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Abstract. We suggest two explicit descriptions of the Poisson q-W algebras which are
Poisson algebras of regular functions on certain algebraic group analogues of the Slodowy
transversal slices to adjoint orbits in a complex semisimple Lie algebra g. To obtain the
first description we introduce certain projection operators which are analogous to the
quasi-classical versions of the so-called Zhelobenko and extremal projection operators.
As a byproduct we obtain some new formulas for natural coordinates on Bruhat cells in
algebraic groups.

1. Introduction

The purpose of this paper is to give two descriptions of the Poisson structure
for Poisson g-W algebras which are group-like analogues of ordinary Poisson W-
algebras. As algebras Poisson q-W algebras are algebras of regular functions on
transversal slices to conjugacy slices in algebraic groups defined in [11] while their
Poisson structures are obtained by Poisson reduction from Poisson structures of
Poisson—Lie groups dual to quasi-triangular Poisson Lie groups. If G is a complex
semi-simple quasi-triangular Poisson—Lie group used in the definition of g-W al-
gebras then its dual group G* is solvable and there is a smooth morphism of
manifolds ¢ : G* — G the image of which is dense in G. Actually this morphism is
a finite cover over its image, so that one can equip G with a Poisson structure such
that ¢ becomes a Poisson mapping. Denote by G, the Poisson manifold obtained
this way. In order to define the corresponding Poisson gq-W-algebra one has to fix
a coisotropic submanifold C C G, and then factorize it over a free action of a
subgroup N C G on C induced by the conjugation action of N on G. The reduced
Poisson manifold ¥ = C/N has an explicit description as a submanifold in C and
carries the reduced Poisson structure.

In fact G and N are closed algebraic groups and C C G, is a closed subvariety,
so that ¥ is a closed subvariety in G, and the Poisson q-W algebra is the Poisson
algebra of regular functions on ¥. Our first task is to obtain a projection operator
I : C[C] — C[C]N = C[%] with the help of which one can explicitly describe the

DOI: 10.1007/s00031-019-09533-8

Received October 17, 2017. Accepted December 12, 2018.

Published online May 11, 2019.

Corresponding Author: A. Sevostyanov, e-mail: a.sevastyanov@abdn.ac.uk



280 A. SEVOSTYANOV

reduced Poisson structure in terms of the Poisson bracket on G, (see Proposition
3.4).

The projection operator II is quite remarkable. It is an analogue of the quasi-
classical versions of the so-called Zhelobenko and extremal projection operators
introduced in [17] to describe subspaces of singular vectors in modules from the
BGG category O. In turn, as it was observed in [14], the quasi-classical versions
of Zhelobenko and extremal projection operators are examples of the realization
of the following simple construction.

Let U be an algebraic group, and M an algebraic variety equipped with a regular
action of U. Assume that there exists a cross-section X C M for this action in the
sense that the map

UxX—>M, (g,x) » gz, ge Uz e X (1.1)

is an isomorphism of varieties.

Denote by C[M] the algebra of regular functions on M. The group U naturally
acts on C[M]. Let C[M]Y be the subspace of U-invariant elements of C[M]. Define
the projection operator P : C[M] — C[M]Y as follows

(Pf)(gz) = f(x) = f(g 'gz) = (9f)(9z), geUuzeX. (1.2)

If for y € M we denote by g(y) € U the unique element such that y = g(y)z(y)
for a unique z(y) € X then

(PH)y) = (9() ) (). (1.3)

The operator P is called the projection operator corresponding to isomorphism

(1.1).

If every element of U can be uniquely represented as a product of elements from

subgroups Uy, ..., Uy, i.e., U = Uy - -+ - Uy, then the operator P can be expressed
as a composition of operators P;,

(Pif)(w) = (g: ) H)®), 90) =1(y) - 9n(y), 9iy) € Vi (1.4)

(Pf)(y) = (P1---Pnf)(y). (1.5)

The projection operator II : C[C] — C[C]"Y = C[X] defined in Proposition 2.12
is of the same type with U = N, M = C and U; being one-parametric subgroups
corresponding to some roots. Technically the construction is quite involved and as a
preliminary auxiliary exercise we obtain some new formulas for natural coordinates
on Bruhat cells in algebraic groups (see Proposition 2.9).

In Proposition 3.3 we give another explicit compact description of the reduced
Poisson bracket on X. Formula (3.12) for the reduced Poisson structure obtained
in that proposition is a simple consequence of the general definition of the reduced
Poisson structure and of the explicit description of the reduced space X. In case of
the usual W-algebras such description was obtained in [3]. But this description is
much more complicated than in the case of g-W algebras since the corresponding
reduced spaces in the W-algebra case are the Slodowy slices, and they do not have
a nice geometric description compatible with the Poisson structure.

Acknowledgements. The author is grateful to a referee for useful comments on
the draft of this text.
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2. Analogues of Zhelobenko operators for g-W algebras

In this section we construct analogues of the classical versions of Zhelobenko
operators for q-W-algebras. First we recall the definition of the coisotropic subma-
nifolds C, of the subgroups N and of the slices X.. They are associated to conjugacy
classes of Weyl group elements and are defined in terms of certain systems of
positive roots associated to conjugacy classes of Weyl group elements. We recall
these definitions and the related properties of C, N and X following [11], [12], [13],
[15]. To define the projection operator II we shall also need the normal orderings
of the systems of positive roots associated to conjugacy classes of Weyl group
elements in [12].

Let G be a complex semisimple connected simply-connected algebraic group, g
its Lie algebra, H a maximal torus in G. Denote by h the Cartan subalgebra in
g corresponding to H. Let A be the root system of the pair (g,[), W the Weyl
group of the pair (g, h). For any root o € A we denote by a¥ € [ the corresponding
coroot and by s, € W the reflection with respect to a. Let X,, € g be a non-zero
root vector corresponding to a.

Let s be an element of the Weyl group W and [g the real form of §, the real
linear span of simple coroots in h. The set of roots A is a subset of the dual space
bi- By Theorem C in [2] s can be represented as a product of two involutions,

s =s's? (2.1)
where s' = s, -5y, 8° = Sy,,, Sy, the roots in each of the sets v1,...,7,
and vp41,...,7r are positive and mutually orthogonal.

The Weyl group element s naturally acts on hr as an orthogonal transformation
with respect to the scalar product induced by the Killing form of g. Using the
spectral theory of orthogonal transformations we can decompose hg into a direct
orthogonal sum of s-invariant subspaces,

K
=0

where we assume that g is the linear subspace of hr fixed by the action of s, and
each of the other subspaces h; C br, i = 1,..., K, is either two-dimensional or
one-dimensional and the Weyl group element s acts on it as rotation with angle
0;, 0 < 6; < w or as reflection with respect to the origin, respectively. Note that
since s has finite order 0; = 2wn;/m;, n;,m; € {1,2,3,...}. By Proposition 3.1 in
[13] the subspaces h; can be chosen in such a way that each of them is invariant
with respect to the involutions s' and s2, and if b; is one-dimensional one of the
involutions acts on it in the trivial way. We shall assume that the subspaces h; are
chosen in this way. We shall also assume that the one-dimensional subspaces bh; on
which s! acts by multiplication by —1 are immediately following bg in sum (2.2).

Since the number of roots in the root system A is finite one can always choose
elements h; € h;, i = 0,..., K, such that h;(«) # 0 for any root @ € A which is
not orthogonal to the s-invariant subspace h; with respect to the natural pairing
between hr and bg.
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Now we consider certain s-invariant subsets of roots A;, i = 0,..., K, defined
as follows
A, ={aeA:hj(a)=0,j >, hi(a)#0}, (2.3)

where we formally assume that hx 1 = 0. Note that for some indexes i the subsets
A; are empty, and that the definition of these subsets depends on the order of terms
in direct sum (2.2).

Now consider the nonempty s-invariant subsets of roots A;, , k=0,..., M. For
convenience we assume that indexes i, are labeled in such a way that i; < i if
and only if j < k. According to this definition Ag = {a € A : sa = a} is the set of
roots fixed by the action of s. Observe also that the root system A is the disjoint

union of the subsets A;,,

Suppose that the direct sum @Zzl b, of the one-dimensional subspaces h;, on
which s! acts by multiplication by —1 and s? acts as the identity transformation is
not trivial. Since the one-dimensional subspaces h; on which s' acts by multiplica-
tion by —1 are immediately following by in sum (2.2), the roots from the union
Ui—; A;, must be orthogonal to all subspaces h;, on which s' does not act by

multiplication by —1 and to all roots from the set v, 41, ...,y as s? acts trivially
on @,._, bi,. Pick up a root v € J;_; A;,. Then s'y = —y and by our choice v
is orthogonal to the roots v,41,...,vr. Therefore s} = 5137 is an involution the

dimension of the fixed point space of which is equal to the dimension of the fixed
point space of the involution s plus one, and s = s.,s% is another involution the
dimension of the fixed point space of which is equal to the dimension of the fixed
point space of the involution s! minus one. We also have a decomposition s = s}s2.
Now we can apply the above construction of the system of positive roots to the
new decomposition of s. Iterating this procedure we shall eventually arrive at the
situation when the direct sum @ _, h;, of the subspaces b;, on which s acts by
multiplication by —1 is trivial. Form now on we shall only consider decompositions
s = s's? which satisfy this property. This implies
sfa=a = acl. (2.4)
Now assume that

|hik(a)|>‘ 3 hi].(a)) forany o € Ay, k=0,...,M, [ <k.  (2.5)

I<j<k

Condition (2.5) can be always fulfilled by suitable rescalings of the elements h;, .
Consider the element

M
h=>hi, € bg. (2.6)
k=0
From definition (2.3) of the sets A; we obtain that for o € A;,

h(a) = Z hi;(a) = hi, (a) + Z hi, (). (2.7)

i<k i<k
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Now condition (2.5), the previous identity and the inequality |z + y| > ||z| — |y
imply that for o € A;, we have

[h(@)] = [hig (@) = | 37 by ()] | > 0.
<k

Since A is the disjoint union of the subsets A;,, A = UiVI:o A, , the last inequality
ensures that h belongs to a Weyl chamber of the root system A, and one can define
the subset of positive roots A% with respect to that chamber. We call A% a system
of positive roots associated to s.

From condition (2.5) and formula (2.7) we also obtain that a root @ € A; # 0
is positive if and only if

hi(a) > 0. (2.8)

Recall that an ordering of a set of positive roots A is called normal if for any
three roots a, B, v such that v = o+ g we have either a < v < for 8 < v <
a. Let aq,...,q; be the simple roots in Ay, s1,...,s; the corresponding simple
reflections. Let w be the element of W of maximal length with respect to the system
S1y. .., of simple reflections. For any reduced decomposition w = s;, - - - s;, of W
the ordering

B1 =, Ba=58iQiyy ..., Bp = 84, - Sip_, Qi

is a normal ordering in Ay, and there is a one-to-one correspondence between
normal orderings of A and reduced decompositions of W (see [16]).

From this fact and from properties of Coxeter groups it follows that any two
normal orderings in A can be reduced to each other by the so-called elementary
transpositions (see [16, Thm. 1]). The elementary transpositions for rank 2 root
systems are inversions of the following normal orderings (or the inverse normal
orderings):

a, B A1+ Aq,
a, o+ P, Aa
8, 8 ) 09
Q, Cl+ﬂ, 05+2B7 ﬁ BQa
a, Oé+67 20[—"-35, Oé+2ﬁ7 a+3ﬁ7 ﬁ G2

where it is assumed that (o, «) > (8, 8). Moreover, any normal ordering in a rank
2 root system is one of orderings (2.9) or one of the inverse orderings.

In general an elementary inversion of a normal ordering in a set of positive roots
Ay is the inversion of an ordered segment of form (2.9) (or of a segment with the
inverse ordering) in the ordered set A, where a — 8 ¢ A.

Let (1, f2,...,08p be a normal ordering of a positive root system A,. Then
following [7] one can introduce the corresponding circular normal ordering of the
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root system A where the roots in A are located on a circle in the following way

B2 Bp
B1 -5
-Bp —Ba

Fic. 1

Let «, B € A. One says that the segment [a, 8] of the circle is minimal if it does
not contain the opposite roots —a and —f and the root 8 follows after o on the
circle above, the circle being oriented clockwise. In that case one also says that
a < B in the sense of the circular normal ordering,

a < 8 < the segment [«, 5] of the circle is minimal. (2.10)

Later we shall need the following property of minimal segments which is a direct
consequence of Proposition 3.3 in [6].

Lemma 2.1. Let [, 5] be a minimal segment in a circular normal ordering of a
root system A. Then if a+ B is a root we have

a<a+p<p.

The following proposition is a refinement of Proposition 5.1 in [12].

Proposition 2.2. Let s € W be an element of the Weyl group W of the pair (g, b),
A the root system of the pair (g,bh), A5 a system of positive roots associated to
5. For any Weyl group element w € W we denote A, = {a € A% 1 wa € A%},
where A® = —A% . Then the decomposition s = s's? is reduced in the sense that
I(s) = 1(s?) + I(s'), where I(-) is the length function in W with respect to the
system of simple roots in A%, and Ay = Ag|Js*(Ags1), Ag-1 = A s (As2)
(disjoint unions). Here s',s? are the involutions entering decomposition (2.1),
St =Sy, .Sy, 87 = Sy, ... 8y, and satisfying (2.4), the roots in each of the
S€ts Y1y ..oy Yn and Ypt1,- ..,y are positive and mutually orthogonal.

Moreover, there is a normal ordering of the root system A’ of the following
form:
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ﬁ%w"7ﬂ1}76tl+17"~aﬁz_,'_%v’yluﬂtl_i_%_;rga~~~7ﬁtl+pgn+n17’y27
t1+%+n1+2 e ’ﬂtl+%+n2’73’ e ,’yn,5t1+p+1, . ,Bll(sl), R
18127 ce 76337n+17ﬁ3+2’ cee 7/8§+77L1’7n+2aﬁ§+m1+25 cee a/83+m277n+3a ey (211)
, 6§+ml(52)+17 cee 7/6§q+2ml(52)7(l’7n)7 6§q+2ml(52)7(l’7n)+17 ) 512(52)’
ﬂ(l)a s 7BOD03
where

1 1 1 1 1 1
{ﬂla"'aﬂt7ﬂt+1""36t+p;n771aﬂt+%+23"'7Bt+17;ﬂ/+n13727

1 1 1 1
t+p;"+n1+2’ o 7/8t+175”+n2ary37 .. avnvﬁt—&-p-‘,-l’ s 7Bl(sl)} = Aslv
1 1 1 1
{Bt—&-l? e 7Bt+P;na7176t+P;n+27 e 7/8t+17;n+n1a'y27
1 1 1
RS g2 7Bt+p;n+n27’737" . 77774} = {Oé € Ai‘s (Oé) = —OZ},
2 2 2 2 2 2
{517 cee ,5q,’7n+176q+23 cee 7Bq+m17’7n+2a Bq+m1+27 e Bq+m277n+3a ceey
2 2 2 2
’yl/7ﬁq+ml(52)+1’ T ’ﬁ2q+2ml(52)—(l’—n)’ /62q+2ml(52)—(l'—n)+17 s ?18[(52)} = A527
2 2 2 2
{’Yn+176q+2a AR 7Bq+m177n+276q+m1+27 v a6q+m277n+3a RN
2 2 _ 2 _
7l’76q+ml(52)+1? cee 752q+2ml(82)7(l/7n)} - {a € Ai‘s (Oé) - —0[},

{BY,.-..BD,} = {a € Ajls(a) = a}.
The length of the ordered segment Ay C A in normal ordering (2.11),

Am, = 71’Bt1+%+2’ T Bt1+%+n1’72’ Bt1+%+m+2 "' ’5t1+%+n2’
Va5 s Vs Blapits -5 Bistyr- -2 B+ Bes (2.12)
%+1,5§+2,~-~,5§+m17%+2,5§+m1+27~-»5§+m27%+3,~~,%u
is equal to
D- (1(3)27—1’ + D0)7 (2.13)

where D is the number of roots in A%, I(s) is the length of s and Dy is the number
of positive roots fized by the action of s.

For any two roots o, € An, such that o < B the sum a + [ cannot be
represented as a linear combination ZZ:1 CkYip, Where ¢ € {0,1,2,...} and o <
Vip < oo < Vi < B

The roots from the set As form a minimal segment in A% of the form . .. aﬂf(sz)
which contains Agz.

Normal ordering (2.11) also satisfies the property that for any o € (A;)+
such that sa € (A, )4 one has sa > «, and if B,y € A;; U{0}, j < k and
sa+ fB,a+v € A then sa + f,a0+v € A% and sa + > a+ 1.

In particular, for any o € A%, a € Ag and any ag € Ay such that sa € A%
one has sa > a and if sa + ag € A then sa + ag > a.
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Proof. The proof is a refinement of the proof of Proposition 5.1 in [12] where a
normal ordering associated to s and satisfying all properties listed in this proposi-
tion except for the last three is constructed.

We describe first the set (A;, )4y = A (VA% for i > 0. Suppose that the
corresponding s-invariant subspace b;, is a two-dimensional plane. The case when
b, is an invariant line on which s? acts by reflection and s' acts trivially can be
treated in a similar way. The plane b;, is shown at Figure 2.

/
/
/ 2A1
, s Aik_
hik /
/
/
/
1 1
Aj, v Pk / ) )
/ @[Jk Vg Aik
Pk / wk
Fia. 2

The vector h;, is directed upwards at the picture. By (2.5) and (2.7) a root
a € A;, belongs to the set (A;, )4 if and only if h;, (o) > 0. Identifying br and
bg with the help of the Killing form one can deduce that o € A;, is in A% iff its
orthogonal, with respect to the Killing form, projection onto b;, is contained in
the upper-half plane shown at Figure 2.

The element s acts on b;, by clockwise rotation with the angle 6;, = 2(vr+r).
Therefore the set Ag [ A;, consists of the roots the orthogonal projections of which
onto b;, belong to the union of the sectors labeled s*A}l and A? at Figure 2.

Define other s-invariant subsets of roots A;,, k=0,..., M,
A= A (2.14)
15 <ik

According to this definition we have a chain of strict inclusions

ZiM ) Zil\/f—l D) Aio? (2'15)
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such that A;,, = A, and A;, \ A
A

iv_1 = A, . Note also that by construction each

i, 1s additively closed and hence it is a root subsystem in A.

Let i, > 0 and Al(.:) the subset of roots in (A, )+ orthogonal projections of
which onto bh;, are directed along a ray r C b;, starting at the origin. We call Ag:)
the family corresponding to the ray r. Below we shall only consider rays which
correspond to sets of the form Ag:).

Lemma 2.3. Suppose that i, > 0. Then each Al(.:) is an additively closed set of
T001S.
Let AE:I) and AZ(:Q) be two families corresponding to rays r1 and ro, and 61 €

Ag:l), 0o € Agzz) two roots such that 6, + 09 = 63 € A. Then 3 € AE?), where

AZ(-:?’) is the family corresponding to a ray r3 such that rs lies inside of the angle

formed by r1 and rs.

Proof. All statements are simple consequences of the fact that the sum of the
orthogonal projections of any two roots onto h;, is equal to the orthogonal projecti-
on of the sum.

In the first case the orthogonal projections of any two roots «, 8 from AZ(-:) onto
bi, have the same direction therefore the orthogonal projection of the sum a +
onto h;, has the same direction as the orthogonal projections of a and /3, and
hence a + 3 € Al(-:).

In the second case it suffices to observe that the sum of the orthogonal projecti-
ons of §; and &2 onto b;, is equal to the orthogonal projection of the sum, and
the sum of the orthogonal projections of §; and d2 onto b, lies inside of the angle
formed by r; and ro. O

Now we construct an auxiliary normal ordering on A% by induction starting
from the set (A;,)+ as follows.

If ip = 0 or b;, is one-dimensional then we fix an arbitrary normal order on
(Aio)Jr'

If b;, is two-dimensional then we choose a normal ordering in (A; )+ in the
following way. First fix an initial arbitrary normal ordering on (A;,)+. Since by
Lemma 2.3 each set AES) is additively closed we obtain an induced ordering for

AEZ) which satisfies the defining property for the normal ordering.
(r)
0
ordering on (A;,)+ such that on the sets AE;) it coincides with the induced normal

Now using these induced orderings on the sets A’ we define an auxiliary normal

ordering defined above, and if Aggl) and Ag:“) are two families corresponding to
rays r; and ro such that rs lies on the right from 7 in b;, then for any o € Agl)

and g € AZ(.[T)Z) one has a < . By Lemma 2.3 the two conditions imposed on the
auxiliary normal ordering in (A;,)+ are compatible and define it in a unique way
for the given initial normal ordering on (A;,)+. Since s acts by a clockwise rotation
on bh;, we have S(AES)) = Agz(r)) for s(r) in the upper-half plane, and hence the
new normal ordering satisfies the condition that for any a € (A;))+ such that
sa € (A;,)+ one has sa > a.
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Now assume that an auxiliary normal ordering has already been constructed
for the set A;, _, and define it for the set A;, . Firstly we shall need the following

Tk—1
property of these sets of roots.

Lemma 2.4. Let T' be the set of simple roots in A% . Then I'N A, is a set of
simple roots in A, .

Proof. Indeed, let @ € A;, N A%, a = Zi:l n;a;, where n; € {0,1,2,...} and
I' ={ai,...,a;}. Assume that o does not belong to the linear span of roots from
I'NA;, and t > i is maximal possible such that for some o, € A; one has n, > 0.
Then by (2.3) and (2.8) hi(a) = 22:1 nihi(ai) = >, ea, nile(ai) > 0, and by
the choice of t h,(a) = 0 for r > t. Therefore o € A, and hence a ¢ A,;,. Thus
we arrive at a contradiction. 0O

By Lemma 2.4 A;, | C A;, is the root system of a standard Levi subalgebra
gi,_, inside of the standard Levi subalgebra g;, of g with the root system A;, . In
particular, A;, , is generated by some subset of simple roots of the set of simple
roots of (A;,)+. Therefore there exists an initial normal ordering on (A;, )y in
which the roots from the set (A;, )+ \ (Ai,_,)+ = (A, )+ form an initial segment
A;, )+ are ordered according to the previously
defined auxiliary normal ordering. As in the case of the induction base this initial

and the remaining roots from (4;

ks
normal ordering gives rise to an induced ordering on each set A( ),

Now using these induced orderings on the sets Az(‘k) we define an auxiliary normal

ordering on (A;,)+. We impose the following conditions on it. Firstly we require
that the roots from the set (A, )4 form an initial segment and the remaining roots

from (A;,_,)+ are ordered according to the previously defined auxiliary normal
ordering. Secondly, on the sets A(T) the auxiliary normal ordering coincides with

the induced normal ordering defined above, and if A; Tl) and A "2) are two families
corresponding to rays r; and 7y such that ro lies on the right from r1 in b;, then
for any o € AZ(-ZI) and 8 € AE:Q one has o < 8. By Lemma 2.3 the conditions
imposed on the auxiliary normal ordering in (A;, )4+ are compatible and define it in
a unique way. Since s acts by a clockwise rotation on b;, we have S(A ) A(S "
for s(r) in the upper-half plane, and hence the new normal ordering Satlsﬁes “the
condition that for any o € (4A,;, )+ such that s € (A, )+ one has sa > a.
Note also that the roots from A;, _, have zero orthogonal projections onto b;, .
Therefore if o € (A;, )+, 8,7 € A, _, are such that sa € (A;,) 4, saJrB, a+vy € A
then by (2.3) and (2.8) sa+3,a+~v € A% and sa+3 > a+~v as S(A ) A(S "
for s(r) in the upper-half plane.

These properties of the new normal ordering are summarized in the following
lemma.

Lemma 2.5. Suppose that iy > 0. Then for any a € (A;,)+ such that sa €

(A; )+ one has sa > « and if B,y € A, U{0}, sao + B,aa+ v € A then
sa+pB,a+v €A% and sa+ 8> a+7.

Now we proceed by induction and obtain an auxiliary normal ordering on A%.
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Observe that, according to the definition of the auxiliary normal ordering of A%
constructed above we have the following properties of this normal ordering.

Lemma 2.6. Let i, > 0. Then for any a € A;, and § € A;

inpr We have a > 3,

and if AE:I) and AE:Q) are two families corresponding to rays r1 and ro such that
ro lies on the right from r1 in b;, then for any o € AE:I) and B € AZ(-ZQ) one has

a < B. Moreover, the roots from the sets Al(:) form minimal segments, and the
roots from the set (Ag)+ form a final minimal segment.

The involutions s! and s? act in b;, as reflections with respect to the lines
orthogonal to the vectors labeled by v,i and v,%, respectively, at Figure 2, the angle
between vi and v} being equal to ™ — (¢4, + ¥4, ). The nonzero projections of the
roots from the set {v1,...,v,}[) A, onto the plane h;, have the same (or the
opposite) direction as the vector v}, and the nonzero projections of the roots from
the set {vn+1,...,7} (1A, onto the plane b;, have the same (or the opposite)
direction as the vector v,%.

For each of the involutions s! and s We obviously have decompositions Agi,2 =
no AP A = Ul A3, where AL? = Ay N A, Ape = {a € A% 1520 €
—Ag SHAY = A NA, A = A2 U52A1 In the plane b;,, the elements from
the sets Aik are projected onto the interiors of the sectors labeled by A;};Z and the
elements from the set A7 are projected onto the interior of the union of the sectors

labeled by A? and s*A! . Therefore the sets A} and A? have empty intersection
and are the unions of the sets A(T) with r belonging to the sector ALQ and the sets

A7 have empty intersection and are the unions of the sets A(T) with r belonging
to the union of the sectors labeled by A2 and 52A1

Let o € A,i. By Theorem C in [2] the roots Y1, ...,y form a linear basis in the
annihilator b " of by with respect to the pairing between hg and h. Therefore s =
Sy, * " Sy, fixes all roots from Ay, and hence o ¢ Ag. Also one obviously has a €
Allk, where b;, is a two-dimensional plane, as by the assumption imposed before
(2.4) there are no one-dimensional subspaces b;, on which s! acts by multiplication
by —1. Thus in case if h;, is an invariant line on which s acts by multiplication by
—1 the set A} is empty and hence Af = A? . This set is the set A( Y= (Ai)4,s
where r is the 'posmve semi-axis in blk From the last two observatlons we deduce
that the sets A1 and A2 have always empty intersection. In particular, by the

results of [16, §3] the decomposition s = s's? is reduced in the sense that I(s) =

1(s?) +1(s'), and Ay = Az |Js?(As) (disjoint union).

Lemma 2.7. Assume that A% is equipped with an arbitrary normal ordering such

that for some ray r C b, the roots from the set AE:) ={61,...,0a} form a minimal
segment 61, . ..,04. Suppose also that for some natural p such that0 <p <k, i, #0
and some ray t C b;, the roots from the set AZ(-:)) ={&,..., &} form a minimal
segment &1, ..., & and that the segment 61, ...,04,&1,-..,& is also minimal. Then
applying elementary transpositions one can reduce the last segment to the form

€i1a-"7£ib75j17"'a6ja'

Proof. The proof is by induction. First consider the minimal segment 91, . .., d4,&1.
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Since the orthogonal projection of the roots from the set A; onto bh;, are equal
to zero, for any a € AE? and g € AZ(-:) such that o+ 8 € A we have a+ 3 € AE:).
Assume now that o and § are contained in an ordered segment of form (2.9) or
in a segment with the inverse ordering. By the above observation this segment

contains no other roots from AE;), and « is the first or the last element in that
segment. For the same reason the other roots in that segment must also belong to

Ag:). Therefore applying an elementary transposition, if necessary, one can move
« to the first position in that segment.

Applying this procedure iteratively to the segment 01, ...,04,&; we can reduce
it to the form &3, dk,, ..., Ok, -
Now we can apply the same procedure to the segment dy,, ..., d,, 2 to reduce

the segment &1, 0, ,. .., 0k, , &2 to the form &;,&2,01,,...,0;,.
Iterating this procedure we obtain the statement of the lemma. [

Now observe that according to Lemma 2.6 the roots from each of the sets (A;, )+
form a minimal segment in the auxiliary normal ordering of A%, and the roots from

the sets AE:) form minimal segments inside (A;, )+. As we observed above the sets
0
by Lemma 2.6 the roots from the sets A;}f form an initial and a final segment
inside (A;, ).

Therefore we can apply Lemmas 2.6 and 2.7 to move all roots from the segments
A}k, k=0,...,M to the left and to move all roots from the segments A?k, k=
0,..., M to the right to positions preceding the final segment formed by the roots
from (Ag)+.

Now using similar arguments the roots from the sets s?A} , k = 0,..., M
forming minimal segments by Lemma 2.6 as well can be moved to the right to
positions preceding the final segment formed by the roots from the set A,z [ J(Ag)+-

Note that according to the algorithm given in Lemma 2.7 for each fixed k the

A}f are the unions of the sets A: ’ with r belonging to the sectors A}f and hence

order of the minimal segments formed by the roots from the sets Ag:) is preserved
after applying that lemma. Therefore the new normal ordering obtained this way
still satisfies the second property mentioned in Lemma 2.6, i.e., if Ag:l) and AE:”
are two families corresponding to rays r; and ro such that ro lies on the right from
r1 in b;, then for any a € AE:I) and 8 € AE—ZZ) one has a < 3.

Now we can apply elementary transpositions used in the proof Proposition 5.1
in [12] to bring the initial segment formed by the roots from A,: and the segment
formed by the roots from A,z and preceding the final segment (Ag)4 to the form
described in (2.11). These elementary transpositions do not affect positions of other
roots. We claim that for a € Al(.:) we still have sa > o if sa € A%

Indeed, if & € (A, )4, a € A, sa &€ A? | sa € (A, )4 this follows from the
second property mentioned in Lemma 2.6.

If o € Al and sa € A% then s & Ay as s'(sAg) = s?(A,) C A% since the
decomposition s = s's? is reduced. Therefore sa > « as the roots from the set
Ay form an initial segment in the normal ordering of A% .

fae (A, ad A}k, sa € Afk then a ¢ Ay and sa € Ay as Afk C A,
Therefore s > « as the roots from the set Ag | J(Ap)+ form a final segment in the
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normal ordering of A% and a does not belong to that segment.

Finally if o € A} then sov € —A%.

Moreover, similar arguments together with the fact that all roots from A;, _,
have zero orthogonal projections onto b;, show that the new normal ordering still
satisfies the property of Lemma 2.5. Note that for one-dimensional b;, this property
is void.

Since A% is the disjoint union of the sets (A;, )4, the last statement of the
proposition is a particular case of the property proved above.

By construction the roots from the set A, form a minimal segment in A% of the

form 7, ... 7512(52) which contains Ag2. This completes the proof of the proposition.
O

We call normal ordering (2.11) a normal ordering associated to s.

Later we shall use the circular normal ordering of A corresponding to the system
of positive roots A% and to its normal ordering introduced in Proposition 2.2.

Let b% be the Borel subalgebra associated to A% and b® the opposite Borel
subalgebra. Let nf be the nilradicals of b%.. Denote by B the corresponding Borel
subgroups and by N3 their unipotent radicals.

We shall need the parabolic subalgebra p D b% of g and the parabolic subgroup
P D Bf associated to the subset I'o =T' N Ag of simple roots. Let n and [ be the
nilradical and the Levi factor of p, N and L the unipotent radical and the Levi
factor of P, respectively.

Note that we have natural inclusions of Lie algebras p D n, and by Lemma
2.4 Ay is the root system of the reductive Lie algebra [. We also denote by n the
nilpotent subalgebra opposite to n and by N the subgroup in G corresponding
ton.

Introduce the element hg = 22/1:1 h;, € br. Let b C by be the image of by in
hi under the isomorphism hj =~ hg induced by the Killing form. By the definition
of A% for any = € b} one has ho(z) = 0 and a root a € A\ Aq is positive iff
hQ(Oé) > 0.

Denote a representative for the Weyl group element s in G by the same letter.
Let Z be the subgroup of G generated by the semisimple part of the Levi subgroup
L and by the centralizer of s in H. The level surface C is the variety NZs ' N.

The following proposition is a modification of [11, Props. 2.1 and 2.2].

Proposition 2.8. Let Ny = {v € N | sus~! € N}. Then the conjugation map
N x N,Zs™' = NZs™'N (2.16)

is an isomorphism of varieties. Moreover, the variety N,Zs™ ! is a transversal slice
to the set of conjugacy classes in G.

The variety ¥ = NyZs~! ~ NZs 1 N/N is a subvariety in G. It is an analogue
of the Slodowy slices in algebraic group theory.

The operator II will be defined in terms of certain functions on NZs ! N. These
functions are related to some natural coordinates on Bruhat cells in G. First, as a
warm up exercise, we obtain explicit formulas for these coordinates.
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If w € W is any Weyl group element we shall denote a representative of w in
G by the same letter. Let A, be any system of positive roots, A_ = —A,, By
and N1 the corresponding Borel subgroups in G and their unipotent radicals, b
and ny their Lie algebras, respectively. Denote N,,-1 = {n € N, : w™lnw € N_}.
N,,-1 is a subgroup in N generated by one-parametric subgroups corresponding to
the roots from the set A,,—1 = {& € A, : w™la € A_}. Denote by s; the reflection
with respect to a simple root o; € Ay, i =1,...,0 and let w = s;, ---s;, be a
reduced decomposition of w. Then A1 = {B1,..., Bk}, and B; = s;, -+ - 84,_, .
Note that the elements w; = s;, - s;; can also be represented in the form w; =
sg, " 8p,, where for any root a € A we denote by s, the reflection with respect
to a. Observe also that ij—l ={f1,....0;} ={aeA;: w;la eA_}

Let X, € g be a non-zero root vector corresponding to root «, X,(t) =
exp(tXy), t € C and denote by N, the one parametric subgroup corresponding to
root a, 80 X, (t) € N4. Any element of the Bruhat cell Byw ™! B, can be uniquely
represented in the form nw='hn,-1, n € Ny, h € H, ny-1 = Xg, (qr) - - Xp, (q1)-

Fix a normal ordering Sy, ..., Sp of the system of positive roots A such that
B1,- .., Bk is its initial segment and equip A with the corresponding circular normal
ordering. This is always possible by the results of §3 in [16].

Let w;, i =1,...,[ be the fundamental weights of g corresponding to A, V,,, the
irreducible representation of G' with highest weight w;, v, € V,,, a non-zero highest
weight vector. Denote by (-,-) the contravariant bilinear non-degenerate form on
V., such that (vy,,v.,) = 1 and (w(g)v,w) = (v, gw), where w is the Chevalley
anti-involution on G induced by the Chevalley anti-involution on g which is equal
to minus the Chevalley involution as defined, e.g., in [5, (1.3.4)]. For any reflection
s, one can fix a representative s, in G such that w(s,) = s;!. It suffices to do
that for simple reflections and one can put s; = exp(f;) exp(—e;) exp(f;), where
e; € ny, f; € n_,h; € b are the Chevalley generators of g on which w acts as
follows w(f;) = e;,w(e;) = fi,w(hi) = hy.

If o, B € A are such that the segment [, 3] is minimal then we denote by N, g
the subgroup in G generated by the one-parametric subgroups corresponding to
the roots from [«, f].

Proposition 2.9. Fiz a natural number p, p € {1,...,k}. Let g = nw thn, 1 €
Biw™'By,n € Ny,h € H, ngy1 = X, (qr) - Xp,(qp) be an element of the
Bruhat cell Byw™'B,. Then

(wp—1 Vwiy » WIWp Uiy, )

P )
(wp—1 Vwiy, » WIWp—1Vuw;, )

gp =c¢ (2.17)

where wy, = 8g,+++8p,, Wp_1 = Sg,_, 'S8, Cp 15 a nmon-zero constant only
depending on the choice of the representative sg, € G and on the choice of the
root vector Xg,, and it is assumed that wo = 1.

Proof. In the proof we shall frequently use the following lemma.

Lemma 2.10. Let [, ] C A be a minimal segment and assume that [«, 5] =
[a,v]U[d, B], where the segments [a,~y] and [d, 8] are disjoint and minimal as well.
Then any element m € Ny g can be uniquely factorized as m = gigo = g59),
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91,91 € Nian)» 92,95 € Nisg. Moreover, if § = 3 then for any m’ € Ni, ) and
any t € C one has m' Xp(t) = Xg(t)m", where m" € Ni, 4.

Proof. The proof is obtained by straightforward application of Chevalley’s com-
mutation relations between one-parametric subgroups (see [1, Thm. 5.2.2]) and
Lemma 2.1. O

Now by Lemma 2.10 we can write n,-1 = Xg, (qx) - X3, (qp) = X3, (qp)m1,
m1 € Nig,,, 3,]- Since Aw;1 ={B1,...,0p} we have w;lN[ngﬁk]wp C Ny, and
hence

Ny -1Wp Uy, , = Xﬁp (qp)mlwpvwip = Xpr (qp)wpwglmlwpvwip = Xﬁp (qp)wp'vwip

as vy, Is a highest weight vector. We deduce that

(wpflvwip » WGWp Uy, | ) = (wpflywip ) wnwithﬁp (Qp)wpvwip )
Now observe that by the choice of the roots S, ..., 8; we have

wil({/ﬁk-‘rl? e 7ﬂD7 7517 DY 7ﬂk}) - A+-

Since the number of positive roots is equal to the number of roots in the set

{Bk-‘rh e 7BD7 _617 ey _Bk} we deduce that w_l({ﬁk-‘rla cee 7ﬁD7 _ﬂh D) _Bk}})
= A, and hence

w(AJr) = {Bk+1a LR BD) _ﬁla R _5]6}

This implies that wnw™! € Nig,.1,~px- Recall also that H normalizes each one-
parametric subgroup N. Therefore using Lemma 2.10 one can uniquely factorize
the element wnw™"h as wnw™'h = mahms, ma € Ni_g, _g,], M3 € Nig,,1,—4,_1]-
Since w(mz) € Nig, 5,], w;_llN[ﬁp’ﬁk]wp_l C N and vy, is a highest weight
vector we obtain

(Wp—1Vu,,, s wgwpvy, ) = (W(ma)wp—100,,, hmz X, (gp)wpre,, )
= (Wp—1w,, , hm3Xp, (gp)wpva,,)-

Observe also that using Lemma 2.10 we can uniquely factorize the element

msXp,(qp) € Nig, g, as m3Xg,(gp) = Xg,(qp)mams, ma € Nig ., 5,), M5 €
Ni_g,,—p,_)- Finally remark that w, ' Ni_g, _g,_,jwp C Ny and w, ' Nig ., g,)Wp
C Ny as Aw;1 ={p1,...,8p} and hence

(Wp—1Vu, , WIWpLw, ) = (Wp—1Vw, s hX g, (gp)mamswpve, )
= (wp—lvwip hXpg, (qz))wpvwip)
as vy, Is a highest weight vector.

Note that the vector Wp—1V,,, has weight wy_1w;,. Since weight spaces cor-
responding to different weights are orthogonal with respect to the contravariant
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bilinear non-degenerate form on Vi, only terms of weight w;,_jw;, in the element
hXg, (ap)wpve,, will give non-trivial contributions to the scalar product

(wpflvwip ) hXﬁp (qp)wpvwip )

To find these terms we observe that each weight space is an eigenspace for the
action of H and that Xp, (gp)wpvw, = Xg,(¢p)ss, Wp—1vu, . Since B, & A -

we infer Xg w,_1v,, = 0, and hence w,_1vy,, is a highest we1ght vector for the
slo-triple generated by the elements X4p, . Moreover since w,,. ( Bp) = —a, the
vector X_o, = wple,Bp wp—1 is a root vector correspondlng to —ay,, and hence
X2 5 wy—1vs,, = wp1 X Eaip ¥, = 0 by the definition of v, . Therefore w,_1v,,
is a highest weight vector for the two-dimensional irreducible representation of the
slp-triple generated by the elements X5 , and 58, Wp—1Va,, is a non-zero lowest
weight vector for that representation. Recalling the standard slo-representation
theory we deduce that

Xg, (%)wpvwip = X3z, (qp)sﬁpwpflvwrip = 83, Wp—-1Vu;, T quﬂpsﬂpwpflvwiP

dp
= 88, Wp—1Vu,, + —Wp—1Vu; s
Cp

where ¢, is a non-zero constant only depending on the choice of the representative
sg, € G and on the choice of the root vector X1z, .

The only term of weight w,_jw;, in the right-hand side of the last identity is
dp/Cpwp—1vy, , and hence

4p
(Wp—1Vu,,, s WgWPLw, ) = (Wp—1Vu,,, h X, (gp)wpve,, ) = (wpflvwip ) hc*wpflvwi,, )
P
and

(wp—lvwip y WYWpUw, )

(wp—lvwip , hwp—lvwi,p ) ’

dp = Cp
Similar arguments show that
(wp—lvwi,,ahwp—lvwi,,) = (wp—lvwz'p ) wap—lquzp)~

Combining the last two identities we obtain formula (2.17). O

Let g = nw ™ hn,-1 € Biw™'By,n € Ny h € Hyny—1 = Xp, (qx) .- X, (q1)
be an arbitrary element. Using formula (2.17) one can find the numbers g, inducti-
vely. Namely,

(’Uqul » WIW1 Ve, )

Q=C—F———— >
(Uwil ) U)ngil)

and if g1, ..., gp—1 are already found then

(Wp—1V0,, wgXp, (—q1) - Xp, , (—Gp—1)Wpvu,)
(wZD 1Uwp’ng51( ) X/J’p 1( QPfl)wpflva)

qp = Cp (2.18)
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Note also that once the numbers g, are found, and hence the element n,,-: is
determined, one can also find n using [4, Prop. 2.11].

Indeed, let W = s;, - - - s;,, be the reduced decomposition of the longest element
of the Weyl group corresponding to a normal ordering fi,...,5p of the system
of positive roots A,. Then ; = s;, ---s;,_, ;. Consider the elements w; =
Siy -+ 8i, =8g, -~ Sp,. Observe that ij—l ={f1,....0}={ae A} : wjflaeA,}.
The element n can be uniquely represented in the form n = Xg, (r1) --- Xg, (D).
Assume that the root vectors X, used in the definition of one-parametric subgroups
X.(t) = exp(tX,) are chosen in such a way that w(X,) = X_,. Then according
to [4, Props. 2.6 and 2.11] we have

—1 —1
. —d (Wp—1Vw,, W™ hwwyvy,) B (Wp—1Ve,,, gN, -1 WWHL,, )
p = Up

(Wpvw, , nw =t hwwyv,,) b (wpva,gngjllwwpva) ’ (2.19)
where d), is a non-zero constant only depending on the choice of the representative
sg, € G and on the choice of the root vector Xg , and it is assumed that wg = 1.

Finally, once we know the coefficients 7; we can find n and h = wn™! gn;ll.
Thus we have completely described g in terms of some matrix elements of finite-
dimensional irreducible representations. The functions ¢;,r; defined by (2.18) and
(2.19) together with the fundamental weights evaluated at h = wn‘lgn;fl can be
regarded as natural coordinates on the Bruhat cell Byw~!B,.

Now we introduce functions required for the definition of the operator II. Let
g € NZs 'N. By Proposition 2.8 g can be uniquely represented in the form
g=n"'ngzs"'n,n € N, n, € N,.

Proposition 2.11. Let g = n"'n,zs 'n € NZs 'N. Let «; be the simple roots

of a system of positive roots A% associated to s, s; the corresponding simple
reflections, B1,...,Bp, Bj = si, -+ 8i,_,; a normal ordering (2.11) of A%. De-
note Ao (VA% = {Bas1,....Bp}. Let wy, i = 1,...,1 be the fundamental weights
corresponding to A%, v, a non-zero highest weight vector in the irreducible highest
weight representation V,,, of highest weight w;, (-,-) the contravariant non-degene-
rate bilinear form on V,,, such that (vy,, vw,) = 1. Thenn can be uniquely factorized
as n = Xg,(tq) - Xg, (t1) and the numbers t; can be found inductively by the
following formula

t,=c (Wp—-1Vu,, , SIpWplus,;, ) (2.20)

D )
(wpflq)wip » S9pWp—1Vw;,, )

where w, = sp,---8p,, Wp—1 = Sg,_, 'S8, Cp 1S a non-zero constant only
depending on the choice of the representative sg, € G and on the choice of the
root vector Xg, € g, gp = npgn, ', ny = X, (tp_1) - Xp, (t1) and it is assumed
that ny =1, wg = 1.

Proof. The proof of this proposition is similar to that of the previous proposition.
The numbers ¢, can be found by induction starting with p = 1. We shall establish
the induction step. The case p = 1 corresponding to the base of the induction can
be considered in a similar way.

Assume that ¢;,...,¢,_1 have already been found. Then

sgp = snpgny, ' = sXp, (—tp) - X, (—ta)nszs ™ X, (ta) - X, (tp),
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where n, = Xg, ,(tp—1)--- Xp, (t1). By Lemma 2.10 we can write

Xpa(ta) - Xp,(tp) = Xp, (tp)m1,m1 € Nig, ., g,

Since Aw;1 ={p1,...,Bp} we have w;:lN[ﬁpH,Bd}wp C N3, and hence

Xp,(ta) -~ X, (tp)wpvwip = Xp, (tp)mlwpvwip

= Xg, (tp)wpw, miwyve,

= Xg, (tp)wpvwip

as vy, 1s a highest weight vector. We deduce that

(wp_wwip » SpWplis, )= (wp_lvwip ,8X35 (—tp)---Xp, (ftd)nszslegp (tp)wpvwip ).

Now observe that Xg, (—t,)--- Xpg,(—ta)ns € Nig, g,)Vs- Note that the normal
ordering in Af associated to s has the property that the set A, is a segment
of the form B, ..., Bq. Therefore the union [Bp, Bq] | U[Bk,Ba] is also a minimal
segment and the subgroup Nig, 5, Ns is generated by one-parametric subgroups
corresponding to the roots from that segment. Thus using Lemma 2.10 one can
uniquely factorize the element Xg (—t,)--- Xpg,(—ta)ns as

Xp,(—tp) -+ Xp,(—ta)ns = mamz,ma € Nig, 5,1, m3 € Nig, 5,1,

where it is assumed that Nig g, = 1if p > k— 1. If a € [Bp, Bp—1] then
sa € A% and by the properties of the normal ordering in A% associated to s we
have sa > «, and if sa + g € A% for ag € Ag then sa + ap > a. Observing also
that Z is generated by one-parametric subgroups corresponding to roots from Ag
and by the centralizer of s in H which normalizes all one-parametric subgroups
corresponding to roots, we deduce sXg, (—tp)- - X, (—ta)nszs™! = smas™lzymy,
my = 2y tsmgs 1z € Nig, 1 .80] 21 = szs~te Z.

Observe now that using Lemma 2.10 we can uniquely factorize the element
m4X5p (tp) S N[ﬁp,ﬁp] as m4X5p(tp) = Xgp(tp)ms, ms € N[Bp-%—laBD]' Remark that
w;lN[ﬁpHﬁD]wp C N3 as Aw;1 = {f1,..., By} and hence

(wp—lvwip » SGpWplu, )= (wp—lvwz'p ) 3m25_121m4X5p (tp)wpvwip )
= (Wp-1Vuy,, smaes” 21 Xp, (tp)mswpve, )
= (w(z1 )W(5m25_1)wpflvwip ' X8, (tp)wpUWip )

as vy, Is a highest weight vector.
By the definition of ms we have smos™ € N® | and hence w(smas™t) €

N7i. Therefore using arguments similar to those used above we can factorize
w(smas™1) = mgmy, mg € Nig,.3,_1]» M7 € Ni, gp] and obtain that
—1
(wp—lvwz'pa'Sngpvwip) = (w(z1)w(smas )wp—lvwianﬁp (tp)wpvwf,p)
= (22m6m7wp_1vwip , X, (tp)wpvwip)

= (zeMmeWp— 1V, , X, (tp)wp’uwip ),
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where 22 = w(z1) € Z.
As we already showed in the previous proof,

t t
- P _ P
Xﬂp(tp)wpvwip—35pwp_1vw,ip+c wp_lvw,ip—cX_gpwp_lvwip—i—c Wy—1vy, , c€C,
» »

so the first term in the last sum has weight —83, + wp_1w;,, and the second one
Wp— 1wl~p .

The vector 22MEWp—1 Ve, is a linear combination of vectors of weights of the
form w,_1w;, + Zg;i cqBq + wo, where wy € b, ¢ € {0,1,2,...}. Since weight
spaces corresponding to different weights are orthogonal with respect to the contra-
variant bilinear non-degenerate form on Vwip the only nontrivial contributions to
the product (z2m6wp_1vwip , X, (tp)wpvwip) come from the products of vectors of
weights either —f, +wp_1w;, or wy_1w;, -

In the first case we must have wy,_jw;, + Zs;i cqBq+wo = —Bp+wp_1w;,, and

heince Zs;i cqBq+wo = —PFp. In pirticular, Ho(zz;icqﬁq—kwo) = f;;} cqho(By) =
—ho(Bp) which is impossible as —ho(8,) < 0 and c,ho(8,) > 0.
g;i CqBq + wo = wp_1w;, or
Zg;i cgBg +wo = 0. In partiiular, ho(zg;} cqBq + wo) = g;} cqgho(By) = 0
which forces ¢, = 0 for all ¢ as ho(8,) > 0 and ¢, € {0,1,2,...}, and hence wy =0
as well.

We conclude that the only nontrivial contributions to the product

In the second case we must have wy,_jw;, + >

(z2mewp—1vw,,, Xp, (tp)wpv, )

come from the products of vectors of weights w;,_jw;,. By the above considerations
only terms of the form Z2Wp—1Vy,, May give contributions of weight w,_jw;, in
the weight decomposition of the element 22MEWp—1V, , and this yields

(wp—lvwip » SGpWpluy,, ) = (ZQmGwP—lvwip ) Xﬁp (tp)w:"vwip )

t t

_ _ b -1

= (zzwp,lvwip,wp,lvwip)— (wp,lvwip,szs wp,lvwip).
Cp Cp

Therefore
(’wp,ﬂ)wip » 89pWpluw;,, )

71 *
(wp—1 UV, » 828 Wp— 1V, )

tp =c¢p

Similar arguments show that
(Wp—1vVw, 528  wy_1v,, ) = (Wp_1V, ,8GpWy—_1V0, )
p—1Yw;, 5 p—1Y%wi, ) — p—1Y%w;, gpWp—1 Wiy )

Combining the last two identities we obtain formula (2.20). O

Remark 2.1. Note that in the proof of [15, Prop. 6.2] it is shown that NZs~ !N
is a closed subvariety in G. Therefore for each p = 1,...,d the right-hand side of
(2.20) is a regular function on NZs~ !N as the composition of the regular function

n=Xg,(ta) - Xp,(t1) =t
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defined on N and of isomorphism (2.16) of varieties. Hence the denominator in
(2.20) must be canceled.

Observing that in the notation of the previous proposition for g = n='n,zs~n

we have gg11 = ngzs™! = ndﬂgn;jp n = ngy1 = Xg,(ta) - Xp, (t1) and that
the map (2.16) is an isomorphism of varieties, we infer the following proposition
from the previous statement.

Proposition 2.12. Let A,, p=1,...,d be the rational function on G defined by

(wp—lvwip , Sgwpvwip)

P )
(wp-— 1Vw;, » SWp—1Vu;, )

Ap(g) =c

and II,, the operator on the space of rational functions on G induced by conjugation
by the element exp(A, X3, ),

I, f(9) = f(exp(Ap(9) X, )g exp(=Ap(9)Xp,))- (2.21)

Then the composition
M=1I0---01Ily (2.22)

gives rise to a well-defined operator
M=I0---0llg:C[NZs *N] = C[NZs NV,

which s a projection operator onto the subspace (C[NZs_lN]N of N-invariant
reqular functions on NZs™'N.

3. The Poisson structure of q-W algebras

In this section we obtain two descriptions of the Poisson structure of the g-W
algebras. First following [11] we recall the definition of Poisson q-W algebras. We
shall need some related facts on Poisson—Lie groups and on the definition of the
Poisson structure of quasi-triangular Poisson—Lie groups and their dual groups
which can be found in [8], [9], [10].

Let s € W be an element of the Weyl group W of the pair (g,h), A} a system
of positive roots associated to s, and ' the orthogonal complement in §, with
respect to the Killing form, to the subspace of § fixed by the natural action of s
on . The restriction of the natural action of s on § to the subspace b’ has no fixed
points. Therefore one can define the Cayley transform ((1+ s)/(1 — s)) Py of the
restriction of s to ', where Py is the orthogonal projection operator onto ' in b,
with respect to the Killing form.

Let r € End g be the endomorphism defined by

1
r=P+—P,1+S

Py, 3.1
— b (3.1)
where Py, P_ and Py are the projection operators onto n%,n® and b’ in the direct

sum n
g=ni +bh' +b" +n,
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and h'* is the orthogonal complement to b’ in § with respect to the Killing form.
The endomorphism r satisfies the modified classical Yang-Baxter equation

[rX,7Y]—r([rX, Y]+ [X,7Y]) = - [X,Y], X, Yeg (3.2)
and this ensures that
[X,Y]*Z%([TX,Y]+[X7TY]), X, Yeg (3.3)

is a Lie bracket.

Identifying the dual space g* with g using the Killing form one can check that
this commutator is dual to a cocycle on g which makes (g, g*) a Lie bialgebra.
Note also that r is skew-symmetric with respect to the Killing form.

Let G be a connected semi-simple Poisson—Lie group with the tangent Lie
bialgebra (g, g*), G* the dual connected simply-connected Poisson—Lie group.

Define operators r+ € End g by

re =3 (r+id).

The classical Yang-Baxter equation implies that ry , regarded as a mapping
from g* into g, is a Lie algebra homomorphism. Moreover, r} = —r_,and ry—r_ =
id.

One can describe the dual group G* in terms of G as follows. Put 0 = g+ g
(direct sum of two copies). The mapping

0" =0 X o (Xy, X)), Xi o= X (3.4)

is a Lie algebra embedding. Thus we may identify g* with a Lie subalgebra in 2.
Naturally, embedding (3.4) gives rise to a Lie group embedding

G*—-GxG, L— (Ly,L_).

We shall identify G* with the image of this embedding in G x G.

Now we explicitly describe the Poisson structures on the Poisson—Lie group G
and on its dual group G*.

For every group A with Lie algebra a and any function ¢ € C*°(A) we define
left and right gradients Vi, V', which are C°°-functions on A with values in a*,
by the formulae

(vele) = () eleta)

J (3.5)
EV'p(@) = (=) plze®), z€A Eca
dt ) —o
Denote by (-,-) the Killing form on g. Then the left and the right gradients
of functions on G can be regarded as C°°-functions on G with values in g. They
satisfy the following relations

vty = (5) e

d

(3.6)
(X, V'e(g)) = () . e(ge'®), g€G, X €.

dt
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If K C G is a Lie subgroup, ¢ C g its Lie algebra and € C g the image of £ in
g* ~ g under the identification g ~ g* induced by the Killing form then the left
and the right gradients of functions on K can be regarded as C*°-functions on K
with values in £ C g.

The canonical Poisson bracket on the Poisson—Lie group G with the tangent
bialgebra (g, g*) has the form:

{o, 0} == L (rVp, Vi) — 1 (rV'p, V). (3.7)

The canonical Poisson bracket on the dual Poisson—Lie group G* can be de-
scribed in terms of the original group G and the classical r-matrix r.

We shall use gradients of a function ¢ € C*° (G*) with respect to the G* group
structure,

d 5 S
(X, Ve(Ly,L-)) = (ds) @(66X+L+7e X7L7)>
s=0

d

e I e RS A
s=0

Proposition 3.1 (cf.[9, §2], [10, §3]). Let (L4, L_)e€G*. Then for f,gc C>®(G*)
one has

{f.9}e (L+. L) = (Ad Ly — AdL_)V'f,Vg)

—(Vf,(AdLy —AdL_)V'g). (3.8)

Denote by G, the group G equipped with the following Poisson bracket

{p, 0}, = = (rVe, V) — (rV'o, V') + 2 (r_V'p, Vi) + 2 (r; Vi, V'), (3.9)

where all the gradients are taken with respect to the original group structure on G.
Then the map q : G* — G, defined by

oLy L) =L L7 (3.10)

is a Poisson mapping and the image of q is a dense open subset in G,.
There exists a unique left Poisson group action

GxG — G*’ (g, (L+’L—)) = go (L-i-aL—)v

i.e., the action map is Poisson assuming that G x G* is equipped with the product
Poisson structure, and if q : G* — G, is the map defined by formula (3.10) then

q(go(Ly,L_))=gL_L7'g".

Now we describe the Poisson structure of Poisson g-W-algebras. First restrict
the action of G on G, by conjugations to the subgroup N C G. Let s € G be a
representative of the element s € W. By Proposition 2.8 the quotient NZs~ 1 N/N
~ s~ 1ZN, 1 is a subspace of the quotient G, /N.

The following proposition summarizes the results of [11, Sect. 5].
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Proposition 3.2. Let G be a complex connected semi-simple algebraic group, g its
Lie algebra, b C g a Cartan subalgebra in g. Let s € W be an element of the Weyl
group of the pair (g,h), p the parabolic subalgebra associated to s, n the nilradical of
p, N C G the subgroup corresponding to n, r the classical r-matriz (3.1) on g. Equip
G with Poisson bracket (3.9) and denote the corresponding Poisson manifold by
G.. Restrict the conjugation action of G on G, to the subgroup N. Then C>=(G,)N
is a Poisson subalgebra in C*°(Gy) so that the Poisson structure on G, induces
a reduced Poisson structure on G./N, Hamiltonian vector fields of N-invariant
functions on G are tangent to NZs™'N and NyZs~' ~ NZs~*N/N is a smooth
Poisson submanifold of G./N.

Letm: NZs !N — NyZs ' ~ NZs~'N/N be the canonical projection. Then
for any (locally defined) smooth functions @, on NyZs~', and any (locally de-
fined) smooth extensions B, of pom,pom to G, we have

{p. ¥} om ={®,¥}c. 0i = (Po.,dp A d) o, (3.11)

where Pg, is the Poisson tensor of G., (-,-) is the canonical pairing and i :
NZs N — G, is the inclusion.

Note that for any X € g and any regular function ¢ on G the functions (Ve, X)
and (V', X) are regular. Therefore the space of regular functions on G is closed
with respect to Poisson bracket (3.9). Since by Proposition 2.8 the projection
NZs N — NyZs~! induced by the map G — G./N is a morphism of varieties,
Proposition 3.2 implies that the algebra of regular functions on NyZs~! is closed
under the reduced Poisson bracket defined on N,Zs~! in the previous theorem.
This Poisson algebra is called the Poisson g-W-algebra associated to the Weyl
group element s € W, or, more precisely, to the conjugacy class of s € W.

The reduced Poisson structure on the slice N, Zs~ ! is explicitly described in the
following proposition.

Proposition 3.3. Identify N,Zs~ with the subgroup N,Z C G using the right
translation by s. Let ng be the Lie algebra of Ng, 3 the Lie algebra of Z so that
as a linear space the Lie algebra of NsZ is ng + 3 C g. Then the reduced Poisson
bracket on N,Zs~ ' ~ N,Z is given by

{0, ¥} (m) = — (rVp, Vi)) — <rAd(sm_1)V<p,Ad(sm_1)Vw> (3.12)

+2(r_Ad(sm™ ")V, Vi) + 2 (r Vo, Add(sm™ ") Vi), '
where @, € C®(NsZ), m € NyZ, and the left gradients Vi,V are regarded as
C*°-functions on NgZ with values in ng +3 C g.

Proof. We shall use formula (3.11) to prove this proposition. Firstly we use the
right trivialization of the tangent and of the cotangent bundle to G and identify
them using the Killing form so that differentials of functions on G become their
left gradients which can be regarded as functions on G with values in g. Observing
that the right gradient of a function ¢ on G is related to its left gradient by

V'e(g) = Ad g~ (Ve(g))
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we can rewrite formula (3.9) for the Poisson bracket on G, in the form

{09} (9) = = (rVe, V) — (rAd(g™ ")V, Ad(g™) V) (3.13)
+2{r_Ad(g~ ")V, Vi) + 2 (r Ve, Ad(g~") Vi) . '

Now we calculate the reduced Poisson bracket of two functions ¢, 9 € C*°(N,;Z)
using formulas (3.11) and (3.13). We evaluate the left-hand side and the right-
hand side of (3.11) at point ms™!, m € N,Z. Observe that the reduced space
N,Z ~ N,Zs™! can be regarded as a submanifold of NZs !N; therefore the
right-hand side of (3.11) evaluated at point ms~! is equal to the reduced Poisson
bracket of ¢ and v at point m.

Now we justify that the right-hand side of (3.11) is equal to the right-hand side
of (3.12). Denote ¢* = pom * = 1) ow and let Pg,(dp) be the Hamiltonian
vector field corresponding to the function . Without loss of generality we can
assume that the extension @ is a (locally defined) N-invariant function on G..
Since by Proposition 3.2 Hamiltonian vector fields of N-invariant functions on G,
are tangent to NZs 1N the right-hand side of (3.11) can be rewritten as

(Pe.,dp Ady) oi(ms™") = (Pa.(dp),dd) (ms™") = (Pa. (dp), dp™) (ms™).

Recall that we use the right trivialization of the tangent bundle to G and
to NgZ and identify them with the corresponding cotangent bundles. The first
identification also induces identifications of the tangent and of the cotangent
bundles to NZs~!N with a subbundle of the tangent bundle to G, and of the
tangent bundle to N,Zs~! with a subbundle of the tangent bundle to NZs 1 N.
Since the function 1* is the N-invariant function on NZs~ !N the restriction of
which to Ny Zs~! ~ N,Z is equal to 1, under these identifications dy* at the point
ms~! € NyZs™1 ~ N,Z is equal to the differential of ¥, so dip*(ms~!) = dip(m) =
Vi(m) € ng +3 C g and Pg, (dp)(ms~?t) € g. This yields

(Pg.,dp Adip) o i(ms™1) = (Ps. (dp)(ms™1), dip(m)) ,

where the pairing in the right-hand side of the last formula is induced by the
Killing form.
Finally, by the skew-symmetry of the Poisson bracket

(Pa,,dp Ad) oi(ms™") = (Pa, (ms™"),dp(m) Adip(m)) , (3.14)

where dp(m),dy(m) € ng +3 C g, Pg.(ms™!) € g A g, and the pairing in the
right-hand side of the last formula is induced by the Killing form. Now recalling
that dp(m) = Ve(m),dy(m) = Vi(m) and using (3.13) in the right-hand side of
formula (3.14), we arrive at (3.12). O

From Propositions 2.12 and 3.2 we can immediately deduce another description
of the reduced Poisson bracket on N;Zs™ 1.
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Proposition 3.4. Assume that G is simply connected. Let 3,1 be two regular
functions on G, the restrictions of which to NyZs™' C G, are equal to p,,
respectively. Then the reduced Poisson bracket {p,v¥} of ¢ and v satisfies the
following identity

{p. v} (ms™!) = {lIg, W}, (ms™*),m € N, Z, (3.15)
where the action of Il on @ and v is defined by formulas (2.21) and (2.22).

Proof. Formula (3.15) is just formula (3.11) rewritten in terms of the operator II.
Indeed, by definition the operator II : C[NZs *N] — C[NZs !N]"V is induced
by the projection 7 : NZs !N — N,Zs~!'. Therefore the functions IIg, II+) are
locally smooth extensions of o7, 1 om to G,. It remains to apply formula (3.11)
to ¢ and ¢ and to these extensions. Note that the right-hand side of (3.11) only
depends on ¢ and v but not on the extensions. [J
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