby et al., 129 

1994; Pearce et al., 1996; Dobretsov & Miron, 2001), tidal conditions (Knights, 130 

Crowe & Burnell, 2006) and wind-induced turbulence (Weidberg et al., 2015). Such 131 

small changes in vertical distribution can affect large scale horizontal transport in a 132 

flow field where there are vertical differences in current speed and direction 133 

(Edwards et al., 2007; Corell et al., 2012; Weidberg et al., 2015). Obtaining such 134 

information for bivalve species of conservation importance is a prerequisite for 135 

informing management through spatially explicit tools such as marine protected 136 

areas (MPAs). 137 

Here we aim to: (1) identify and describe the early- and late-stage larvae of A. 138 

fragilis; (2) determine the time of A. fragilis spawning; (3) estimate the PLD of the 139 

larvae and (4) assess any vertical distribution preference displayed by the larvae in 140 

relation to the physical structure of the water column. 141 

 142 

 143 

 144 

 145 

 146 

 147 

 148 

 149 

 150 



7 
 

MATERIAL AND METHODS 151 

 152 

Plankton sampling  153 

Zooplankton samples were collected from the west coast of Scotland (Fig. 1) using a 154 

1-m diameter bongo, paired zooplankton net (both having a mesh of 250 µm in the 155 

nets and of 200 µm in the cod-ends), which was towed obliquely through the water 156 

column. Sampling was conducted at stations 1 – 7 (haul numbers A14089:102) 157 

during the first week of October 2014 and stations 8 – 13 on 10 and 11 February 158 

2015 (haul numbers SJM001:012). One replicate from each paired sample was 159 

preserved in 100% ethanol and the other in 80% isopropanol. The replicates 160 

preserved in ethanol were retained for molecular analysis, while bivalve larvae were 161 

separated and counted from the isopropanol-preserved samples using light 162 

microscopy. Samples are stored at Marine Scotland Science’s laboratory, Aberdeen. 163 

 164 

Molecular analysis  165 

From the ethanol-fixed material for the seven stations in October 2014, three 166 

separate 5-mm3 replicate samples (A – C) were taken from each, resulting in 21 167 

replicates. DNA was extracted independently from the replicates using the DNeasy 168 

Blood and Tissue Extraction kit (Qiagen), following the manufacturer's protocol, with 169 

overnight digestion (10-16 h) at 56 °C and 500 rpm on a ThermoMixer (Eppendorf). 170 

The extracted DNA solutions were quantified by Nanodrop (LabTech) and diluted to 171 

25 ng/µl in order to obtain the desired amount of template DNA (50 ng) for PCR 172 

amplification.  173 

 Cytochrome c oxidase subunit I (COI) primers LCO1490 and HC02198 (Folmer et 174 

al., 1994) were used as a positive control to amplify a 710-bp fragment of the COI 175 
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gene across many invertebrate species. Atrina-specific primers were designed by 176 

aligning all available COI sequences of Atrina species in GenBank, using CLC 177 

Genomics Workbench (CLC bio). As none of the available sequences were from UK 178 

specimens (all came from the Mediterranean Sea), primers were designed in the 179 

most conserved regions found across A. fragilis and A. chautardi, the closest relative 180 

to A. fragilis (Lemer et al., 2014). These primers (AfrCOI-F01, AfrCOI-R01, AfrCOI-181 

R02 and AchCOI-R03 (Table 1), were designed to amplify a 421-bp fragment of the 182 

COI gene, including the primer sequences (Integrated DNA Technologies). The 183 

forward primer’s location was in a region that is fully conserved between both 184 

species. The reverse primer, however, was located in a region that contained two 185 

mismatches between the species. Therefore, two species-specific reverse primers, 186 

AfrCOI-R02 for A. fragilis and AchCOI-R03 for A. chautardi were designed. The third 187 

reverse primer, AfrCOI-R01, included two degenerate sites, with each site being an 188 

equimolar mixture of two different nucleotide bases (Table 1). This design 189 

compensated for possible mismatches and facilitated primer annealing to UK A. 190 

fragilis DNA templates in the event that base pairs were variable at the two 191 

heterogeneous sites. As no noticeable differences were observed between the three 192 

different combinations of the specific primers tested in an initial PCR amplification, 193 

reverse primer AfrCOI-R01 was used in all subsequent PCR amplifications along 194 

with forward primer, AfrCOI-F01. The PCR protocol used by Lemer et al. (2014) was 195 

followed for both the universal invertebrate and newly designed specific primers. A 196 

negative control of distilled water was included in all PCR amplifications to ensure 197 

the PCR amplification was free from DNA contamination. If the negative control gave 198 

a positive signal, the PCR amplification was deemed invalid. Positive controls 199 

comprised of DNA extracted from four Greek adult A. fragilis specimens were also 200 
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included to check that PCR conditions successfully amplified the target template 201 

DNA. 202 

 PCR products were visualized using E-Gel agarose SYBR Safe gels (2% 203 

agarose) (Invitrogen, Life Technologies). PCR products that produced a band of the 204 

correct 421-bp size were subsequently purified using Rapid PCR Cleanup Enzyme 205 

Set (New England Biolabs), following the manufacturer’s protocol. Sequencing 206 

reactions were then carried out using AfrCOI-F01 and AfrCOI-R01 as sequencing 207 

primers, before running the PCR products on a Capillary Sequencer (ABI 3730) (Life 208 

Technologies). The sequence chromatograms were visualized and edited using 209 

CodonCode Aligner (CodonCode). Basic local alignment search tool (BLAST) 210 

sequence similarity was then searched against the GenBank database to confirm 211 

that the generated sequences matched previously submitted A. fragilis sequences 212 

over the targeted COI region. 213 

 214 

Morphological analysis  215 

Larvae whose gross shell morphology matched the general description of pinnid 216 

larvae were measured (length L and height H, i.e. the axes parallel and 217 

perpendicular to the hinge line, respectively) and their hinge structure examined. 218 

Measurements were conducted on light microscopes that were calibrated and tested 219 

for measurement error. In order to observe the hinge apparatus, the valves of the 220 

larvae were disarticulated and the soft tissues removed, by immersing the larvae in 221 

an 8 – 10% sodium hypochlorite solution for a few minutes, before rinsing in filtered 222 

seawater. Hinge structure and growth lines were investigated using Nomarski 223 

differential interference contrast microscopy (DIC) and scanning electron microscopy 224 

(SEM). Shells were then mounted on stubs and sputter coated in gold before 225 
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examination in the SEM (Zeiss EVO MA10, operating in backscatter mode). Growth 226 

lines were interpreted using the description of Hurley et al. (1987). Right and left 227 

valves were distinguished by defining the anterior and posterior margins of the larval 228 

shell. Pinnid larvae are characteristically elongated anteroventrally, with the anterior 229 

shell margin being straighter than the posterior one (e.g. Booth, 1979; Malchus, 230 

2004; Allen, 2011) and the provincular teeth of pinnids are inequilateral with the 231 

anterior series consisting of smaller, more numerous and even teeth than those of 232 

the posterior series (Booth, 1979; Malchus, 2004; Malchus & Sartori, 2013). Pinnid 233 

larvae are heteromyarian in nature, i.e. two adductor muscles are present, with the 234 

posterior being rounder, larger and further from the valve margin than the anterior 235 

(Allen, 2011). 236 

 237 

Time-series study 238 

Additional zooplankton samples were collected between April 2014 and September 239 

2015 on the MV Lochnevis Caledonian MacBrayne passenger ferry when operating 240 

between the Isles of Rum and Canna (Fig. 1). A total of 83 samples were collected 241 

(Table 2) using a custom-built plankton sampler, consisting of a 200-µm mesh cod-242 

end inside a 68-µm cod-end, that was fitted to one of the ship’s seawater pumps 243 

(capacity 480 l min-1). Samples were preserved in 100% ethanol for later analysis. 244 

 245 

Depth-stratified study 246 

Depth-stratified sampling was used to assess the vertical distribution of larvae in the 247 

SoC on 27 and 28 July 2014 (Fig. 1). An OCEAN (opening–closing environmental 248 

acoustic net) sampler (OS), comprised of seven individual 200-µm mesh nets and 249 

cod-ends, collected six samples at seven depth intervals (D1: 180 – 150 m, D2: 150 250 
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– 120 m, D3: 120 – 90 m, D4: 90 – 60 m, D5: 60 – 30 m, D6: 30 – 15 m, D7: 15 – 0 251 

m) and at three different times of day (early morning, mid morning and afternoon) 252 

and during both ebb and flood tides. Water-column profiles were taken with a Sea-253 

Bird SBE 19plus profiler CTD immediately after each OS tow (apart from a 107-min 254 

gap between the OS1 and CTD1 samples due to a technical issue). All OS and CTD 255 

samples were collected from within a 4 km x 350 m rectangular area. Tidal data were 256 

obtained for the closest tidal gauge site to the SoC (Tobermory) in the UK Tide 257 

Gauge Network, through the British Oceanographic Data Centre and adjusted for 258 

tides in the SoC. 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 
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RESULTS 276 

 277 

Molecular analysis 278 

The universal primers consistently amplified a 710-bp fragment (amplicon) from all 279 

samples apart from sample 5 (Fig. 2A). The more specific primer pair amplified the 280 

expected 421-bp fragment from the positive controls and samples as well as 281 

samples 1, 4 and 7. Replicate 7C consistently produced the strongest band, though 282 

no band was detected for 7A (Fig. 2B). The band strength on the gels was 283 

qualitatively assessed to check whether both sets of primers produced an amplicon 284 

for a particular replicate (Table 3). PCR products that showed bands for the more 285 

specific primers were analysed to obtain DNA sequences for the COI barcode 286 

region. In total, eight replicates and the four positive controls were sequenced with 287 

both the forward and reverse specific primers. The sequences were then trimmed 288 

and compared with COI sequences in the GenBank database (Table 4). The forward 289 

primer sequences of controls 3, 4 and 5 had 100% sequence similarity to Atrina 290 

fragilis sequences found in GenBank (Table 4). The forward primer sequence for 291 

control 1 had one mismatch with the three other controls. Of the remaining 292 

replicates, 7C had 100% similarity to A. fragilis sequences found in the database for 293 

both forward and reverse primers (Table 4), indicating the presence of A. fragilis 294 

larval DNA. The forward primer sequence was identical to the control 3, 4 and 5 295 

forward primer sequences, with the consensus sequence having no mismatches.  296 

 297 

Morphological analysis 298 

No late-stage pinnid like larvae were collected in the October sampling, though 299 

molecular analysis confirmed the presence of A. fragilis DNA during this sampling 300 
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period. There were, however, a range of early-stage larval bivalve types, whose 301 

gross morphology broadly corresponded to that of pinnid larvae, i.e. they were 302 

distinctly triangular, so these were separated for further investigations. Larvae of 303 

different types were subjected to further molecular analysis, but unfortunately DNA 304 

extraction of these samples was unsuccessful. Morphological analyses revealed a 305 

single larval type that most closely resembled those of pinnids. While the strength of 306 

a PCR product band does not necessarily reflect the abundance of larvae in a 307 

sample, it is noteworthy that the strongest PCR product band and only 100% match 308 

with the GenBank sequences for A. fragilis was observed in sample 7 (replicate 7C), 309 

where this type was most abundant. These earlier-stage larvae (length < 400 µm) 310 

are distinctively triangular in shape (Figs 3B, C, 4A). The distinctive umbos are 311 

higher than other larvae of similar length and, while not as pronounced as the later-312 

stage larvae, are of the same character (Fig. 3C, F). Although hinge structure is 313 

strictly comparable only between larvae at the same developmental stage (Rees, 314 

1950), the hinge structure of these earlier stage larvae is of the same type as the 315 

later-stage ones, with the anterior series consisting of fewer and more robust teeth 316 

than the posterior series (Fig. 3D). The series of posterior teeth extends along the 317 

posterodorsal axis during development, as shown by the formation of small teeth at 318 

the posterior edge of the posterior series (Fig. 3D). The colour of the earlier-stage 319 

larvae is comparable to the later-stage ones, with the anterior and posterior abductor 320 

muscles clearly visible through the shell (Fig. 3A). No pigment spots were observed 321 

in larvae at any development stage. 322 

Late-stage A. fragilis larvae (Fig 4A, F, G) were only collected in February in 323 

samples 10A, 12A & B and 13A, with nine larvae collected in total. The largest of 324 

these had L of 622 µm and H of 558 µm (Fig. 3A). These larvae are comparable with 325 
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descriptions of other late-stage pinnid larvae in the literature (Ota, 1961; Booth, 326 

1979; Ohashi et al., 2008; Allen, 2011). The valves of late-stage (length > 400 µm) 327 

A. fragilis larvae are distinctive in terms of their size and triangular shape (Fig. 3F, 328 

G). The valves are inequilateral, having a straight to slightly concave anterodorsal 329 

shell margin and a convex posterodorsal margin. The distance from the midline to 330 

the anterodorsal shell margin in the ventral margin area is greater than that to the 331 

posterodorsal margin, giving the larvae a somewhat 'pinched' appearance at the 332 

distinctively prominent, 'knobby' umbos. The anterior and posterior abductor 333 

muscles, which are bean-shaped and circular, respectively, in cross-sectional profile, 334 

are clearly visible through the transparent and pale golden shell (Fig. 3A, G). The 335 

larval hinge structure is comprised of a thickened provinculum with 4 – 5 simple 336 

rectangular taxodont teeth lying posterior to the umbo, and 6 – 7 teeth lying anterior 337 

to the umbo, with an undifferentiated central region (Fig. 3E). The anterior teeth are 338 

larger and more robust than the posterior series. The ligament lies anterior to the 339 

posterior teeth. The first prodissoconch (small circular valves without growth lines) is 340 

distinct at the umbo for both the late- (Fig. 3E) and early-stage (Fig. 3C, D) larvae.  341 

Growth lines showed a similar hierarchy in prominence to that described by 342 

Hurley et al. (1987), with major growth lines, previously found to correspond to daily 343 

increments, being more prominent. Major growth lines on the disarticulated right 344 

valve were counted from 13 A. fragilis larvae (representing the observed size range) 345 

at a focal plane similar to that described by Hurley et al. (1987) (Fig. 4). Major 346 

growth-line counts ranged from 27 – 94 over larval L of 217 – 620 μm (Fig. 5). Major 347 

lines lay on average 7 µm (range = 4.2 – 9.9 µm) apart, with minor lines lying on 348 

average 2.2 µm (range = 1.3 – 3.2 µm) apart. The number of major growth lines 349 
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corresponded well to larval L when a simple linear model was fitted to the data 350 

(adjusted R2 = 0.96, y = 6.19, P < 0.001). 351 

 352 

Time-series study 353 

A total of 3,086 bivalve larvae were collected from the time-series samples, with 12 354 

early-stage A. fragilis larvae identified. The mean density of bivalve larvae per m3 of 355 

seawater was lowest in samples taken from January to March (< 1.75 n·m-3), and 356 

then increased steadily to a peak in August (215 n·m-3), before dropping again over 357 

autumn and winter, closely following the annual cycle in water temperature (Table 1, 358 

Fig. 6). March sampling collected a total of five bivalve larvae, including one A. 359 

fragilis larva (L = 360 µm, H = 350 µm), resulting in March having the highest 360 

proportion of A. fragilis larvae despite it being one of the most poorly sampled 361 

months (Table 1). In terms of density per m3 of seawater, A. fragilis larvae were most 362 

prevalent in samples taken during the summer months, particularly in August (0.63 363 

n·m-3) and September (0.5 n·m-3), and were also detected during June (0.25 n·m-3) 364 

and July (0.1 n·m-3) (Fig. 6). There is evidence that spawning occurs over winter with 365 

larvae detected in November (0.17 n·m-3) and March (0.33 n·m-3), as well as in the 366 

February samples. 367 

 368 

Depth-stratified study 369 

The pycnocline was consistently observed at a depth of between 40 – 75 m during 370 

all sampling times, with a tendency to become more pronounced and shallower as 371 

the day progressed (Fig. 7A–C). A total of 5,087 bivalves, including eight early-stage 372 

A. fragilis larvae, were collected in the OS samples. The general trend of increasing 373 

density of bivalve larvae from the deepest depth interval 150 – 180 m (D1) to the 30 374 
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– 60 m depth interval (D5) was apparent in all sampling groups (Figs 7, 8). When the 375 

samples were grouped by time of day (Fig. 7), the afternoon group had the highest 376 

densities of bivalve larvae in the 30 – 60 m (D5) depth range, followed by the mid-377 

morning group, with the early-morning samples having the lowest (Fig. 7D). Larval 378 

densities from the early-morning samples were more heterogeneously distributed 379 

across the range sampled depths than the other two groups. Atrina fragilis larvae 380 

were observed in the mid-morning and afternoon samples between 30 – 90 m depth 381 

(D4 – D6). A similar pattern was observed when the samples were grouped by tidal 382 

state (Fig. 8), where OS 2 and 6 and OS 4 and 5 samples were grouped into ebb- 383 

and flood-tide groups, respectively. During flood tide, bivalves were collected at 384 

higher densities in the deeper samples (60 – 180+ m, D1 – D4) and at lower 385 

densities in the shallower samples (< 60 m, D5 – D7) than during ebb tide (Fig. 8C). 386 

However, this general pattern when grouped by tidal state does not hold for A. 387 

fragilis larvae, which were found at higher densities in shallower depths (15 – 30 m, 388 

D6) during flood tide.  389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 
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DISCUSSION 400 

 401 

Here we present the first description of larvae belonging to the fan mussel, Atrina 402 

fragilis, along with details of its early life history. Larvae matching the characteristics 403 

of late-stage pinnid larvae were found in samples collected in February 2015. Given 404 

that A. fragilis is the only member of the Pinnidae found in UK waters, these larvae 405 

can be positively identified as belonging to this species. Pinnid larvae, in general, 406 

achieve a notably large size when compared with most other extant bivalves (Rees, 407 

1950; Ota, 1961; Booth, 1979; Malchus, 2004; Allen, 2011). The lengths of A. fragilis 408 

larvae collected in February were characteristically large, but lay towards the upper 409 

end of those reported for late-stage pinnid larvae. Ota (1961) reported shell lengths 410 

of 400 μm and 600 μm, for A. japonica and A. pectinata, respectively, while Ohashi 411 

et al. (2008) reported a length of 514 ± 25.9 μm at settlement for A. pectinata. Booth 412 

(1979) reported a length of 250–400 μm for A. zelandica, with late-stage larvae 413 

being > 350 μm, but noted that settling size is apparently highly variable, with larvae 414 

up to 800 μm in length encountered in the plankton. Allen (2011) similarly reported a 415 

length of about 400 µm for late-stage pinnid larvae.  416 

The literature on pinnids does not describe how morphology or hinge structure 417 

change with ontogeny, making the identification of early-stage larvae more difficult. 418 

However, concurrent molecular and morphological analyses indicated that early-419 

stage A. fragilis larvae were present in the water column during late summer and 420 

early autumn. Morphological analysis identified one larval type that most closely 421 

matched pinnid characteristics. These larvae possessed a similar hinge morphology 422 

and umbo character to the late-stage larvae and were of similar colour. The gross 423 

morphology of these early-stage larvae (length < 400 µm), while distinctively 424 
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triangular, lacked the characteristic pinched appearance of larvae > 400 µm in 425 

length. Hence, it appears that in A. fragilis larvae > 400 µm in length, preferential 426 

growth occurs towards the anterioventral margin of the larval shell as the papilliform 427 

umbo extends dorsally, resulting in the distinctive shape of the late-stage larvae. 428 

This asymmetric growth may allow the entirety of the retracted vellum to be 429 

accommodated within the larval shell (Allen, 2011).  430 

 The ferry-collected time-series data, along with February bongo samples, 431 

suggest that A. fragilis follows the same pattern of spawning that is found in other 432 

pinnids at temperate latitudes, where periods of peak spawning occur over summer 433 

and winter while trickle spawning continues throughout the year (Booth, 1979; Qiu et 434 

al., 2000; Soria, Pascual & Fernandez Cartes, 2002; Maeno et al., 2009). The 435 

length-distribution of the collected larvae help to substantiate this spawning pattern, 436 

with larval length increasing from early summer as the year progresses: the largest 437 

larvae were collected in February (bongo samples) and March (ferry samples). The 438 

ferry sampler was sporadic in capturing bivalve larvae, particularly on a week-to-439 

week basis, where density in consecutive samples often varied considerably. In 440 

addition to natural variability, other reasons for this temporal variation are likely due 441 

to the sampling being restricted to the uppermost layers of water, combined with 442 

possible variation in vertical position of larvae during ontogeny (Cragg, 1980), or in 443 

response to water column structure (Raby et al., 1994) or tidal flow (Knights et al., 444 

2006).  445 

No reports on the depth distribution of pinnid larvae are available in the 446 

literature, although Allen (2011) collected pinnid larvae from depths of 150 – 200 m. 447 

Here, the depth distribution of A. fragilis larvae collected by the OS followed the 448 

pattern found for bivalves in general in the samples. Bivalve larvae have been 449 
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observed to aggregate around the pycnocline when the water column is stratified 450 

and to be more evenly distributed when the water column is well mixed (Tremblay & 451 

Sinclair, 1990; but see Raby et al., 1994). In this study, daily stratification patterns in 452 

the SoC, presumably due to seasonal solar heating of surface layers, were 453 

coincident with higher aggregations of bivalve larvae above the more defined 454 

thermocline later in the day. Such behaviours could help explain the change in 455 

relative densities of bivalve larvae in the upper 60 m of the water column throughout 456 

the day. When the OS samples were grouped by tidal state, the pattern for A. fragilis 457 

larvae differed from that of bivalves in general, with higher densities at shallower 458 

depths during the flood tide, similar to that observed for mytilid larvae in the southern 459 

Irish Sea (Knights et al., 2006). Given the low total numbers and densities of A. 460 

fragilis larvae taken during the depth-stratified sampling, these results suggest that 461 

A. fragilis larvae may vary in their depth distribution in response to the depth of the 462 

pycnocline, time of day and/or tidal flow direction, but do not allow an understanding 463 

of the underlying causal mechanism.  464 

 While no verification of increment periodicity of growth lines was possible, 465 

assuming that major growth lines are deposited on a daily basis (as by Hurley et al., 466 

1987), the larval shell grew in the region of 6 µm d-1. This is comparable with other 467 

bivalve larvae in similar temperature regimes. Hurley et al. (1987) reported a growth 468 

rate of 3 µm d-1 for Placopecten magellanicus at 14 °C with linear growth rates, while 469 

Sprung (1984) reported a growth rate of 8.1 µm d-1 for Mytilus edulis  at 12 °C, also 470 

with linear growth. As A. fragilis larvae in Scottish waters experience an average 471 

annual temperature range of 7 – 14 °C (Berx & Hughes, 2009), these figures suggest 472 

that an estimated growth rate of 6 µm d-1 is reasonable.  473 
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No estimates for the PLD of A. fragilis larvae exist. Using archived images of 474 

A. fragilis spat taken by Oliver et al. (2016) (Fig. 3H), size at settlement can be 475 

estimated from larval shell markings, which remain clearly visible through the 476 

juvenile shell. This juvenile specimen was collected further south in warmer waters 477 

around the Isles of Scilly, UK (50 °N) with measurements of the larval shell 478 

suggesting a length of 770 µm at settlement that, based on the growth rates derived 479 

for the more northerly captured larvae, translates into a PLD of around 4 months. 480 

However, an inverse relationship between shell length at metamorphosis and 481 

temperature exists for many bivalve species, where larvae tend to settle at smaller 482 

sizes in warmer waters (Lutz & Jablonski, 1978; Cragg & Crisp, 1991). Therefore, 483 

any inferences based on length at settlement from the Isles of Scilly larva may 484 

underestimate length at settlement for larvae in cooler areas further north. 485 

Nevertheless, this estimate of PLD is significantly longer than reports for other pinnid 486 

larvae—though not unexpected, as growth rate in bivalve larvae is directly 487 

proportional to temperature (Sprung, 1984). At 57 °N, A. fragilis in the SoC is 488 

towards the most northerly edge of its distribution; the reported PLDs for other 489 

pinnids come from latitudes between 40°N and 40°S where average yearly water 490 

temperatures range between 15 – 30 °C (Maeno et al., 2009). Booth (1979) 491 

estimated A. zelandica to have a larval duration in the region of 1 month, from the 492 

seasonal abundance in plankton samples. More specific accounts of larval duration 493 

in pinnids come from aquaculture studies of A. pectinata, with a larval duration of 23-494 

47 d (Lin et al., 1987; Ohashi et al., 2008). Such protracted development for A. 495 

fragilis larvae in the northeast Atlantic may have implications for its population 496 

dynamics in this region, where both larval mortality and dispersal are likely to be high 497 

due to the extended PLD (Widdows, 1991; Gallego et al., 2016). We speculate that 498 
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these life-history features, together with the vulnerability A. fragilis to mobile bottom-499 

fishing gears (Solandt, 2003; Fryganiotis et al., 2013) and the industrialization of 500 

fishing, may have contributed to the present rarity of this species in the northeastern 501 

Atlantic region. Future work on A. fragilis should attempt, through treatment with 502 

compounds that mark the larval shell, to verify that the periodicity of major growth 503 

lines is indeed daily. Such verification would allow for greater certainty when 504 

estimating the potential levels of connectivity between suitable habitat areas and 505 

areas chosen for conservation of this species.  506 

 Currently there are two marine protected areas (MPAs) in the OSPAR 507 

network that include A. fragilis as a feature identified for protection; the South-West 508 

Deeps (England) and the Small Isles (Scotland) MPAs. The description and details 509 

of the early life history of A. fragilis, when coupled with information on the spatial 510 

distribution of suitable habitat (Stirling et al., 2016) and sea circulation models, will 511 

help inform population-level connectivity estimates for this rare species of 512 

conservation concern, and may highlight new areas suitable for designation as 513 

MPAs. 514 

 515 

 516 

 517 

 518 
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 520 

 521 
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CHÍCHARO, L.M. & CHÍCHARO, M.A. 2001. Effects of environmental conditions on 577 
planktonic abundances, benthic recruitment and growth rates of the bivalve mollusc 578 
Ruditapes decussatus in a Portuguese coastal lagoon. Fisheries Research 53: 235–250. 579 

CLARK, G.R. 1974. Growth lines in invertebrate skeletons. Annual Review of Earth and 580 
Planetary Sciences 2: 77–99. 581 

CORELL, H., MOKSNES, P., ENGQVIST, A., DÖÖS, K. & JONSSON, P. 2012. Depth 582 
distribution of larvae critically affects their dispersal and the efficiency of marine protected 583 
areas. Marine Ecology Progress Series 467: 29–46. 584 

COWEN, R.K. & SPONAUGLE, S. 2009. Larval dispersal and marine population 585 
connectivity. Annual Review of Marine Science 1: 443–466. 586 



24 
 

CRAGG, S.M. 1980. Swimming behaviour of the larvae of Pecten maximus (L.) (Bivalvia). 587 
Journal of the Marine Biological Association of the United Kingdom 60: 551–564. 588 

CRAGG, S.M. & CRISP, D.J. 1991. The biology of scallop larvae. In: Scallops: biology, 589 
ecology and aquaculture (Shumway, S.E.ed), pp. 75–132. Developments in Aquaculture and 590 
Fisheries Science, 21 ADD VOLUME.  591 

D’ALOIA, C.C., BOGDANOWICZ, S.M., MAJORIS, J.E., HARRISON, R.G. & BUSTON, P.M. 592 
2013. Self-recruitment in a Caribbean reef fish: a method for approximating dispersal kernels 593 
accounting for seascape. Molecular Ecology 22: 2563–2572. 594 

DOBRETSOV, S.V. & MIRON, G. 2001. Larval and post-larval vertical distribution of the 595 
mussel Mytilus edulis in the White Sea. Marine Ecology Progress Series 218: 179–187. 596 

EDWARDS, K., HARE, J., WERNER, F. & SEIM, H. 2007. Using 2-dimensional dispersal 597 
kernels to identify the dominant influences on larval dispersal on continental shelves. Marine 598 
Ecology Progress Series 352: 77–87. 599 

FOLMER, O., BLACK, M., HOEH, W., LUTZ, R. & VRIJENHOEK, R. 1994. DNA primers for 600 
amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan 601 
invertebrates. Molecular marine biology and biotechnology 3: 294–299. 602 

FONSECA, V.G., CARVALHO, G.R., SUNG, W., JOHNSON, H.F., POWER, D.M., NEILL, 603 
S.P., PACKER, M., BLAXTER, M.L., LAMBSHEAD, P.J.D., THOMAS, W.K. & CREER, S. 604 
2010. Second-generation environmental sequencing unmasks marine metazoan biodiversity. 605 
Nature Communications 1: 1–8. 606 

FRYGANIOTIS, K., ANTONIADOU, C. & CHINTIROGLOU, C. 2013. Comparative 607 
distribution of the fan mussel Atrina fragilis (Bivalvia, Pinnidae) in protected and trawled 608 
areas of the north Aegean Sea (Thermaikos Gulf). Mediterranean Marine Science 14: 119–609 
124. 610 

GALLEGO, A., GIBB, F., TULETT, D. & WRIGHT, P.J. 2016. Bio-physical connectivity 611 
patterns of benthic marine species used in the designation of Scottish nature conservation 612 
Marine Protected Areas. ICES Journal of Marine Science 74: 1797–1811. 613 

GAMULIN-BRIDA, H. 1974. Biocenoses benthiques de la mer Adriatique. Acta Adriatica 15: 614 
1–103. 615 

GARLAND, E.D. & ZIMMER, C.A. 2002. Techniques for the identification of bivalve larvae. 616 
Marine Ecology Progress Series 225: 299–310. 617 

HAJIBABAEI, M., SHOKRALLA, S., ZHOU, X., SINGER, G.A.C. & BAIRD, D.J. 2011. 618 
Environmental barcoding: a next-generation sequencing approach for biomonitoring 619 
applications using river benthos. PLoS One 6(4): e17497. 620 

HANSEN, B.W. & LARSEN J.B. 2005. Spatial distribution of veliconcha larvae (Bivalvia) 621 
identified by ssnm-pcr. Journal of Shellfish Research 24: 561–565. 622 

HENDRIKS, I.E., VAN DUREN, L.A. & HERMAN, P.M.J. 2005. Image analysis techniques: a 623 
tool for the identification of bivalve larvae? Journal of Sea Research 54: 151–162. 624 

HURLEY G.V., TREMBLAY M.J. & COUTURIER C. 1987. Age estimation of sea scallop 625 
larvae (Placopecten magellanicus) from daily growth lines on shells. Journal of Northwest 626 
Atlantic Fisheries Science, 7: 123–129. 627 



25 
 

JNCC 2010. UK Priority Species data collation Atrina fragilis. Joint Nature Conservation 628 
Committee. Available at: http://jncc.defra.gov.uk/_speciespages/123.pdf. 629 

JONES D.S. & QUITMYER I.R. 1996. Marking time with bivalve shells: oxygen isotopes and 630 
season of annual increment formation. Palaios, 11: 340–346. 631 

JØRGENSEN C.B. 1946. Reproduction and larval development of Danish marine bottom 632 
invertebrates. 9. Lamellibranchia. Meddelelser fra Kommissionen for Danmarks Fiskeri 633 
Havundersøgelser, Serie, plankton 4: 277–311. JOURNAL TITLE IN FULL 634 

LIN, B., HE, J., WEI, X. & XU, Z. 1987. Preliminary study on artificial spating of Atrina 635 
(Servatina) pectinata (Linnaeus). Journal of Oceanography In Taiwan Strait 3: 008. 636 

KNIGHTS A.M., CROWE, T.P. & BURNELL, G. 2006. Mechanisms of larval transport: 637 
vertical distribution of bivalve larvae varies with tidal conditions. Marine Ecology Progress 638 
Series 326: 167–174. 639 

LARSEN, J.B., FRISCHER, M.E., RASMUSSEN, L.J. & HANSEN, B.W. 2005. Single-step 640 
nested multiplex PCR to differentiate between various bivalve larvae. Marine Biology 146: 641 
1119–1129. 642 

LEBOUR, M.V. 1938. Notes on the breeding of some lamellibranchs from Plymouth and their 643 
larvae. Journal of the Marine Biological Association of the United Kingdom 23: 119–144. 644 

LEMER, S., BUGE, B., BEMIS, A. & GIRIBET, G. 2014. First molecular phylogeny of the 645 
circumtropical bivalve family Pinnidae (Mollusca, Bivalvia): evidence for high levels of cryptic 646 
species diversity. Molecular Phylogenetics and Evolution 75: 11–23. 647 

LOOSANOFF, V.L., DAVIS, H.C. & CHANLEY, P.E. 1966. Dimensions and shapes of larvae 648 
of some marine bivalve mollusks. Malacologia 4: 351–435. 649 

LUTZ, R.A. & JABLONSKI, D. 1978. Larval bivalve shell morphometry: a new paleoclimatic 650 
tool? Science 202: 51–53. 651 

MAENO, Y., SUZUKI, K., YURIMOTO, T., FUSEYA, R., KIYOMOTO, S., OHASHI, S. & 652 
ONIKI, H. 2009. Maturation process of broodstock of the pen shell Atrina pectinata 653 
(Linnaeus, 1767) in suspension culture. Journal of Shellfish Research 28: 561–568. 654 

MALCHUS, N. 2004. Early ontogeny of Jurassic bakevelliids and their bearing on bivalve 655 
evolution. Acta Palaeontologica Polonica 49(1): 85-110 656 

MALCHUS, N. & SARTORI, A.F. 2013. Part N, Revised, Volume 1, Chapter 4: The early 657 
shell: ontogeny, features, and evolution. Treatise Online 61: 1–114.  658 

MIYAZAKI, I. 1962. On the identification of lamellibranch larvae. Bulletin of the Japanese 659 
Society of Scientific Fisheries 28: 955–966. 660 

MOLTSCHANIWSKYJ, N. & CAPPO, M. 2009. Alternatives to sectioned otoliths: the use of 661 
other structures and chemical techniques to estimate age and growth for marine vertebrates 662 
and invertebrates. In: Tropical fish otoliths: information for assessment, management and 663 
ecology (Green, B.S., Mapstone, B.D., Carlos, G., Begg, G.A., eds), pp. 133–173. Reviews: 664 
Methods and Technologies in Fish Biology and Fisheries, vol. 3. Springer, The Netherlands.  665 



26 
 

OHASHI, S., FUJII, A., ONIKI, H., OSAKO, K., MAENO, Y. & YOSHIKOSHI, K. 2008. The 666 
rearing of the pen shell Atrina pectinata larvae and juveniles (preliminary note). Aquaculture 667 
Science 56: 181-191. 668 

OTA, S. 1961. Identification of the larva of Pinna atrina japonica (Reeve). Bulletin of the 669 
Japanese Society of Scientific Fisheries 27: 107–112. 670 

PEARCE, C.M., GALLAGER, S.M., MANUEL, J.L., MANNING, D.A., O’DOR, R.K. & 671 
BOURGET, E. 1996. Settlement of larvae of the giant scallop, Placopecten magellanicus, in 672 
9-m deep mesocosms as a function of temperature stratification, depth, food, and 673 
substratum. Marine Biology 124: 693–706. 674 

PENNANT, T. 1777. British zoology. Vol. 4. Crustacea. Mollusca. Testacea. Benjamin White, 675 
London. 676 

RABY, D., LAGADEUC, Y., DODSON, J.J. & MINGELBIER, M. 1994. Relationship between 677 
feeding and vertical distribution of bivalve larvae in stratified and mixed waters. Marine 678 
Ecology—Progress Series 103: 275–275. 679 

REES, C.B. 1950. The identification and classification of lamellibranch larvae. Hull Bulletin of 680 
Marine Ecology 3: 73–104. 681 

SALE, P.F., COWEN, R.K., DANILOWICZ, B.S., JONES, G.P., KRITZER, J.P., LINDEMAN, 682 
K.C., PLANES, S., POLUNIN, N.V., RUSS, G.R. & SADOVY, Y.J. 2005. Critical science 683 
gaps impede use of no-take fishery reserves. Trends in Ecology & Evolution 20: 74–80. 684 

SALINAS-DE-LEÓN, P., JONES, T. & BELL, J.J. 2012. Successful determination of larval 685 
dispersal distances and subsequent settlement for long-lived pelagic larvae. PLoS One 7(3): 686 
e32788. 687 

SELKOE, K.A. & TOONEN, R.J. 2011. Marine connectivity: a new look at pelagic larval 688 
duration and genetic metrics of dispersal. Marine Ecology Progress Series 436: 291–305. 689 

SHANKS, A.L. 2009. Pelagic larval duration and dispersal distance revisited. Biological 690 
Bulletin 216: 373–385. 691 

SHANKS, A.L., GRANTHAM, B.A. & CARR, M.H. 2003. Propagule dispersal distance and 692 
the size and spacing of marine reserves. Ecological Applications 13: 159–169. 693 

QIU, S., YANG, J., ZHANG, X., QU, X., WANG, S., ZHANG, P., GONG, X., ZHANG, S. & 694 
ZHANG, X. 2000. Reproductive biology of Pinna pectinata. Journal of Fisheries of China 1: 695 
28–31. 696 

SOLANDT, J.-L. 2003. Atrina fragilis (Pennant 1777): a species of conservation concern. 697 
British Wildlife 14: 423–427. 698 

SORIA, R.G., PASCUAL, M.S. & FERNANDEZ CARTES, V.H. 2002. Reproductive cycle of 699 
the cholga paleta, Atrina seminuda Lamarck, 1819 (Bivalvia: Pinnidae) from northern 700 
Patagonia, Argentina. Journal of Shellfish Research 21: 479–488. 701 

SPRUNG, M. 1984. Physiological energetics of mussel larvae (Mytilus edulis). I. Shell 702 
growth and biomass. Marine Ecology Progress Series 17: 283–293. 703 



27 
 

STIRLING, D.A., BOULCOTT, P., SCOTT, B.E. & WRIGHT, P.J. 2016. Using verified 704 
species distribution models to inform the conservation of a rare marine species. Diversity 705 
and Distributions 22: 808–822. 706 

TEBBLE, N. 1976. British bivalve seashells: a handbook for identification. Edn 2. H.M. 707 
Stationery Office, Edinburgh. 708 

THOMPSON, I., JONES, D.S. & DREIBELBIS, D. 1980. Annual internal growth banding and 709 
life history of the ocean quahog  Arctica islandica  (Mollusca: Bivalvia). Marine Biology 57: 710 
25–34. 711 

TREMBLAY M. & SINCLAIR M. 1990. Sea scallop larvae Placopecten magellanicus on 712 
Georges Bank: vertical distribution in relation to water column stratification and food. Marine 713 
Ecology Progress Series 61: 1–15. 714 

UK GOVERNMENT. 1981. Wildlife and Countryside Act 1981. Available at: 715 
http://www.legislation.gov.uk/ukpga/1981/69 (accessed 23/03/13). 716 

UNDERWOOD, A.J. & FAIRWEATHER, P.G. 1989. Supply-side ecology and benthic marine 717 
assemblages. Trends in Ecology & Evolution 4: 16–20. 718 

WEIDBERG, N., PORRI, F., VON DER MEDEN, C.E.O., JACKSON, J.M., GOSCHEN, W. & 719 
MCQUAID C.D. 2015. Mechanisms of nearshore retention and offshore export of mussel 720 
larvae over the Agulhas Bank. Journal of Marine Systems 144: 70–80. 721 

WIDDOWS, J. 1991. Physiological ecology of mussel larvae. Aquaculture 94: 147–163. 722 

WOODWARD, F.R. 1985. The fan-mussel, Pinna fragilis Pennant, in Scotland. Glasgow 723 
Naturalist 21: 63–69. 724 

YOCCOZ, N.G. 2012. The future of environmental DNA in ecology. Molecular Ecology 21: 725 
2031–2038. 726 

YOSHIDA, H. 1956. Early life-history of useful bivalves in the Ariake Sea (1). Journal of the 727 
Shimonoseki College of Fisheries 6: 115–22. 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 



28 
 

TABLES 738 

Table 1. Primer sequences (5’ end to 3’), direction and length (bp). The reverse 739 

AfrCOI-R01 primer sequence has two degenerate sites, with the different nucleotide 740 

bases at each site shown in brackets; in each case, the first base is found in A. 741 

fragilis sequences, the second in present in A. chautardi sequences. 742 

 743 

Primer Direction Sequence L 

LCO1490 Forward GGTCAACAAATCATAAAGATATTGG 25 
HC02198 Reverse TAAACTTCAGGGTGACCAAAAAATCA 26 
AfrCOI-F01 Forward TAGAGTAATTATTCGAACTGAGC 23 
AfrCOI-R01 Reverse T [A/T] CGACGCATATT [C/T] TGAGC 19 
AfrCOI-R02 Reverse TACGACGCATATTCTGAGC 19 
AchCOI-R03 Reverse TTCGACGCATATTTTGAGC 19 

 744 

 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 

 757 

 758 

 759 

 760 
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Table 2. Sampling effort (Ns), average number of bivalve (TNB·m-3) and early-stage 761 

Atrina fragilis larvae per m3 of seawater and observed length ranges of A. fragilis 762 

larvae in µm (LR) collected each month during time-series sampling. 763 

Month Ns TNB·m-3 A. fragilis·m-3 LR 

January 4 1.75 0 - 

February 6 1.33 0 - 

March 3 1.33 0.33 360 

April 14 2.64 0 - 

May 13 8.92 0 - 

June 8 18.75 0.25 130 – 140 

July 10 24.3 0.1 140 

August 8 215.5 0.63 180 – 280 

September 2 40.5 0.5 270 

October 4 10.25 0 - 

November 6 14.33 0.17 210 

December 5 11.8 0 - 

 764 

 765 

 766 

 767 

 768 

 769 

 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 
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Table 3. PCR product band strength approximated for all 28 replicates and both 778 

positive and negative controls for the universal primers (UP, LCO1490-HC02198) 779 

and the more specific primers (SP, AfrCOI-F01-AfrCOI-R01).  780 

 781 

Samples UP SP 

1A  ++  +  
1B  +++  +  
1C  +++  +  
2A  -  -  
2B  +  -  
2C  +  -  
3A  +  -  
3B  +  -  
3C  -  -  
4A  +++  +  
4B  +++  +  
4C  +++  +  
5A  -  -  
5B  -  -  
5C  -  -  
6A  +++  -  
6B  ++  -  
6C  +++  +  
7A  +++  +  
7B  +++  -  
7C  +++  +++  
Positive control  +++  +++  
Negative control  -  -  

 782 

+++, strongest band strength; +, faint bands; –, absence of bands. 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 

 791 

 792 
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Table 4. Forward and reverse primer sequence results for eight replicates. Only the 793 

forward primer sequence was reliable for the four controls. Where present, the 794 

primer regions at the 3’ end of the sequence were trimmed. Bases that lack 795 

resolution at the 5’ end of the sequence immediately after the sequencing primer 796 

have been omitted. Trace quality was estimated as high, medium or low based on 797 

the quality of the peak and the amount of noise present. Sequences were then 798 

searched against the GenBank database using BLAST. The GenBank sequence 799 

with the best match was recorded along with its identity score. 800 

 801 

Sample  
Sequencing 
primer  

Sequence 
length (bp)  

Chromatogram 
trace quality  

GenBank match using 
BLAST (identity score)  

Control 
1  Forward  345 High 

99% A. fragilis 
(343/344)  

Control 
3  Forward  345 High  

100% A. fragilis 
(344/344)  

Control 
4  Forward  344 High  

100% A. fragilis 
(344/344)  

Control 
5  Forward  349 High 

100% A. fragilis 
(344/344)  

1A  Forward  181 Medium  No match  

1B  Forward  351 Low  
83% A. fragilis 
(286/345)  

1C  Forward  352 Low  No match  

4A  Forward  354 Low  
89% A. fragilis 
(306/344)  

4B  Forward  354 Low  
92% A. fragilis 
(314/343)  

4C  Forward  266 Medium No match  

7C  Forward  345 High  
100% A. fragilis 
(344/344)  

1A  Reverse  249 High  No match  
1B  Reverse  249 High  No match  
1C  Reverse  249 High  No match  
4A  Reverse  258 High  No match  
4B  Reverse  252 High  No match  
4C  Reverse  279 High  No match  

7C  Reverse  334 High  
100% A. fragilis 
(333/333)  

 802 
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 804 

 805 

  806 
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FIGURE CAPTIONS 807 

 808 

Figure 1. Location of plankton samples (1 – 13, bongo nets), ferry route (dotted line), 809 

ports, and OCEAN sampler and CTD station locations in the Sound of Canna (inset). 810 

 811 

Figure 2. Visualization on a 2% agarose gel (21 size-selected replicates, 1A-7C) for the 812 

universal invertebrate primers (A) and more-specific primers (B). The positive and 813 

negative controls are located in the lanes to the right of the replicates. The right-hand-814 

most lane contains a 100-bp molecular weight ladder (L). The estimated amplicon size 815 

(710 bp or 421 bp) is indicated on the left side of the gel. 816 

 817 

Figure 3. Images of Atrina fragilis larvae. A. Change in shell morphology over ontogeny, 818 

external view of LV using LM (from top left to bottom right: shell 1: SJM005; shells 2–5: 819 

SJM009; shell 6: SJM011) B. External view of LV early-stage larva (A14095) using LM. 820 

C. SEM of early-stage larva (A14101) viewed from right; prodissoconch I is clearly 821 

visible (also in D and E). D. SEM of early-stage larva (A14095), internal view of LV 822 

hinge. E. SEM of late-stage larval hinge morphology (SJM009), internal view of RV. F. 823 

Late-stage larva (SJM010), external view of LV using LM. G. RV late-stage larva 824 

(SJM010) using DIC to accentuate growth lines, external view with LM. H. A. fragilis 825 

spat, external lateral view of left side; larval shell outline shown by dashed line 826 

(reproduced with permission from Oliver et al., 2016). Scale bars: A = 200 µm; B, C, F, 827 

G = 100 µm; D, E = 20 µm; H = 0.5 mm.  Abbreviations: LM, light microscopy; SEM,  828 

scanning electron microscopy; LV, left valve; RV, right valve. 829 

 830 

Figure 4. Counting of major growth lines on right valve of late-stage Atrina fragilis larva 831 

870 (SJM010), using DIC to accentuate surface texture. Scale bar = 100 µm. 832 

 833 

Figure 5. Length of Atrina fragilis larvae plotted against number of major growth lines. 834 

Linear regression (solid line) and 95% confidence intervals (dashed lines). 835 

 836 

Figure 6. Time-series zooplankton samples collected by the ferry, showing total number 837 

of bivalves (TNB) and the total number of A. fragilis larvae observed per m3
 for each 838 

month. Temperature is also plotted (Berx & Hughes, 2009). 839 

 840 

Figure 7. Depth-stratified zooplankton sampling, showing water column structure 841 

revealed by CTD (A–C) and total number of bivalves (TNB) collected and total number 842 
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of A. fragilis larvae observed per m3
 using the OCEAN sampler, and grouped by time of 843 

day (D). A. Early morning. B. Mid-morning. C. Afternoon. OS sample number and time of 844 

sampling are provided in the plot legends, with the corresponding depth sampling 845 

intervals at which the OS samples were taken overlaid. 846 

 847 

Figure 8. Depth-stratified zooplankton sampling collected by OCEAN sampler in relation 848 

to tidal state (A, B) and the total number of bivalves (TNB) and early-stage A. fragilis 849 

larvae per m3
 grouped by tidal state. In C, 2 and 6 were grouped as Ebb, 4 and 5 850 

grouped as Flood. 851 

 852 


