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 A B S T R A C T  

Fluvial deposits of the Castissent Formation (late Ypresian) form part of the Eocene infill of the Tremp-Graus 

piggyback basin. The Castissent Formation has been subdivided into three complexes (A, B, and C). This project 

focuses on the proximal fluvial-sandstones of Complex A in the Mas de Faro outcrop (NE Iberian Peninsula). There, 

three amalgamated channel belts are exposed in a 15 to 24 m thick succession that passes upwards from sandy 

braided-river deposits (A1-A2) to coarse-grained meandering-river deposits (A3). Sedimentary heterogeneities 

within these deposits are characterised and their impact on oil recovery in a reservoir analogue are estimated using 

field descriptions, virtual outcrop interpretation, a 3D geocellular facies model and fluid-flow simulations. 

Petrophysical values of different facies types were derived from well data through analogous fluvial deposits of the 

Eiriksson Formation, in the Norwegian North Sea. Facies analysis show a waning succession of gravel channel 

lags, unit-bar and dune deposits in A1; a basal mud-clast channel lag, unit-bars and dune deposits in A2, and a 

coarse-grained point-bar succession in A3. Flow simulation shows: a) fingering of the waterfront related to the 

gravel channel lag and unit-bars of A1 and A2, and the gravel bars, scour-and-fill deposits and dunes of A3, which 

act as thief zones hindering efficient sweeping of the intervals immediately above; b) segregation of the injected 

fluids towards the base of the channel belts due to the fining-upwards successions; and c) vertical 
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compartmentalization due to a relatively impermeable barrier at mud-clast channel lag beds. Permeability contrasts 

trapped 35% of the original oil in place after 0.5-0.6 pore volumes were injected. 

Keywords: Sandy braided river, coarse-grained point bar, sedimentary heterogeneity, 3D 

geocellular models, flow simulation, thief zones, compartmentalization, original oil in place 

 

1. Introduction 

Fluvial deposits form important hydrocarbon reservoirs (Bridge, 2001), which commonly exhibit a high degree of 

heterogeneity (Tyler and Finley, 1991) at a variety of scales (Keogh et al., 2014). The key heterogeneity is the 

porosity and permeability contrast between channel and overbank deposits. Channel bodies are generally reservoir 

and the overbanks tend to be non-reservoir. Significant heterogeneity can also occur within the channel deposits. 

This is less well understood as it typically occurs below the resolution of reservoir modelling cells and is more 

difficult to quantify. Multi-scale reservoir modelling (Nordhal and Ringrose, 2008; Ringrose and Bentley, 2015) 

provides a methodology to more accurately capture the impact of small scale heterogeneities and to bridge the gap 

between cm scale core plug measurements and cells in a traditional geomodel (10s to 100s of meters). Multi-scale 

modelling requires a detailed understanding of the intra-sandbody facies geometries.  

Outcrops have long been used as analogues for subsurface deposits and they are commonly used to characterise 

facies architecture (see Howell et al., 2014 for review). Depositional facies are the main control on reservoir 

performance because they control the distribution of porosity, the architecture of the permeability pathways and the 

presence of internal impermeable barriers (Miall, 1988). The nature of the parent channel at the time of deposition 

controls the distribution of facies within the sand-bodies, and therefore influences the permeability structure of the 

reservoir bodies. The current study focuses on facies and permeability architecture within sand-dominated braided 

rivers and coarse-grained meandering rivers. 

1.1 Aims 

This study focuses on the 3D characterisation of the well exposed fluvial succession of the lower Castissent 

Formation (late Ypresian) in the Mas de Faro outcrop, in the Tremp-Graus Basin which is part of the South Pyrenean 

Foreland Basin (Fig. 1). The succession is interpreted to be deposited by sand-dominated braided rivers and 

coarse-grained meandering rivers (see Models 5 and 10 in Miall, 1985 for review). The Mas de Faro outcrop lies 

within the proximal part of the Castissent fluvial systems and is characterised by a 15 ï 24 m thick amalgamated 
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fluvial channel-belt succession. Detailed analysis illustrates that the channel deposits contain laterally continuous 

clast-supported gravels and mud-clast conglomerate intervals which define high permeability thief zones and 

barriers, respectively.  

The high quality of the exposure and its lateral extent offers a good opportunity to study the geometry and potential 

impact of these heterogeneities on fluid-flow at the intra-channel scale.  

The aims of this paper are to document the sedimentary heterogeneities in the studied succession by building on 

previous studies by Nijman and Nio (1975), Nijman and Puigdefàbregas (1978) and Marzo et al., (1988), and to 

estimate their influence on reservoir production by using geocellular modelling and fluid-flow simulations. These 

objectives were achieved by combining traditional field descriptions with drone-derived, photogrammetric virtual 

outcrops. These data were used to map the distribution of the sedimentary bodies in three dimensions. 

Petrophysical properties, from the analogous Eiriksson Formation in the North Sea were added to the outcrop 

models for reservoir flow simulation. 

 

2. Geological setting 

2.1 The Southern Pyrenees and the Tremp-Graus Basin 

The Pyrenees is an eastïwest orogenic belt developed due to collision of the Iberian and the European plates 

during the Late Cretaceousïmiddle Miocene Alpine orogeny. This collision inverted the previous Mesozoic 

extensional rift basins (Vergés and Muñoz, 1990; Muñoz, 1992; Muñoz, 2002; Saura et al., 2016). The Pyrenees 

can be divided into three main zones: the Northern Pyrenees, characterised by northward propagating thrusts; the 

antiformal stack of the Axial Zone in the centre; and the Southern Pyrenees, a southwards-verging thrust-and-fold 

belt (Séguret, 1972; Vergés and Muñoz, 1990). From north to south, the Southern Pyrenees are made up of the 

Bóixols thrust sheet, which was emplaced during the Late Cretaceous, the Montsec thrust sheet, which developed 

during the Palaeoceneïearly Eocene, and the Serres Marginals thrust sheet, which was emplaced in the middle 

Eocene to the Oligocene (Cámara and Klimowitch, 1985; Muñoz, 1992; Muñoz, 2002) (Fig. 1). The foreland basin 

in front of the Southern Pyrenees is subdivided by lateral anticlines into three sub-basins. The TrempïGraus Basin 

is the most easterly of these and was structured as a piggyback basin on top of the Montsec thrust sheet during 

the early Eocene (Puigdefàbregas et al., 1992; Muñoz et al., 1994). The basin forms an east-southeastïwest-

northwest asymmetrical syncline (Marzo et al., 1988; Nijman, 1998). 
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The sedimentary fill reaches a thickness of 2,500 m and was deposited between the Palaeocene and the upper 

Eocene. It is mainly comprised of alluvial, fluvial, and deltaic deposits (Nijman, 1998). The sedimentary evolution 

of the basin records an overall progradation towards the west and the fill of the basin is time equivalent to deep 

water deposits in the Ainsa and Jaca basins to west. 

2.2 The Montanyana Group and the Castissent Formation  

The Montanyana Group (Nijman and Nio, 1975) is a fluvio-deltaic system deposited in the Tremp-Graus Basin in 

the Ypresian to late Lutetian (Fig. 2). This fluvio-deltaic system entered the basin from the southeast and flowed 

towards the northwest, interfingering with alluvial fans in the northern margin (Nijman and Nio, 1975; Nijman and 

Puigdefàbregas, 1978; Marzo et al., 1988).  

The Montanyana Group is subdivided into the upper, the middle and the lower Montanyana Sub-Groups (Fig. 2). 

The lower and the upper Montanyana Sub-Groups are composed of alluvial plain and upper delta plain deposits 

that grade laterally to lower delta plain and delta front deposits towards the west-northwest. The middle Montanyana 

Sub-Group is composed of the fluvial deposits of the Castissent Formation that record a marked progradation of 

the clastic wedge, forced by hinterland tectonics during a highstand period (Nijman, 1998). The Castissent 

Formation (Van Eden, 1970) is up to 150 m thick and is upper Ypresian in age. It is traditionally subdivided into 

three different multi-lateral and multi-storey sheet sandstone complexes, named A, B, and C, which are encased in 

fine-grained deposits (Nijman and Puigdefàbregas, 1978; Marzo et al., 1988; Nijman, 1998). These sandstone 

complexes are separated by four brackish marls that record marine onlaps. Each complex is approximately 25 ï 

30 m thick and 4 ï 6 km wide.  

In the proximal portion of the basin, the sandstone complexes A and B are closely stacked, attaining a combined 

thickness of 50 to 90 m, whereas Unit C is absent. 

 2.3 The Mas de Faro Outcrop 

The Mas de Faro outcrop is located in Catalonia, in the region of the Pallars Jussà, in the province of Lleida, close 

to the border with Aragon (Fig. 3). It is situated 5 km to the east of the Pont de Montanyana village, on the C-1311 

road. 

At basin scale, the Complex A is composed of three different channel belts, A1, A2 and A3, separated by floodplain 

deposits (see Fig.12 in Marzo et al., 1988). In the Mas de Faro outcrop, located in the proximal portion of the fluvial 

system, these appear as amalgamated sheet bodies. Nijman and Nio (1975) suggested that the Castissent 
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Complex A resulted from a single river channel, showing a characteristic coarse-grained point-bar structure like the 

modern Amite and Colorado Rivers in Texas (McGowen and Garner, 1970) and in the River Endrick in Scotland 

(Bluck, 1971). The channel deposits of A1 and A2 were subsequently re-interpreted as the deposits of a bedload-

dominated braided river with A3 dominated by low sinuosity, coarse-grained point-bar deposits (Nijman and 

Puigdefàbregas, 1978; Marzo et al., 1988). 

 

3. Methods 

3.1 Outcrop study 

The dataset for this study comprises 9 stratigraphic logs collected at a scale of 1:50 (MD1 to MD9; Fig. 3), 

palaeocurrent measurements from 500 locations and a virtual outcrop model. The outcrop model, generated using 

structure-from-motion photogrammetry from images acquired using an Unnamed Aerial Vehicle (UAV), covers 900 

m of nearly continuous outcrop (Chesley et al., 2017).  

Agisoft PhotoScan (by Agisoft LLC) was used to process the acquired images, reconstruct the geometry of the 

outcrop and create a 3D textured mesh. The photogrammetry model was edited in Polyworks (by Innovmetric) to 

fill small gaps within the mesh, and imported into LIME, a 3D interpretation software (Buckley et al., 2018) used to 

digitize the stratigraphic log traces with facies interpretation, position of the palaeocurrent measurements and map 

the key stratigraphic surfaces.  

Eleven sedimentary facies were identified from the logs and mapped on the virtual outcrop. This mapping 

subdivided the succession into stratigraphic intervals that record distinct sedimentary processes and fluvial 

environments. 

The outcrop model and the digitized data were imported into MOVE (by Petroleum Experts Ltd.) and were backtilted 

in order to remove the tectonic dip (2.83° dipping towards N278.76°). 

3.2 Petrophysical data 

The petrophysical data used in this study were taken from publicly available core descriptions and analysis of the 

Eiriksson Formation of the Statfjord group in the Norwegian North Sea (Norwegian Petroleum Directorate, 2016). 

Porosity, permeability and fluid saturation values were compiled and related by regression to the Castissent grain-

size and facies logs (see Section 5.2). 
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3.3 3D geocellular models and fluid-flow simulations 

The outcrop model and associated facies, porosity and permeability logs were imported into the Petrel modelling 

software (by Schlumberger). Bed contacts mapped using Lime and structurally restored in Move were used to 

construct stratigraphic horizons in three-dimensions. These horizons provided a framework for the 3D grid 

construction and subdivision in zones. 3D geocellular facies and petrophysical models were built based on the log 

data. Petrophysical models were used to perform fluid-flow simulations. 

 

4. Stratigraphy and sedimentology of Castissent Complex A in the Mas de Faro outcrop 

4.1 Facies 

A facies is defined as a body of rock with similar grain size, composition, geometry and scale of sedimentary 

structures (Collinson, 1969). Eleven facies are defined in this study based on lithology, sedimentary structures, 

grain size and facies thickness. Facies properties are summarized in Table 1 and Fig. 4. These include three 

conglomerate facies (Mcgl, Gm, and Gt/Gp), six sandstone facies (Sp1, Sp2, St1, St2, Sr, and Sh) and one 

mudstone facies (Fm).  

4.2. Fluvial architecture and hierarchy of bedding scales. 

The hierarchy scheme used in this study is slightly modified from previous classifications of Campbell (1967), Friend 

et al., (1979), Marzo et al., (1989) and Ford and Pyles (2014). A short summary and definition of the different scales 

is presented, for further details the reader is referred to the studies mentioned above. A lamina is a relatively uniform 

layer in composition and texture, which is not internally layered and that generates in a much shorter time than the 

enclosing bed (Campbell, 1967). Lamina-sets are conformable sets of lamina, thinner than a bed, separated by 

conformable, erosive or non-deposition surfaces and that generate distinctive structures within a bed (Campbell, 

1967). Beds are layers containing genetically related lamina-sets, which are bounded by bedding surfaces, which 

represent periods of non-deposition or abrupt changes in depositional conditions (Campbell, 1967). Bed-sets are 

composed of two or more superposed beds showing similar composition, texture and sedimentary structures 

(Campbell, 1967). Stories are composed of genetically related beds or bed-sets formed by the migration or fill of a 

fluvial channel with thicknesses comparable to the bankfull water depth and characterised by erosional lower 

bounding surfaces (Table 2) (Friend et al., 1979; Ford and Pyles, 2014). Channel belts are composed of one or 

more vertically or laterally stacked stories produced by channel migration or fill. They are the result of long-term 
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landscape evolution, and are defined by river avulsions (modified from Ford and Pyles, 2014). Finally, complexes 

are composed of two or more amalgamated channel belts (Marzo et al., 1988). 

4.3 Description of the sedimentary architecture and channel-belt deposits 

The Complex A is vertically bounded by thick mudstone deposits. It is composed of three amalgamated channel 

belts with a sheet like geometry A1, A2, and A3, separated by erosional surfaces. (Fig. 5).  

A typical section compiling the observations and interpretations of the Castissent fluvial succession at the Mas de 

Faro outcrop is presented in Fig. 6. 

4.3.1 A1 Channel belt  

Channel belt A1, 5 to 9 m thick, exposes a single-story containing two fining-upwards alternations of facies Sp1 

and St1. The first (Fig. 5 and Fig. 6) has a 0.6 to 2.6 m thick, massive to poorly-bedded, basal deposit (facies Gm; 

Table 1) consisting of clast-supported, sub-rounded to rounded pebbles and cobbles with sand matrix and minor 

amounts of mud-clasts and oxidized wood fragments. Small gutters are observed along the basal erosion surface 

cut into the underlying mudstone (facies Fm). The basal gravels are overlain by a 1.5 to 3.5 m thick, pebbly-to-

coarse sandstone with 1 to 4 large-scale planar-asymptotic cross-stratified beds (facies Sp1). Beds are 0.4 and 3 

m thick. Internally, beds are composed of lamina-sets, which are a few cm thick and show fining-upwards patterns. 

Grain size along lamina is coarser in their lower side than in the upper side. Subordinate amounts of mud-clasts 

and oxidized organic fragments up to 1 m length were observed. 

A 2 m thick bed-set, pebbly-to-medium sandstone dominated (facies St1), with 0.2 to 0.6 m thick trough cross-

laminated beds is located on top. Medium grained sandstone deposits are better preserved than pebbly-to-coarse 

sandstones. The second alternation (Fig. 5 and Fig. 6) is finer-grained overall than the first. The basal deposits 

generally are cross-laminated coarse sandstones with subordinate pebbles (facies Sp1). The large-scale planar-

asymptotic cross-laminated beds are 0.5 and 1.5 m thick. These deposits are capped by small-scale trough cross-

laminated coarse-to-medium sandstone beds, which contain thin laminae of oxidized organic matter (facies St1).  

4.3.2 A2 Channel belt  

Channel belt A2, 1 to 4.5 m thick, exposes a single-story (Fig. 5 and Fig. 6). An overall fining-upwards trend is 

observed within the exposed channel-belt deposits. A distinctive massive mud-clast and pebble basal facies (Mcgl) 
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is 0.2 to 1.5 m thick. The 1 to 10 cm diameter, sub-angular to sub-rounded, mud-clasts are black. Mudstone blocks 

up to 0.5 m large rarely occur. 

Pebbly-to-coarse sandstones in the middle part of A2 (facies Sp1) contain 1 to 3, 0.5 to 2 m thick, large-scale 

planar-asymptotic cross-stratified beds. The capping facies are poorly exposed trough cross-stratified, pebbly-to-

medium sandstones (facies St1).  

4.3.3 A3 Channel belt  

Channel belt A3, 5 to 9.5 m thick, exposes a single-story. It can be subdivided into: a basal interval with gravel 

facies (facies Gp and Gt) and minor amounts of trough cross-laminated sandstones (facies St1), a middle interval 

with planar cross-laminated upper coarse to upper medium sandstones (facies Sp2) and an upper finer-grained 

sandstone interval (Fig. 5 and Fig. 6). The top 1 and 3.5 m of this channel belt is a highly mottled sandstone with 

internal bedding wedges separated by accretion surfaces. This interval fines-upwards from trough cross-laminated 

coarse-to-medium sandstone beds (facies St2) to nearly horizontally-laminated medium-to-fine sandstones (facies 

Sh) and rippled cross-laminated fine sandstones on top (facies Sr).  

4.4 Palaeocurrent analysis 

There is a progressive change in mean transport direction from the northwest to the west up-section. The measured 

palaeocurrents (Fig. 6; Fig. 7) indicate large cross-stratified beds parallel gutter casts in A1 channel belt, showing 

mean palaeocurrent directions towards 311° and 313°, respectively. Large cross-stratified beds record more 

consistent palaeocurrent directions throughout the channel belts than small cross-stratified beds, which are 

characterised by a higher variability and tri-modal patterns. Measurements of accretion surfaces in A3 show a mean 

dip of 10° and a mean dip-azimuth of 339°, which represents a deviation of 48° and 86° compared to the mean 

291° and 252° palaeocurrent directions measured in the basal and middle part of the channel belt, respectively.  

4.5 Interpretation of the sedimentary architecture and channel-belt deposits 

Proximal A1 channel-belt deposits were interpreted as braided-river deposits by Marzo et al., (1988) after describing 

and correlating them along the basin. Underlying facies Fm is interpreted as floodplain deposits. Elongate scours 

filled with clast-supported gravels (facies Gm) are interpreted to be fluvial channel lag deposits. The almost 

consistent palaeocurrent orientation of these lag scours between the, widely-spaced measured sections, indicates 

these are deposits of a low-sinuosity river sourced from the southeast. Facies Sp1 is interpreted as unit-bar deposits 

above the channel lag. Lee dips of the facies parallel the underlying lag scours, suggesting that they occurred in 
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the same channel and indicating downstream migration. Facies St1 is interpreted as the resulting deposit of dunes. 

Dunes are interpreted to be formed coevally to unit-bar deposits. Once dunes overtake the bar crest, its charge is 

deposited down the lee face and form the larger scale cross-lamina and lamina-sets (Reesink and Bridge, 2007; 

2011). The fact that finer-grained dune deposits in A1 are better preserved than the coarser ones implies that is not 

easy to recognize the genetic relationship between dunes and unit-bars, as superimposed bedforms should match 

the grain-size distribution observed in the large cross-stratified unit-bar deposits. However, we found locally 

preserved pebbly sandstone dune deposits, which match the grain size observed within unit-bar lamina-sets, 

directly superimposed on top. Fining upward trends along dune bed-sets are interpreted as the result of flow 

unsteadiness. The lack of evidences for subaerial exposure indicates that both type of deposits were formed when 

water was capable of overflowing the unit-bars top. Vertical alternations of unit-bars and dunes are found building 

up compound-bars and within single channel fills in sandy braided rivers. As pointed out by Ashworth et al., (2011) 

there are no significant differences between them, hence it is not possible to discern between types. As a result, 

alternating unit-bar and dune deposits in A1 could be interpreted as compound-bar or channel-fill deposits (i.e., a 

downstream-accreting or channel-fill story).  

After basin-scale mapping of A2 deposits by Marzo et al., (1988), these were interpreted as braided-river deposits 

of a new channel belt. The mean 272° palaeocurrent direction indicates that it was mainly sourced from the east. 

The mud-clast dominated deposit (facies Mcgl) at the base of A2 is interpreted as a channel lag deposit, given its 

composition texture of the clasts, and the erosional basal surface. We suggest that the mud could have been 

sourced from a nearby, poorly drained, non-preserved floodplain deposit. The poorly drained conditions of the 

floodplain are inferred based on the dark colour of the mud-clasts. Like A1, A2 Sp1 and St1 facies succession is 

interpreted as an alternation of unit-bar and dune deposits forming part of a compound bar or channel fill.  

Deposits in A3 were interpreted as coarse-grained point-bar deposits formed in a new channel belt (Nijman and 

Puigdefàbregas, 1978; Marzo et al., 1988). The basal gravels (facies Gt and Gp) are interpreted as scour and fill 

deposits, and gravel bars deposited in the deepest part of the channel. The interbedded and overlying facies St1, 

is interpreted as dune deposits. The transition from gravel to sandy dune cross-stratified facies is interpreted to 

result from the progressive decrease in the flow energy. The mean 290° palaeocurrent direction for the basal part 

of the succession suggests that this renewed fluvial course was mainly sourced from the east. These facies 

described above correspond to the scour-and-pool conglomerates and lower-point-bar conglomeratic sandstones 

of Nijman and Puigdefàbregas (1978).  
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Facies Sp2 found in the middle part of the succession resembles the unit-bar deposits interpreted in channel belts 

A1 and A2. However, we observe that in some localities this facies is laterally bounded and separated by accretion 

surfaces. These surfaces show a mean deviation of 87° with respect to the mean palaeocurrent value of 252° in 

facies Sp2. As a result, these are interpreted as lateral-accretion surfaces based on the spatial relationship 

observed (see Fig. 7). Hence, facies Sp2 is interpreted as unit-bar deposits that formed as part of a point bar (i.e., 

a lateral-accreting story). These deposits correspond to the transverse bars of Nijman and Puigdefàbregas (1978). 

In this paper the term transverse bars is merely used in order to differentiate them from the unit-bars of A1 and A2. 

The structure of the point bar and the accretion surfaces is more developed in the mottled interval found at the 

upper part of A3. Facies St2, Sh, and Sr are interpreted as dune deposits (festoons of Nijman and Puigdefàbregas, 

1978), plane beds and ripples developed because of the progressive energy decrease of the helicoidal flow towards 

the upper parts of the point bar. These deposits correspond to the upper-point-bar festoon beds and to the inner 

accretionary bank of Nijman and Puigdefàbregas (1978). Overlying facies Fm is interpreted as floodplain deposits. 

The vertical evolution of Complex A was explained by Marzo et al., (1988) as the result of several aggradation-

degradation cycles, controlled by tectonics. The initial stage of each cycle was characterised by aggradation in 

bedload dominated braided rivers, and the late stages by meandering streams. These cycles were repeated for A1, 

A2, and A3, with the meandering-river deposits being mainly present in A3, where they were not removed by the 

next cycle of degradation. Coincident with these aggradation-degradation cycles was the shift of the fluvial systems 

towards the westïsouthwest as a consequence of the displacement of the basin axis due to the active tectonic 

regime (Puigdefàbregas et al., 1992; Nijman, 1998). 

 

5. Subsurface analogue: The Eiriksson Formation (Statfjord Group, Norwegian North Sea) 

5.1 Facies and fluvial styles in the Eiriksson Formation: Comparison with Castissent Complex A 

The Eiriksson Formation (Hettangian ï Sinemurian, Lower Jurassic) forms part of the Statfjord Group (Rhaetian ï 

Sinemurian), which is one of the main hydrocarbon-bearing intervals in the northern North Sea (Ryseth and Ramm 

1996).   

The proximal fluvial deposits of the Eiriksson Formation in the Tampen Spur area (Fig. 8A) are considered a suitable 

subsurface analogue for the Castissent Formation based on its facies and similarities in fluvial architecture and 

fluvial style variations. The different facies described below are interpreted to be fluvial deposits formed in braided 
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and coarse-grained meandering rivers (Ryseth and Ramm, 1996; Ryseth, 2001). Fluvial architecture is 

characterised by amalgamated multi-storey and multilateral sheet-like channel belts, 5 to 15 m thick, and variable 

amounts of floodplain deposits (Ryseth and Ramm, 1996).  

Channel belts described by Ryseth and Ramm (1996) (Fig. 8B) are typically composed of multiple storeys, with 

internal fining-upwards trends, beginning with a massive or poorly bedded deposit of facies Gm or Se found 

immediately above an erosional basal surface. These deposits are interpreted as gravel and coarse sandstone 

channel lags, scour and fill deposits, and gravel bars (Ryseth, 2001). Above the lag deposits the succession is 

characterised by variable amounts of interbedded trough and planar cross-stratified pebbly-to-fine sandstones 

(facies St and Sp), massive coarse-to-fine-grained sandstones (facies Sm), and horizontally laminated coarse-to-

medium sandstones (facies Shc). Facies Sp and St are interpreted as leeside-accreting unit-bar and dune deposits, 

respectively (Ryseth and Ramm, 1996; Ryseth, 2001). Massive sandstones are characteristic facies in the Eiriksson 

Formation and are interpreted to be the result of rapid deposition and sediment dumping during flash discharge 

events (Ryseth and Ramm, 1996; Ryseth, 2001). Facies Shc are commonly found on top of the massive 

sandstones and are interpreted to be upper flow regime structures. The vertical succession ends up with very fine-

to-fine rippled sandstones (facies Sr) and horizontally laminated sandstones (facies Shf) (Ryseth and Ramm, 1996; 

Ryseth, 2001). Ryseth (2001) stated that the presence of gravel lags and the high proportion of planar cross-

stratified beds capped by minor amounts of trough cross-stratified beds would be indicative of deposition in sandy 

braided rivers. However, the localities dominated by trough cross-stratified gravels and sandstones suggests 

deposition within coarse-grained meandering rivers.  

Comparing the facies in the Eiriksson Formation with the ones in Complex A, we suggest that the vertical 

successions dominated by gravels lags (facies Gm) and planar cross-beds (Sp) with interbedded trough cross-

beds (St) may be like the channel lag, unit-bar and dune deposits interpreted in the sandy braided A1 and A2 

channel belts. The successions dominated by trough cross-stratified gravels (Gt) and trough cross-stratified 

sandstones (St) with marked fining-upwards trends and subordinate ripples (Sr), and plane beds (Sh) could be 

analogous to the coarse-grained meandering point-bar deposits interpreted in A3. Nevertheless, massive 

sandstone beds and upper flow regime structures in the Eiriksson Formation were not recognized in the Castissent 

Formation.  

5.2 Petrophysical rock properties from the analogous Eiriksson Formation 
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Petrophysical values from the outcrop were not used due to the extensive cementation. Data used were derived 

from the Eiriksson Formation, in order to generate results more directly related to subsurface reservoirs. The wells 

used were 33/9-9 from the Statfjord field, 34/10-30 from the Gullfaks SØr field and 34/10-13 from the Gullfaks field 

(Fig. 8A).  

Lithology and grain-size logs from conventional core descriptions of the Eiriksson Formation were converted to a 

numerical scale and related by regression to porosity, measured on core plugs and nuclear magnetic resonance 

(NMR) of core chips during special core analysis. Relationships between porosity and horizontal permeability 

measured in the core plugs were determined by regression. Horizontal to vertical permeability ratio was also 

calculated from the core plug data. 

Irreducible fluid saturations and relative permeabilities were derived from special core analysis that waterflooded 

core plugs under reservoir conditions. Porosity was related to the irreducible water saturation using Timurôs equation 

(Timur, 1968) and to the irreducible oil saturation. Oil effective permeability at irreducible water saturation was 

defined from the horizontal air permeability of the rock. Finally, water effective permeability at irreducible oil 

saturation was defined from the oil effective permeability at irreducible water saturation. 

The regressions shown in Fig. 9 were applied to the Castissent grain-size and facies logs in order to perform 

petrophysical modelling and to obtain the permeability functions used during the flow simulations (see Section 7.1) 

 

6. 3D geocellular models  

6.1 Description of the 3D grid 

The model is 514 m wide by 514 m long by 30 m thick. A convergent interpolation method with a grid size of 0.5 by 

0.5 m was selected for the horizon modelling. Thirteen stratigraphic horizons were reconstructed (Fig. 10B), defining 

12 vertical zones within the grid (Fig. 10A). The lowermost and uppermost zones correspond to the floodplain 

deposits below and above Complex A. The horizontal dimensions of the 3D grid cells were set to 5 m by 5 m N - S 

oriented planview cell faces. Varying grid layering styles were applied to different zones in order to mimic the 

bedding observed in the outcrop and reduce aliasing (see Fig. 10A and Fig. 5). Base conformable layering was 

applied to zones with facies patterns that parallelled the basal surface and were top truncated at overlying erosion 

surfaces. Inclined internal surfaces following the mean orientation of the cross-stratification planes were used for 

the zones with unit-bar deposits characterised by well-developed large planar cross-stratification planes. 
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Proportional grid layering was used for zones with facies trends that parallel both basal and top horizons (i.e., 

horizon above was not erosional) 

A mean cell height of 0.5 m was set up for most of the zones, except for the lower floodplain deposits, where a cell 

height of 3 m was selected, and for the zones with proportional layering (i.e., upper floodplain deposits and the 

accretionary bank), where the vertical subdivision must be set up by specifying the number of vertical layers, setting 

10 layers for each zone. This results in a 3D grid with approximately 6.8 million cells. Upscaling to a coarser grid 

was not necessary for flow simulations. 

6.2 Facies and petrophysical modelling 

Facies, porosity and permeability logs were loaded as deviated wells and upscaled to the 3D grid. Each of the 12 

zones modelled is represented by one or more type of interpreted deposits according to the sedimentary 

architecture described in the outcrop (see Fig. 5 and 6). For simplification, the lateral-accretion surfaces of the point 

bar were not modelled for the limited localities where they were observed. The unit-bar and dune deposits of A2 

were modelled as a single interval.  

Porosity and permeability logs were obtained by applying the regression functions from the Eiriksson Formation 

analysis to the continuous grain-size logs of the Castissent Formation. 

For the facies log, a discrete upscaling was used such that the facies category with the greatest proportion in each 

cell would be assigned. The porosity and horizontal permeability logs were upscaled using the arithmetic mean, 

whereas the vertical permeability was upscaled using the harmonic mean. The arithmetic and harmonic means are 

commonly used to approximate the horizontal and vertical flow, respectively (Benson, 2015). 

Model 1 assigned constant facies and interpreted deposits in each zone (Fig.10A and Fig. 5). The facies model 

was populated with average porosity and permeability values calculated from the upscaled logsðseparately for 

each modelling zone.  

All zones were modelled as discrete facies except the gravel lag at the base of A1, which was modelled as an 

object within a sand background using the dimensions collected from the outcrop (Table 3) (Lia et al., 1996; Falivene 

et al., 2007). 

Model 2 rock properties were assigned using the Sequential Gaussian Simulation algorithm (Deutsch and Journel, 

1997). Variogram analysis was necessary. The analysis was conducted on the continuous porosity logs. First, all 

the horizontal and vertical directional trends were removed. Subsequently, the data were transformed to a normal 
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distribution. Different types of variograms (Gaussian, Spherical, or Exponential) and correlation lengths were 

applied to find the best fit for the data. 

The sill was locked at a value of 1 and the nugget value was displaced between 0 and 0.25 depending on the case. 

Once the horizontal variograms were set up, the vertical variograms were calculated (Table 3).  

For each zone, the orientation of the variograms was locally constrained to the palaeocurrent measurements (see 

Fig. 7) using the ñLocally Varying Anisotropyò option in Petrel. The horizontal and vertical permeability distribution 

was obtained by applying the regression between porosity and permeability to the stochastically modelled 3D 

porosity cube. 

6.3 Results of the property modelling 

The property models constructed for the Castissent Formation in the Mas de Faro outcrop (Fig. 11) show that the 

most common deposits, excluding the floodplain deposits, are the ones associated with: the unit-bars of A1 and A2 

(16.47%), the gravel bars, scour and fill deposits and dunes of A3 (15.55%), followed by the dunes of A1 (13.66%), 

and the accretionary bank of A3 (8.26%). The less represented are the transverse bars (5.15%), the mud-clast lag 

(4.29%), and the gravel lag deposits (1.81%). The mud-clast lag is assumed to produce a relatively impermeable, 

thin and laterally continuous barrier to flow along the outcrop, which vertically subdivides Complex A into two 

reservoir-like intervals: A1 below, and A2 and A3, above.  

Moreover, relatively impermeable facies that correspond to mudstones of the floodplain underneath A1 and on top 

of A3, also occur. 

The petrophysical Models 1 and 2 were constrained with the same minimum and maximum values. However, some 

differences are identified in the distribution and representativeness of the petrophysical data in both models (Fig. 

11). In Model 1, the petrophysical contrasts are only recorded in the limits of the different modelled zones, which 

record constant and mean petrophysical values. Model 2 shows a wider range of values, and a higher petrophysical 

variability is captured within each modelled zone.  

 

7. Fluid-flow simulations 

7.1 Rock pressure, relative permeability functions and development strategy 
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A dead-oil model was used consisting of two phases, oil and water. The oil-water contact was below the model. 

Bubble point pressure was set to 80 bars and maximum reservoir pressure to 300 bars, which corresponds to the 

fracture pressure. These pressures were the main input used to set up the limits of the rock compaction functions, 

which describes the changes in porosity as the pressure changes during production. The reservoir analogue 

reference pressure was set to 250 bars, which corresponds to a depth of 2,543 meters, the mean depth of the 

Eiriksson Formation in the referenced wells.  

Oil and water relative permeability functions were obtained by normalizing the effective permeabilities to the 

effective oil permeability at irreducible water saturations. For Model 1, a relative permeability function for each type 

of interpreted deposit, was used. For Model 2, we used the porosity model to define the number of relative 

permeability functions (for every 1% increase in porosity, we constructed a relative permeability function, Fig. 12).  

The flow simulations were run in Petrel using the Eclipse 100 simulator. Four five-spot well patterns were considered 

consisting of 9 injectors and 4 producers that were approximately 166 m apart. The water injection rate was held at 

750 Sm3/day and producers were closed when the water cut reached 90%. 

7.2 Results of the fluid-flow simulation on reservoir production   

In order to evaluate the impact of the facies architecture on reservoir performance, the water cut and recovery factor 

were plotted against the water injected pore volume for the simulations in Models 1 and 2 (Fig. 13). These results 

are summarized in Fig. 14. Recovery efficiency at the end of the simulations (i.e., with a water cut of 90%) is 50.41% 

in Model 1 and 50.58% in Model 2. Both models estimated an inflection point in productivity at around 0.15% of the 

injected pore volumes. Model 2 showed an earlier water breakthrough (at about 0.05% of the injected pore 

volumes), whereas for Model 1, the water breakthrough occurred at 0.08% at injected pore volumes. The increase 

in the water cut over time is more progressive for Model 1 (i.e., the water cut curve shows a gentler slope) than for 

Model 2. In Model 1, 14.2% of the total oil in place is unmoveable oil and 35.38% of the moveable oil is not swept 

at the end of the simulation. In Model 2, 14.6% of the total oil in place is unmoveable oil and 34.79% was moveable 

oil trapped in the reservoir analogue. 

 

8. Discussion: Sedimentary heterogeneity impact on fluid-flow behaviour and oil recovery 

8.1 Flow behaviour: flow units and permeability barriers 
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The mud-clast channel lag at the base of A2 acts as a flow barrier that vertically compartmentalizes Complex A. 

This laterally extensive layer separates A1 from A2 and A3, causing them to act as two independent flow units. 

Earlier works also described the impact of the presence of mud-clasts in fluvial reservoirs. North and Taylor (1996) 

documented that the sand-dominated ephemeral fluvial succession of the Lower Jurassic Kayenta Formation, in 

Utah, was compartmentalized by the presence of mud-clast lags. Jones and Hartley (1993) suggested that 

conglomerate lags composed of variable amounts of mud-clasts and wood fragments in the Carboniferous Pennant 

sandstones would also reduce the effective permeability. Henares et al., (2016) show that the occurrence of variable 

amounts of mud-clasts within fluvial sandstones of the Triassic Bigoudine Formation, in the Argana Basin, favours 

early reduction of the primary porosity during mechanical compaction given its ductile behaviour, and that the 

presence of continuous layers between amalgamated sandstone bodies could generate local barriers for fluid-flow 

and could therefore compartmentalize the succession. 

In the early stages of the flow simulations, two vertically separated waterfronts were generated: a) the lower 

waterfront in the gravel channel lag and in the basal part of the unit-bars of A1; and b) the upper waterfront in the 

gravel bars, scour and fill deposits and dune interval of A3 (Fig. 14). The presence of these preferential flow conduits 

was caused by the heterogeneous distribution of the petrophysical properties in the reservoir analogue. The high 

permeability contrast of the conglomeratic and very coarse-grained facies cause these deposits to act as thief 

zones, catching a considerable volume of the injected water and producing fingering of the waterfront and thus 

bypassing the surrounding areas (Fig. 14). Similar fingering effects within braided fluvial heterogeneous reservoirs 

have been demonstrated in flow simulations carried out in a sandy braided river exposure of the Maroon Formation 

in Colorado by using borehole data from the Statfjord Group in the North Sea (Høimyr et al., 1993). Highly 

permeable zones in this outcrop analogue model favour an early water breakthrough and waterfront fingering that 

result in a decrease of the recovery efficiency. Lunt et al., (2004) stated that open-framework conglomerates (OFC) 

commonly form thief zones during water flooding. The porosity measurements of OFC in the gravelly-braided 

Sagavanirktok River, Alaska, show that they have intermediate porosities ranging from 15ï25%, having very high 

permeabilities (1,000s to 10,000s Darcys). The heterogeneous distribution of petrophysical properties and the role 

of OFC in high net to gross fluvial reservoirs upon oil recovery was addressed by Atkinson et al., (1990) in the 

Ivishak Formation, the main reservoir in the Prudhoe Bay field, Alaska. This showed that heterogeneously 

distributed permeabilities in braided deposits, where significant amounts of conglomerates and conglomeratic 

sandstone deposits occur along with shaly intervals, hinders effective and homogeneous oil production through the 

less permeable intervals found in the reservoir, the OFC having the main producing intervals with the greatest flow 
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and injection rates. Gershenzon et al., (2015) based on flow simulations in the Ivishak Formation in the Prudhoe 

Bay oilfield, Alaska, showed that the recovery efficiency was greater when the amount of OFC was lower and the 

pressure gradient between injectors and producers was oriented perpendicular to the direction of the OFC. As the 

flow simulations in the Castissent models advanced, a gradual slowdown in the waterfront displacement within each 

channel of Complex A was observed in both Models 1 and 2. This effect was due to the upward decrease in porosity 

and permeability values, which enhances segregation of the injected fluids and favours flow in the bottom of the 

succession (Fig. 14).  

Thick fining-upwards successions, like the sandy braided deposits of A1 or the coarse-grained meandering deposits 

of A3, are also reported by Bailey et al., (2000) to enhance a water-flow segregation towards the bottom of the 

packages, mainly because of the viscosity contrasts and gravity effects. This effect is also documented by Cabello 

et al., (2018) in point-bar deposits of the Montllobat Formation, Spain, where the waterfront preferentially ascends 

through the accretion deposits and progressive permeability contrasts occur. However, the upwards decrease in 

the reservoir quality and gravity effects prevent the oil from being completely drained from the upper part of the 

point bar. 

At the end of the simulations, the presence of the thief zones, the vertical segregation of the flow and the 

permeability barriers, resulted in bypassed oil accumulations in the models. The poorly swept areas tend to form 

two vertically stacked oil accumulations, 5ï10 m thick, between the injector wells. These non-swept oil zones are 

located in the upper part of the unit-bars and dunes of A1 and in the upper part of the gravel bars, scour and fill 

deposits, and dunes interval up to the accretionary bank of A3, i.e., immediately below the impermeable units 

corresponding to both the mud-clast channel lag and the floodplain mudstones (Fig. 14).  

8.2 Trapped oil and petrophysical heterogeneity 

The recovery efficiency reported in the simulation of Model 1 is less than 1% below the recovery efficiency obtained 

for Model 2 (i.e., 50.41% and 50.58%, respectively). The percentage of trapped moveable oil in both models is also 

very similar (35.38% and 34.79% in Models 1 and 2, respectively).  

Later water breakthroughs and more gradual increase of the water cut through time in Model 1 (Fig. 13) suggests 

that the heterogeneity associated with the petrophysical property distribution significantly affects the water and the 

oil displacement in the reservoir during production. In Model 1, with constant petrophysical values, the water front 

advances more homogeneously through each of the modelled intervals than in Model 2 (Fig. 14). This favours a 

more gradual water production (Fig. 13).  
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The increase in the sedimentary and petrophysical heterogeneity captured in Model 2 decreased the oil trapping 

efficiency of the coarser-grained intervals in Complex A (i.e., the channel lag and the lower unit-bars in A1, the unit-

bars and dunes interval of A2) (Fig. 15). The fingering effects and effectivity of the thief zones during production 

was enhanced in Model 2, catching most of the injected water. The productivity in the intervals immediately above 

the coarser-grained units (i.e., the dunes and upper unit-bars of A1, and the transverse bars and accretionary bank 

in A3) was reduced (Fig. 15). This was in part because of the increase in the efficiency of the thief zones, but also 

as a response to the reduction in porosity and permeability caused by the fining-upwards trend captured in Model 

2, which caused a progressive decay in the productivity of the waterfront towards the upper sections of the channel 

belts (Fig. 14).  

The results obtained from this case study can guide the reservoir modelling process and the understanding of 

hydrocarbon production in gravel-sandstone dominated channel-belt deposits, where a wide range of grain sizes is 

present. The proportion of gravel and sandstone, the fining-upwards trends, and the presence of shale barriers are 

all key to building a robust model. A robust development and a well placement strategy must be built, based on the 

prediction of the impact of the sedimentary heterogeneities over the fluid-flow behaviour and the location of the oil 

accumulations that will be bypassed.  

 

9. Conclusions 

The characterisation of the fluvial sandstone Complex A of the Castissent Formation in the Mas de Faro outcrop 

allow us to conclude the following: 

¶ The results from the facies analysis show a fining-upwards trend, starting with a basal gravel lag, of unit-bar and 

dune deposits for A1, a mud-clast channel lag passing to unit-bar and dune deposits for A2, and a fining-upwards 

succession in A3, starting with scour-and-fill, gravel bars and dune deposits passing upwards to transverse bar 

deposits and ending in mottled accretionary bank deposits composed of small dunes, plane beds and rippled 

sands which is capped by floodplain deposits. 

¶ Each channel belt exposes a single-story, interpreting a channel-fill or downstream-accreting story (i.e., a 

compound bar), associated with sandy braided rivers, for A1 and A2 and a laterally-accreting story (i.e., a point 

bar), associated with coarse-grained meandering-rivers, for A3.  
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¶ The gravel channel lag at the base of the sandstone Complex A, the unit-bar deposits of A1 and A2, and the 

gravel bars, scour-and-fill and dune deposits at the base of A3, acted as thief zones that caught a great part of 

the injected water producing fingering of the waterfront and caused early water breakthrough. 

¶ Upwards-fining successions produced a slowdown and non-synchronous displacement of the waterfront, 

reducing the sweeping efficiency of the upper parts of the channel belts. This effect is mainly related to the 

gradual decrease in porosity and permeability values, which enhanced segregation of the injected fluids towards 

the bottom of the successions. 

¶ The remaining oil is located at the midpoint between the injector wells, where there are two vertically stacked 

accumulations, isolated from water sweeping since the fluids are circulating through the underlying, more 

permeable zones. 

¶ The increase in the degree of petrophysical and sedimentary heterogeneity favours a decrease in the amount 

of oil trapped for the coarser-grained intervals and enhances the trapping efficiency for the finer-grained 

intervals; in contrast, the decrease of the heterogeneity degree offsets the effects of the thief zones and the 

fingering effects and promotes more balanced production. 

¶ We have demonstrated that the sedimentary heterogeneity related to the presence of thief zones, fining-upwards 

trends and mud-rich intervals in amalgamated gravel-sandy dominated multi-storey fluvial successions has an 

important control on the fluid-flow behaviour and drastically impacts the reservoir productivity and recovery 

efficiency, trapping 35.38% and 34.79% of the OOIP in each simulation. 
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FIGURE CAPTIONS 

Figure 1. Geological map of the northeast of the Iberian Peninsula. The Tremp-Graus Basin is located on top of 

the Montsec thrust sheet, forming an ESE-WNW syncline. The white star shows the location of the Mas de Faro 

outcrop within the Tremp-Graus Basin. Modified from Muñoz (2002) and Cabello et al., (2018). 

Figure 2. Cross-section of the Montanyana Group in the Tremp-Graus Basin. The Castissent Formation represents 

a strong progradation of the depositional systems towards the northwest and separates the upper from the lower 

Montanyana Sub-Group. The black star marks the position of the Mas de Faro outcrop. Modified from Nijman and 

Puigdefàbregas (1978). 
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Figure 3. A) Location of the Mas de Faro outcrop and position of the stratigraphic logs. B and C) Images from the 

virtual outcrop, which show the general physiography and exposures of the Castissent Formation at the Mas de 

Faro area. Topographic map and orthophoto modified from IGN (2013). D) Summarized stratigraphic profile of the 

Castissent Formation with the main fluvial bodies that form the Complex A and their boundaries. Modified from 

Marzo et al., (1988). 

Figure 4. Photographs of the facies described in Table 1. A) Pebble-cobble conglomerates (Gm). B-C) Planar-

asymptotic cross-stratified unit-bar deposits (Sp1), note the fining-upwards tendency. D) Dune deposits (St1). E) 

Mud-clast channel lag with variable amounts of pebbles (Mcgl). F-G) Gravel bars, scour-and-fill and dune deposits 

(Gt, Gp and St1). H) Planar-asymptotic cross-stratified transverse bars (Sp2). I) Mottled medium-to-fine trough and 

horizontally bedded sandstones (St2 and Sh). J) Asymmetrical current ripples (Sr). 

Figure 5. Sedimentary architecture and stratigraphic intervals modelled along the fluvial succession of Complex A 

in the Mas de Faro area. See Fig. 3B for image location. The traced lines correspond to the reconstructed horizons 

during the 3D modelling in Petrel, except for the lateral-accretion surfaces of A2 and the dune interval of A2. See 

Fig. 10A. 

Figure 6. Type log for the Mas de Faro area, which summarizes the different features observed trough the 9 

stratigraphic logs made, along with the porosity log derived from the regressions of the petrophysical values. Note 

the fining-upwards tendencies in A1, A2 and A3 channel-belt deposits, and the progressive migration of the 

palaeocurrents towards the west-southwest. 

Figure 7. Palaeocurrent maps for the different stratigraphic intervals studied. Dip marks represent the mean value 

of the palaeocurrents direction measured for a given interval at the different logs. See Fig. 6 for rose diagrams. 

Solid black lines represent the base of A1, A2 and A3. 

Figure 8. Eiriksson Formation well data. A) Map showing the location of the wells that penetrated the Eiriksson 

Formation in the North Sea and that were used to derive the petrophysical values used in the modelling of 

Castissent Complex A (see Fig. 9). Modified from Keogh et al., (2014) and Norwegian Petroleum Directorate (2016). 

B) Stratigraphic log and porosity log from the petrophysical analysis of the Eiriksson Formation. Modified from 

Ryseth and Ramm (1996). 

Figure 9. Petrophysical property regressions in the Eiriksson Formation. The resulting relationships were used to 

relate the grain size in Castissent Complex A with the different rock properties, and to construct the relative 

permeability functions used in the flow simulation (see Fig. 12). 
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Figure 10. A) 2D section showing the different zones modelled and the layering applied. Vertical exaggeration x1. 

B) Horizons modelled. Vertical exaggeration x4. C) Detail of the gravel channel lag zone, which was modelled as 

an object within a sand background. Vertical exaggeration x4. 

Figure 11. Interpreted deposits, porosity and permeability XY-Z 3D geocellular models. The left row corresponds 

to Model 1, assigned with average and constant values for each zone, while Model 2, right row, was built using the 

SGS algorithm and shows a higher degree of heterogeneity. Vertical exaggeration x4. 

Figure 12. Permeability functions for the Castissent Formation. The upper image corresponds to Model 1, which is 

a simple model that records a lower degree of petrophysical heterogeneity than Model 2, below, which takes into 

account higher permeability contrasts. The permeability curves in Model 2 were defined on the basis of the porosity, 

creating a permeability curve for each 1% change in porosity. For porosity values between 15 and 5%, the same 

permeability function was used. For values equal or lower to 5% no permeability function was used since they were 

treated as relatively impermeable facies. 

Figure 13. Reservoir performance at the end of the flow simulations. Curves correspond to the recovery efficiency 

and water cut for both simulation cases plotted against the IPV. Note that the increase in water cut and recovery 

efficiency curves for Model 1 is more progressive than in Model 2. One realization for each model. 

Figure 14. Different stages during the run of the flow simulation for both models. Note the fingering located at the 

base of the channels and the slowdown in the waterfront displacement during the early stages of the simulation. 

Note the compartmentalization of the reservoir analogue due to the relatively impermeable mud-clast channel lag 

at the base of A2 and the location of the bypassed oil accumulations. Vertical exaggeration x4. 

Figure 15. Oil trapping efficiency. Percentage of moveable oil trapped respect to the OOIP in each interval at the 

end of the simulations. Note that most of the coarse-grained intervals in Model 2 tend to trap a minor amount of oil 

whereas the finer-grained facies and the intervals immediately above the thief zones tend to trap a greater amount 

of oil compared to Model 1, where a more balanced contribution is shown. 

Table 1. Compilation of the different facies described and interpreted along the fluvial succession of Complex A in 

the Mas de Faro outcrop. 

Table 2. Compilation of the different types of story and interpreted forms. 

Table 3. Input data for the facies and petrophysical models. For each interval modelled the type of algorithm used 

and the corresponding values are shown. Model 1 was built using average values while in Model 2 variogram 
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analysis were conducted in order to model a higher degree of petrophysical variability within the Mas de Faro 

outcrop. 
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