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Abstract: Polyamines are essential growth factors that have a positive role in cancer cell growth. 

Their metabolic pathway and the diverse enzymes involved have been studied in depth in multiple 

organisms and cells. Polyamine transport also contributes to the intracellular polyamine content 

but this is less well-studied in mammalian cells. As the polyamine transporters could provide a 

means of selective drug delivery to cancer cells, a greater understanding of polyamine transport 

and its regulation is needed. In this study, transport of polyamines and polyamine content was 

measured and the effect of modulating each was determined in human colorectal cancer cells. The 

results provide evidence that upregulation of polyamine transport depends on polyamine 

depletion and on the rate of cell growth. Polyamine transport occurred in all colorectal cancer cell 

lines tested but to varying extents. The cell lines with the lowest basal uptake showed the greatest 

increase in response to polyamine depletion. Kinetic parameters for putrescine and spermidine 

suggest the existence of two separate transporters. Transport was shown to be a saturable but 

non-polarised process that can be regulated both positively and negatively. Using the polyamine 

transporter to deliver anticancer drugs more selectively is now a reality, and the ability to 

manipulate the polyamine transport process increases the possibility of using these transporters 

therapeutically. 
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1. Introduction 

Polyamines are small molecules found in all eukaryotic cells and are important in several 

crucial biological processes ranging from nucleic acid stabilisation to cell proliferation [1–4]. 

Highly proliferating tissue and cells, as found in cancer, require a constant provision of 

polyamines to support their continuous proliferation. Many types of human cancer have been 

shown to have intracellular polyamine contents 4- to 6-fold greater than the corresponding normal 

tissue [3]. 

Polyamine homeostasis is complex. Intracellular concentrations are determined by a 

combination of de novo synthesis and transport of polyamines into and out the cell with each part 

being regulated carefully to maintain optimum cell growth and/or survival. Transport of nutrients, 

precursors and xenobiotics is an essential biological process and can be an active or passive process. 

Active transport is mediated by carrier proteins, which are present, to various extents, on the surface 

of cells. It requires energy and can be modulated depending on the needs of the cell. Passive 

transport is generally slower and can occur without carrier molecules via pores in the membrane [5]. 

Polyamines can either enter or exit the cell in accordance with the needs of the cell. Since 

polyamines have net positive charge at physiological pH, a transport system is required in order to 
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take up exogenous polyamines and/or remove excess polyamines out of the cell [6]. While the 

reactions involved in the polyamine biosynthesis and catabolism have been described in depth, the 

mammalian polyamine transport system (PTS) remains less well-understood. 

Polyamines have been shown to be closely related to cancer for many years now. Cancer 

patients exhibit elevated concentrations of polyamines in body fluids, especially in their acetylated 

form [7–9]. This relationship between cancer and polyamines has opened the door for polyamines as 

cancer biomarkers but more likely as markers of response rather than of diagnosis [10]. Cancer cells 

also have upregulated ornithine decarboxylase (ODC) [11], which confers a higher capacity for 

polyamine synthesis to cope with the demand for continuous proliferation. 

Due to the link between polyamines and cancer cell growth, the polyamine metabolic pathway 

has been a target for anticancer strategies. One of the most iconic examples is that of 

-difluoromethylornithine (DFMO). DFMO is a suicidal inhibitor of ornithine decarboxylase, the 

first and rate limiting step in polyamine biosynthesis. Despite DFMO showing great success as an 

anticancer therapy in vitro, it failed when tested in vivo. The principal reason for this is that DFMO 

triggers upregulation of the transport of exogenous polyamines that come from either the diet 

and/or the microbiome. This uptake thus counteracts the polyamine depletion caused by DFMO. 

Although this was a disadvantage for DFMO as a monotherapy, it widens the possibility of 

using the polyamine transport as a means of delivering polyamine-conjugates or polyamine 

drug-like molecules to cells. In this study, the ability of the transport system to be regulated was 

investigated in order to better understand how this system could be used as a drug delivery system 

in the future. 

2. Materials and Methods 

2.1. Cell Culture 

Human colorectal cancer cells (ECACC) were grown in Dulbecco's modified Eagle's medium 

(DMEM) or minimum essential medium Eagle (EMEM) supplemented with 10% (v/v) foetal bovine 

serum under standard conditions (37 °C, 5% CO2). Cells were routinely sub-cultured every 4 days 

with change of medium every 48 h and were seeded at 2.4 × 104 cells/cm2 in 6-cm-diameter dishes for 

growth and polyamine content determination and in 24-well plates for uptake measurements. 

2.2. Extraction of Polyamine and Proteins 

Polyamine extraction was performed by resuspending the cell pellet in 0.2 M perchloric acid 

(PCA) and placing it on ice for 20 min to allow the extraction of acid-soluble content and protein 

precipitation to occur. After this time, tubes were centrifuged and the acid fraction was transferred to a 

clean reaction tube and stored at −20 °C until analysis. The remaining precipitate was dissolved in 0.3 

M NaOH and incubated overnight at 37 °C and finally used for quantification of the total protein 

content. 

2.3. Total Cellular Protein Determination 

Total cellular protein content was determined by a modified method from Lowry [12] using a 

96-well plate. A standard curve for protein was prepared in the range of 0 to 250 µg/ml from a 0.5 

mg/ml stock of Bovine Serum Albumin (BSA) in 0.3 M NaOH. Samples were exposed to basic solution 

containing Cu++ for 15 min prior to adding 0.13 M Folin–Ciocalteau reagent and incubating in the dark 

for 30 minutes and then analysed using a Tecan Sunrise colorimetric spectrophotometric (Tecan 

Group Ltd, Männedorf, Switzerland) plate reader at 690 nm. The total protein content was expressed 

in mg/culture. 

2.4. Quantification of Polyamines 

Samples and standards were treated for dansylation as described by Li et al. [13] in a method 

developed in our laboratory. In total, 100 µM 1, 7-diaminoheptane was added as internal standard to 
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each tube, plus 50 µl of 1 g/ml sodium carbonate and 500 µl of freshly prepared 10 mg/ml dansyl 

chloride in acetone. Tubes were left overnight at 37 °C. On the next day, 0.5 ml of toluene was added to 

extract the dansylated products. Organic phases were evaporated to dryness under a N2 flow, 

reconstituted in 200 µl methanol and vortex-mixed for 10 seconds. LC-MS  (Thermo Scientific, Hemel 

Hempstead, UK) analysis was performed and results were expressed in nmol/mg of protein. 

2.5. Polyamine Uptake 

Polyamine uptake was started by the addition of radiolabelled [3H] polyamines at different time 

points with a final concentration of 5.55 kBq/well. Cells were harvested, and the content of the well 

was transferred to a reaction tube and the wells were rinsed with 500 µl of ice-cold phosphate buffered 

saline (PBS), which was added to the tubes as well. 

All the samples were centrifuged at 3,500 gav for 5 min and the supernatant was discarded. Cell 

pellets were rinsed with 500 µl of ice-cold PBS and centrifuged again. Supernatant was discarded and 

the pellets were resuspended in 300 µl of 0.2 M PCA and placed on ice for 20 minutes. After this time, 

tubes were centrifuged at 15,000 gav for 5 min and the acid-soluble fraction was completely transferred 

to a clean reaction tube. The remaining pellet was dissolved in 300 µl of 0.3 M NaOH and the tubes 

were left at 37 °C overnight before determination of total protein content. 

Acid fractions in 50-µl aliquots were transferred to scintillation tubes containing 2 ml of 

scintillation cocktail liquid and analysed. The specific activity of each radiolabelled polyamine was 

used to convert dpm to pmol, and the results were expressed in pmol of polyamine/mg of protein. 

2.6. Transport Studies 

In order to study the polarisation of transport, transwells were used. Cells were seeded in 12-well 

polycarbonate inserts at 10 × 104 cell/cm² with 0.5 ml of medium in the insert and 1.5 ml in the well. 

Medium was changed in the outer chamber every 48 h and transepithelial electrical resistance (TEER) 

was monitored with a Millicell® ERS-2 Voltohmmeter (Millipore Corporation, Billerica, MA, USA). 

The cell monolayer was considered complete when the reading of TEER was 750–850 Ω for at least two 

measurements at different days. After this time (14–16 days), radiolabelled polyamine was added to 

either the inner or outer chamber and then monitored at regular intervals by taking 5 µl from each 

chamber to a scintillation vial with 2.5 ml of scintillation fluid. At the end of the time course, cells were 

carefully scraped and all the content of the insert was transferred to a reaction tube and the inserts 

were rinsed with 500 µl of ice-cold PBS, which was added to the tubes. 

All the samples were processed and analysed as per polyamine uptake protocol described above. 

Polycarbonate membranes from the inserts were cut and placed into scintillation vials as well to verify 

for non-specific binding. 

2.7. Statistical Methods 

Result values were shown as the mean of all replicate values ± standard error of the mean (SEM) 

in which the number of independent experiments was equal to or more than 3. 

Statistical analysis was performed using GraphPad Software Prism version 8 (GraphPad, San 

Diego, CA, USA). Results were analysed by one-way analysis of variance (ANOVA) with Dunett’s 

post-tests. A p value less than 0.05 was considered as statistically significant. 

3. Results 

It is known that treatment with DFMO can upregulate polyamine transport in mammalian cells 

but the time needed to achieve this and the temporal relationship to polyamine depletion is not clear. 

In SW480 human colorectal cancer cells, the uptake of putrescine and spermidine was measured in 

exponentially growing cells and was shown to be time-dependent. The uptake of spermidine was 

much greater (11-fold) than that of putrescine (Figure 1: Control). In order to investigate the time 

needed for this increase, we exposed cells for 3–24 h to DFMO before measuring uptake (Figure 1). 

Previous studies have focused on longer-term (24 h plus) exposure to DFMO to investigate the effect 
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on uptake. In the case of putrescine, as little as 3 h exposure resulted in an increase in uptake, while for 

spermidine, 18 h treatment was required before the increase was observed (Figure 1). For both 

putrescine and spermidine, polyamine uptake was saturated by 3–4 h. The maximum increase of 

uptake was approximately 6-fold for putrescine and 2-fold for spermidine (Figure 1). 
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Figure 1. Uptake of putrescine (a) and spermidine (b) by SW480 cells. Cells were seeded at 2.4 × 104 

cell/cm² on 24-well plates and grown for 48 h. Cells were pre-treated with DFMO (5 mM) for varying 

lengths of time (0–24 h). To measure uptake after exposure to DFMO, cells were incubated with 

radiolabelled polyamine at each DFMO exposure time for up to 4 h. The final concentration of 

radioactivity was 5.55 kBq/well (2.4 nM for putrescine or 5.6 nM for spermidine). Uptake was 

measured by liquid scintillation spectrometry. Values are mean ± SEM when n ≥ 3 or range when n < 

3. Putrescine: (control and 24 h n = 6; 6 and 12 h n = 2; 3 h n = 1) with four replicates per experiment. 

Spermidine: (control and 24 h n = 3; 3 and 6 h n = 2; 12 and 18 h n = 1) with two replicates per 

experiment. For 24 h, P: ****<0.0001, compared to the respective control. 

The hypothesis is that increased uptake occurs in response to decreased intracellular polyamine 

content. This was tested using the timed exposure experiments where intracellular concentrations of 

each polyamine were measured at each time. Untreated cells showed little changes in their total 

polyamine content (Table 1) over 24 h, while DFMO-treated cells showed a time-dependent decrease 

in total polyamine content losing approximately 40% of their total polyamine content in 24 h (Table 1). 

Analysis of individual polyamine content showed that putrescine was depleted quickly being below 

the limit of detection by 3 h, whereas spermidine decreased more slowly reaching the limit of detection 

by 24 h (Figure 2). The decrease in the individual polyamine concentrations in the cells shows a clear 

alignment with the increase in uptake. 

Table 1. The effect of DFMO on total polyamine content. 

Time (h) 
Untreated DFMO 

 
Total polyamine content (nmol/mg protein) 

0 19.40 ± 1.38 19.40 ± 1.38 ns 

3 23.38 ± 2.66 19.26 ± 1.70 ns 

6 22.05 ± 2.25 18.39 ± 2.02 ns 

12 19.89 ± 1.53 12.98 ± 2.05 * 

24 20.53 ± 2.55 11.88 ± 0.67 ** 

SW480 cells were seeded at 2.4 × 104 cell/cm² in duplicate on 6-cm-diameter dishes and grown for 48 

h. Where indicated, cells were pre-treated with DFMO (5 mM) for 24 h. Subsequently, two dishes 

were harvested and this time was set as t = 0 h. All plates were harvested at the time indicated and 

polyamine content was determined by LC-MS. Values are mean ± SEM (n = 3) with duplicates for 

each experiment. P: *<0.05, **<0.01, ns = not significant, compared to the respective untreated 

controls. (One measurement was performed at 18 h with values of 18.33 and 13.56 nmol/mg protein 

for untreated and DFMO, respectively.) 
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Figure 2. Individual polyamine content in untreated (a) and DFMO-treated cells (b). SW480 cells 

were seeded at 2.4 × 104 cell/cm² in duplicate on 6-cm-diameter dishes and grown for 48 h. Where 

indicated, cells were pre-treated with DFMO (5 mM) for 24 h. Subsequently, two dishes were 

harvested and this time was set as t = 0 h. All plates were harvested at the time indicated and 

polyamine content was determined by LC-MS . Values are mean ± SEM (n = 3) with duplicates for 

each experiment. P: *<0.05, **<0.01, ***<0.001, ****<0.0001, ns = not significant; compared to the 

respective untreated control. 

SW480 are human colorectal adenocarcinoma cells, and it was important to determine if these 

were typical of cells in terms of polyamine uptake. Four other human cancer cell lines and one 

normal cell line were tested for polyamine uptake and for their response to DFMO (Table 2). A range 

of uptake values were noted with Caco-2 having the greatest basal uptake and DLD-1 cells the least 

at 13.9 and 0.4 pmol/mg protein, respectively. DFMO increased the polyamine uptake in all cell lines 

with the cell line with the lowest basal uptake in untreated cells exhibiting the greatest increase in 

response to DFMO (Table 2). 

Table 2. The effect of inhibition of PA biosynthesis on putrescine uptake in a range of colorectal 

cancer and normal cells. 

Cell Line 
Untreated DFMO 

Fold Increase 
Putrescine uptake (pmol/mg protein) 

DLD-1 0.35 ± 0.01 14.09 ± 0.40 40.2 

WiDr 2.45 ± 0.10 21.30 ± 0.42 8.7 

SW480 3.47 ± 0.13 18.44 ± 0.94 5.3 

CCD841CoN 6.09 ± 0.50 23.98 ± 2.89 3.9 

HCT-116 8.68 ± 0.35 26.96 ± 3.08 3.1 

Caco-2 13.88 ± 0.63 20.49 ± 0.74 1.5 

CCD841CoN are normal human colonocytes. All other cell lines are human colorectal cancer cells. 

Cells were seeded at 2.4 × 104 cell/cm² on 24-well plates and grown for 48 h. Where indicated, cells 

were pre-treated with DFMO (5 mM) for 24 h. Subsequently, cells were incubated with radiolabelled 

putrescine (2.4 nM) for 4 h at a final concentration of radioactivity of 5.55 kBq/well. Uptake was 

measured by liquid scintillation spectrometry. Values are mean ± SEM when n ≥ 3 or range when n < 

3. (n = 3 for SW480 and Caco-2; n=2 for the remaining) with two replicates per experiment. 

Kinetic analysis using Michaelis–Menten methodology showed that both putrescine and 

spermidine exhibited a two-component uptake system: a classic saturable one and another 

non-saturable component that depended only on the concentration of the substrate. Kinetic 

parameters for putrescine and spermidine are shown in Table 3. 

In both cases, the induced uptake showed a higher Vmax compared to the control. However, the 

affinity for putrescine was marginally higher in the induced uptake, but the affinity for spermidine 

was similar for both normal and induced uptake. 
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Table 3. Kinetic parameters of the uptake transporter. 

 Putrescine Spermidine 

 Control DFMO  Control DFMO  

Km (µM) 3.68 ± 0.49 1.92 ± 0.11 * 0.35 ± 0.04 0.32 ± 0.03 ns 

Vmax  

(nmol/h/mg 

protein) 

2.60 ± 0.10 9.93 ± 0.14 **** 2.12 ± 0.05 5.88 ± 0.10 **** 

SW480 cells were seeded at 2.4 × 104 cell/cm² on 24-well plates and grown for 48 h. Where indicated, 

cells were pre-treated with DFMO (5 mM) for 24 h. After the growth time, different concentrations of 

radiolabelled substrate with a final radioactivity of 5.55 kBq/well were added and incubated for 30 

min. Uptake was measured by liquid scintillation spectrometry. All results were plotted using 

Michaelis–Menten analyses and the values shown were generated by regression analysis using 

Graphpad Prism 7 software. The values are mean ± SEM (n = 4) with two replicates per experiment. 

P: *<0.05, ****<0.0001, ns = not significant; compared to the respective controls. 

A number of inhibitors of polyamine uptake have been synthesised and two of these were 

investigated in this study, AMXT 1505 and 2030 (Figure 3). These novel competitive inhibitors of 

uptake were both effective in preventing both basal and DFMO-increased uptake. The extent of 

inhibition was shown to be slightly higher for the increased uptake in all cases (Table 4). 

 

 

Figure 3. Molecular structure of the polyamine transport inhibitors AMXT 1505 and 2030 [14]. 

Table 4. The effect of AMXT compounds on uptake. 

AMXT Putrescine Spermidine 

 Control DFMO  Control DFMO  

 Inhibition of uptake (% relative to untreated value) 

1505       

10 µM 59.7 (19.4) 78.4 (6.4)  27.3 ± 4.6 50.7 ± 1.4  

25 µM 76.2 (2.6) 85.1 (6.6)  44.9 ± 2.5 60.9 ± 1.3  

2030       

10 µM 68.8 (16.3) 82.7 (5.6)  39.6 ± 2.8 55.1 ± 1.7  

25 µM 80.6 (9.2) 87.9 (7.1)  54.9 ± 2.5 63.3 ± 1.8  

SW480 cells were seeded at 2.4 × 104 cell/cm² on 24-well plates and grown for 48 h. Where indicated, 

cells were pre-treated with DFMO (5 mM) for 24 h. After the growth time, radiolabelled putrescine or 

spermidine (10 µM) with a final radioactivity of 5.55 kBq/well and different concentrations of the 

inhibitors were added and incubated for one hour. Uptake was measured by liquid scintillation 

spectrometry. Results were expressed as % inhibition compared to untreated samples. Values are 

mean with range in brackets (n = 2) for putrescine and mean ± SEM (n = 3) for spermidine with two 

replicates per experiment. 
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The transwell system provides a means to examine the polarity of uptake. For these studies, 

Caco-2 cells were used as these cells form tight junctions and non-permeable monolayers. The integrity 

of the monolayers was determined by measuring their transepithelial electrical resistance (TEER), 

which was maximal at 14–16 days and had a value of 750–850 ohms. 

Putrescine uptake occurred from both sides of the cell monolayer. Apical uptake showed a linear 

trend while the basolateral presented a saturable pattern. When the polyamine uptake transport 

inhibitor, AMXT 2030, was added along with the radiolabel, uptake was reduced from both apical and 

basolateral sides almost completely (Figure 4(a) and (b)). Spermidine uptake exhibited similar patterns 

with uptake on both sides, although uptake on the apical side was much faster than that on the 

basolateral side. AMXT 2030 again inhibited uptake but to a lesser extent than for putrescine (Figure 4 

(c) and (d)). 
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Figure 4. Putrescine (a,b) and spermidine (c,d) uptake from both sides of a Caco-2 cell monolayer. 

Cells were seeded at 10.0 × 104 cell/cm2 in polycarbonate membrane transwell inserts in 12-well plates 

and grown for 14–16 days until the transepithelial electrical resistance (TEER) reading was 

consistently between 750–850 ohms. At this time, radiolabelled polyamine at a final radioactivity of 

5.00 kBq/well (2.2 nM for putrescine or 5.0 nM for spermidine) was added with or without AMXT 

2030 (10:1 ratio, 10.13 µM for putrescine, 23.5 µM for spermidine) into either the apical or basolateral 

chamber. This time was set as t = 0 h. Medium in 5 µl aliquots from each chamber were taken to 

measure total radioactivity by liquid scintillation spectrometry at regular intervals. Values are mean 

± SEM when n ≥ 3 or range when n < 3. (Controls n = 3, AMXT n = 2). 

In order to determine the relationship among intracellular polyamine content, the amount of AZ 

protein present and the degree of uptake, SW480 cells were grown for varying lengths of time before 

being treated with DFMO for 24 h. The aim was to determine the effect of growth status (exponential 

or high density) on polyamine uptake. 

In exponentially growing cells, uptake decreased gradually from 3.4 to around 0.5 pmol/mg 

protein at late log growth (96–120 h). DFMO-treated cells decreased from 12 pmol/mg protein until 

reaching similar uptake values as control at 144 and 168 h (Figure 5). This indicates that uptake is 

linked to cell growth and when growth is low (late times in culture) so is uptake regardless of DFMO 

stimulation. 

Total polyamine content showed a similar behaviour in control cells with a decrease up to 96 h 

and then a plateau, while polyamine content of DFMO-treated cells remained consistent throughout 

the duration of the experiment but below the values of control cells. 
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Figure 5. Uptake of putrescine (a) and total intracellular polyamine content (b) of SW480 cells. Cells 

were seeded at 2.4 × 104 cell/cm² on 24-well plates for uptake or 6-cm dishes for polyamine content 

analysis and grown for different times. Where indicated, cells were pre-treated with DFMO (5 mM) 

for 24 h. After the indicated growth time, 6-cm dishes were harvested for polyamine content analysis 

by LC-MS, and radiolabelled putrescine (2.4 nM) with a final radioactivity of 5.55 kBq/well was 

added to the 24-well plates and cells were incubated for one hour. Uptake was measured by liquid 

scintillation spectrometry Values are mean with range (n = 2) with duplicates for each experiment. 

4. Discussion 

The aim of this study was to understand better the regulation of the polyamine transport 

system in colorectal cancer cells with the ultimate aim to harness the transporter as potential drug 

delivery system for novel anticancer agents. 

It has been known for several years that DFMO enhances the uptake of polyamines [15,16], but 

this effect and its proportionality was never fully characterised. Although it was previously 

suggested that prior to stimulation of uptake, loss of polyamines had to occur, no study had 

demonstrated this clearly [17]. Our interest is in understanding the regulation of polyamine 

transport in order to use it therapeutically, thus it was important to determine how DFMO affected 

the system in greater detail. This study has shown that polyamine depletion and the increase of 

uptake occur in parallel. 

The nature of this link appears to be dependent on the polyamines, as putrescine uptake was 

enhanced in a time-dependent manner from 3h onwards—the time sufficient to deplete all 

putrescine from the cell. Similarly, spermidine uptake only increased when spermidine was 

depleted, so after approximately 18 h. It is interesting that despite the decrease of total polyamine 

content by 33% after 12 h of DFMO exposure, this was not enough to enhance spermidine uptake. 

Rather a significant decrease (74%) specifically in the spermidine pool was required to increase its 

uptake. 

Intracellular spermine content was maintained even when the cells were treated with DFMO, 

an observation that has been made numerous times before. This emphasises the importance of 

spermine for cell survival and it supports spermine interacting with nucleic acids as stabiliser [18]. 

An interesting question then is, “Can DFMO induce an increase in spermine uptake when this 

polyamine’s intracellular pool remained unchanged?” Unfortunately, it was not possible to 

investigate spermine uptake in this study. 

From our determination of the physical constants of the transporter(s), it appears to be that the 

observed enhancement in uptake is due to increased velocity (Vmax) in the transport process for both 

polyamines tested. While the difference in Km between putrescine and spermidine can exist in a 

single transporter, the differences in normal/induced uptake indicate different characteristics of the 

carrier transporting each of the polyamines, suggesting different carriers. The existence of at least 

two transporters has been proposed by other groups as well [19–21] 

There is a debate whether the inward and outward transport of polyamines are mediated by 

similar or different carriers. Wallace et al. suggest the existence of separate transporters for uptake 

and export of polyamines after showing effects on the former but not on the later using competitive 
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polyamine-uptake inhibitors on human cancer cells [22]. On the other hand, Sakata’s et al. 

conclusions on antizyme (AZ) regulation of the transporter(s) favour the utilisation of the same 

carrier for uptake and export [23,24]. 

Trying to contribute to this debate, we also investigated the sidedness of polyamine transport. 

Uptake showed little preference for apical or basolateral membranes occurring on both sides with, 

perhaps, a slight favouring of the apical side for spermidine uptake. The AMXT agents were 

designed to inhibit spermidine transport; however, in our model they were effective in inhibiting 

uptake of both putrescine and spermidine with a greater effect on putrescine uptake. As AMXT 2030 

did not show significant inhibition in any of the cases when export of polyamines was observed 

(data not shown), this may suggest that the uptake and export processes are catalysed by different 

carriers. 

With regard to the link between uptake and intracellular polyamine content, although it was true 

that for an increased uptake a decrease in polyamine content was necessary (as observed in previous 

experiments), at low growth rates (late times in culture) there was a decreased polyamine content but 

no increase in uptake. This was the case even in the presence of DFMO suggesting growth rate also 

regulates polyamine uptake. 

Thus, in general, the trigger for an increased uptake of polyamines is a decrease in content, but 

the extent of this increase will be ruled by the growth status of the cell population, as well as the 

degree of polyamine depletion. 

5. Conclusions 

Polyamine transport occurs in all human colorectal cancer cells tested and the rate of uptake is 

enhanced in response to polyamine depletion. Uptake and depletion are temporally linked; 

however, growth status is a key regulator of uptake. Polyamine transport across different cell lines 

showed a pattern where the lowest uptake in the basal state corresponded to the greatest increase 

when uptake is upregulated via polyamine depletion but with an apparent maximum uptake. 

Upregulation of the uptake via depletion of polyamines increased affinity of the transporter for 

putrescine, but not for spermidine, which instead increased its velocity. There was an order of 

magnitude of difference in affinity for the transporter between putrescine and spermidine. 

Transport was inhibitable but did not show polarity with putrescine and spermidine being taken up 

on both apical and basolateral membranes. 
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