1

Supplementary Material

2 Supplementary Analysis: Models S1

3 For comparability with the 200 s long fNIRS measurements during metronomic breathing, the main 4 analyses included also only the first 200 s of the 15 min resting state measurements. To assure the 5 time-invariance of the resting-state connectivity (across the overall 15 min measurement) we 6 performed a control analysis of four consecutive, 200 s long segments of the resting state data and 7 fitted a linear mixed model with the fixed effects structure comprising the 3-way interaction between 8 direction, time window and hemisphere (including all main effects and lower-order interactions, 9 Supplementary Table S3). Identical to all other mixed models in the present study, the random effects 10 were specified with a random slope allowing for varying effects of direction for each pair of 11 homologues connections and a random intercept for participant (Supplementary Table S2). The model 12 yielded two significant effects: a main effect for *direction* (F(1,12) = 12.9, p = .004) and an interaction between *direction* and *hemisphere* (F(1,2460) = 4.9, p = .027). Predicted marginal means and statistics 13 14 for all fixed effects are provided in Supplementary Table S1 and S3, respectively. As the factor time 15 window did not exert any significant main or interaction effect, the present results hence do not depend 16 on the chosen segment of the resting state measurements.

17 Supplementary Analysis: Models S2-S5

18 FNIRS measurements are prone to motion-induced artifacts that can bias estimates of functional 19 connectivity and applying an appropriate correction method is strongly advised (Satterthwaite et al. 20 2012; Santosa et al. 2017). However, the correlation based signal improvement (CBSI) method, used 21 in the present analyses to remove motion artifacts, is based on assumptions that are not always met 22 (Cui et al. 2010) and to the best of our knowledge, a systematic investigation of the impact of the 23 CBSI method on Granger causality inference has not been published yet. We therefore complemented the main analyses in Model 1 (DC estimates without covariate) and Model 2 (PDC estimates including 24 25 aBP as a covariate) by estimating DC and PDC from the uncorrected data of deoxygenated (Models S2

Supplementary Material

Schumacher et al.

[DC] and S4 [PDC]) and oxygenated (Models S3 [DC] and S5 [PDC]) hemoglobin concentration changes. Estimates for significant effects and statistics for random and fixed effects are summarized in Supplementary Table S1, S2 and S3, respectively. Bar graphs in Supplementary Figure S1 (Model S2 and S3) and Figure S2 (Model S4 and S5) show the connectivity estimates analogue to Figure 3 (Model 1) and Figure 4 (Model 2) in the main text, respectively.

31 Supplementary Model S2 analyzed the DC estimated from the deoxygenated hemoglobin (dxyHb) data and yielded a significant main effect for *direction* (F(1,12) = 11.1, p = .006) and for *condition* 32 (F(1,1223) = 28.6, p < .0001). Model S3 analyzed the oxygenated hemoglobin (oxyHb) data and 33 yielded a main effect for *condition* (F(1,1212) = 76.0, p < .0001) only. Neither the interaction between 34 35 direction and hemisphere, nor the interaction between direction, condition and hemisphere (that were 36 significant in Model 1 using the CBSI data) were significant for the data not corrected for motion 37 artifacts. However, the overall pattern of connectivity estimated from the dxyHb data was highly 38 similar to those estimated from the CBSI data (Figure S1), while the pattern for the oxyHb data 39 revealed an obvious deviation when compared to the CBSI data. Importantly, this deviation was 40 markedly reduced for the PDC estimates that were corrected for influences by systemic aBP 41 fluctuations, for both the dxyHb and the oxyHb data: Supplementary Model S4 analyzed the PDC 42 (corrected for aPB influences) estimated from the dxyHb data and revealed a significant main effect for *direction* (F(1,12) = 11.6, p = .005); Model S5 analyzed the PDC estimated from the oxyHb data 43 44 and revealed a significant main effect for *direction* (F(1,12) = 13.7, p = .003) and for the interaction between *direction* and *hemisphere* (F(1,1212) = 8.4, p = .004). Thus, similar to the main analyses of 45 46 the CBSI data, correcting the connectivity for influences by aBP fluctuations removed the effects of 47 condition in the dxyHb and the oxyHb data; at the same time the difference between healthy and affected hemispheres resembled the results from the CBSI data. 48

The deviating pattern in the DC values estimated from the oxyHb data is most likely due to the fact that the oxyHb signal contains more physiological noise than the dxyHb signal (Obrig et al. 2000; Zhang et al. 2009; Kirilina et al. 2012; Sutoko et al. 2019) and the observation that correcting for aBP influences brought the results from the dxyHb, oxyHb and the CBSI data into line, corroborates our

- 53 finding that aBP-PDC effectively controls for bias of the functional connectivity estimate induced by
- 54 physiological noise.

55 Supplementary Figure S1

56 Supplementary Figure S1: Comparison of DC estimates without applying an artifact correction to the DC derived

57 from the data preprocessed using the correlation based signal improvement (CBSI). The connectivity estimated

58 from the deoxygenated hemoglobin signal (A; Model S2) was similar to the connectivity estimated from the

59 artifact corrected signal (C; Model 1), while the pattern of DC estimates derived from the oxygenated

60 hemoglobin data (B; Model S3) markedly deviated from those derived from the CBSI data.

61 Supplementary Figure S2

Supplementary Figure S2: Comparison of PDC estimates corrected for aBP fluctuations with and without applying artifact correction (CBSI) during preprocessing. The pattern of PDC estimates were similar for the deoxygenated (A; Model S4), oxygenated (B; Model S5) and CBSI (C, Model 2) data suggesting that the deviating results for the oxyHb-derived DC estimates were due to the higher susceptibility of the oxyHb measurement to physiological noise (Obrig et al. 2000; Zhang et al. 2009; Kirilina et al. 2012; Sutoko et al. 2019) and corroborating our finding, that including the aBP signal in PDC estimation effectively controlled for bias induced by physiological noise.

69 Supplementary Analysis: Model S6

70 In order to explicitly test the effect of correcting the DC connectivity estimates by including the aBP 71 time series in the VAR model, we tested the factors direction, condition, and VAR model type (with and without aBP-correction) and all resulting two- and three-way interactions as fixed effects terms in 72 73 a linear mixed model (Model S6; with the same random effects structure as in Model 1 and 2; see 74 Supplementary Table S3 for an overview of all fixed effects). This model considered only the healthy 75 hemisphere, because the difference between conditions (resting state vs. breathing) in the uncorrected 76 data was not present in the affected hemisphere. While there was a marked difference between 77 conditions in the uncorrected data (Fig. 3, healthy hemisphere), directed connectivity was almost Schumacher et al.

78 identical across conditions in the connectivity estimates corrected for aBP oscillations (Fig. 4, healthy hemisphere); the respective three-way interaction between direction, condition and VAR model type 79 80 failed to reach significance, though (F(1,1212) = 3.1, p = .077). Similarly, the significant interaction between condition and VAR model type (F(1,1212) = 13.6, p = .0002) and the respective post-hoc 81 82 comparisons demonstrated, that the increase in overall connectivity strength induced by metronomic breathing was absent after intra-individually adjusting for aBP oscillations. Accordingly, the main 83 84 effect for VAR model type showed that connectivity was attenuated by including aBP in the VAR model (F(1,1212) = 56.2, p < .0001). Main effects for *direction* (F(1,12) = 36.8, p < .0001) and 85 *condition* (F(1,1212) = 28.0, p < .0001) again showed that connectivity in rostro-caudal direction and 86 87 during metronomic breathing was stronger than in caudo-rostral direction and during resting-state, 88 respectively. No further effects were significant (all p > .206).

89 Supplementary Analysis: Model S7

90 For the sake of completeness, we also fitted this model to the data of the affected hemisphere (Model 91 S7; see Supplementary Table S3 for an overview of all fixed effects). As indicated by Figures 3 and 4 92 (affected hemisphere), the three-way interaction between *direction*, condition and VAR model type was 93 not significant (F(1,1223) = 0.01, p = .914), i.e. correcting for aBP oscillations had no effect on the 94 condition independent rostro-caudal gradient in the affected hemisphere. Similar as in the healthy 95 hemisphere, the significant interaction between *condition* and *VAR model type* (F(1,1223) = 14.4, p = .0002) revealed that the increase in overall connectivity strength induced by metronomic breathing 96 97 disappeared after intra-individually adjusting for aBP oscillations. Again, the main effect for VAR 98 *model type* showed that connectivity was attenuated by including aBP in the VAR model (F(1,1223) =99 83.6, p < .0001). Main effects for direction (F(1,12) = 6.1, p = .029) and condition (F(1,1223) = 14.3, p = .0002) again showed that connectivity in rostro-caudal direction and during metronomic breathing 100 101 was stronger than in caudo-rostral direction and during resting-state, respectively. No further effects 102 were significant (all p > .186).

104 Supplementary Table S1: Predicted marginal means for significant effects

$\begin{array}{c c} \mbox{Model 1} \\ \mbox{DC LMM} \\ (Figure 3) \end{array} \qquad \begin{array}{c} \mbox{direction} & \frac{\text{rost.} \rightarrow \text{caud.}}{\text{caud.} \rightarrow \text{rost.}} & \frac{.53 \ [.03] & .47}{.32} \\ \hline & 37 \ [.02] & .32 \\ \hline & .39 \ [.02] & .36 \\ \hline & .50 \ [.02] & .47 \\ \hline & .50 \ [.03] & .57 \\ \hline & .57 \ \hline & .54 \ [.03] & .57 \\ \hline & .57 \ \hline & .5$	*
$\begin{array}{c} \mbox{Model 1}\\ \mbox{Model 1}\\ \mbox{DC LMM}\\ \mbox{(Figure 3)} \end{array} \qquad \qquad \begin{array}{c} \begin{tabular}{cllllllllllllllllllllllllllllllllllll$.59
$\begin{array}{c} \mbox{Model 1} \\ \mbox{DC LMM} \\ (Figure 3) \end{array} \qquad $.42
$\begin{array}{c} \text{Model 1} \\ \text{DC LMM} \\ (Figure 3) \end{array} \qquad \qquad \begin{array}{c} \text{iseathing} & & & & & & & & & & & & & & & & & & &$.43
Model 1 DC LMM (Figure 3)rost. \rightarrow caud.restinghealthy.48 [.03].41 affecteddirection × condition × hemisphererost. \rightarrow caud. $healthy$.64 [.03].57 affected $extreme and the misphererestinghealthy.64 [.03].47totalextreme and the misphererestinghealthy.30 [.03].25affectedhealthy.30 [.03].27totalhealthy.39 [.03].33$.54
Model 1 DC LMM (Figure 3)rost. \rightarrow caud.restingaffected.46 [.03].39direction × condition × hemispheredirection × condition × hemisphererestinghealthy.64 [.03].57feathing affected.54 [.03].47restinghealthy.30 [.03].25affected.33 [.03].27healthy.39 [.03].33	.55
$\begin{array}{c} \text{(Figure 3)} \\ \begin{array}{c} \text{(Figure 3)} \\ \text{direction} \times \\ \text{hemisphere} \end{array} \xrightarrow{\text{rost.} \rightarrow \text{caud.}} \\ \begin{array}{c} \text{breathing} \end{array} \xrightarrow{\text{healthy}} & \underline{\text{.64 [.03]}} & \underline{\text{.57}} \\ \underline{\text{affected}} & \underline{\text{.54 [.03]}} & \underline{\text{.47}} \\ \hline \\ \text{caud.} \rightarrow \text{rost.} \end{array} \xrightarrow{\text{resting}} & \underline{\text{healthy}} & \underline{\text{.30 [.03]}} & \underline{\text{.25}} \\ \underline{\text{affected}} & \underline{\text{.33 [.03]}} & \underline{\text{.27}} \\ \hline \\ \underline{\text{hreathing}} & \underline{\text{healthy}} & \underline{\text{.39 [.03]}} & \underline{\text{.33}} \end{array}$.53
$\frac{\text{direction} \times \text{condition} \times \text{condition} \times \text{hemisphere}}{\text{caud.} \rightarrow \text{rost.}} \frac{\frac{\text{breathing}}{\text{affected}} - \frac{1}{33} \frac{1}{103} \frac{1}{103}$.71
hemisphere caud. \rightarrow rost. $\frac{\text{resting}}{\text{healthy}} = \frac{\text{healthy}}{\text{affected}} = \frac{.30 [.03]}{.25}$ $\frac{.25}{.27}$ $\frac{.27}{.27}$ $\frac{.27}{.27}$.61
caud. \rightarrow rost. $\frac{\text{resting}}{\text{affected}} = \frac{1.33 [.03]}{.33} = .27$ $\frac{1.33}{.33} = \frac{1.33}{.33}$.36
$\frac{\text{healthy}}{\text{healthy}} \frac{\text{healthy}}{.39[.03]} \frac{.33}{.33}$.39
breathing	.44
affected .45 [.03] .39	.51
rost.→caud42 [.03] .36	.47
direction $caud. \rightarrow rost.$.26 [.02] .22	.30
Model 2	.39
PDC LMM hemisphere affected .33 [.02] .29	.36
(aBP corrected healthy .45 [.03] .39	.51
Figure 4) direction × rost. \rightarrow caud. affected .38 [.03] .32	.44
hemisphere healthy .25 [.02] .21	.30
caud. \rightarrow rost. affected .27 [.02] .23	.32
direction rost.→caud53 [.03] .46	.59
caud.→rost37 [.02] .32	.42
condition resting .40 [.02] .37	.43
Model 4 breathing .50 [.02] .46	.53
DC LMM with fNIRS PSD covariate .005 [.002] .001	.009
(Figure 7)	.020
direction \times rost. \rightarrow caud. affected .002 [.003]005	.009
hemisphere \sim healthy \sim 002 [.004] \sim 009	.006
affected .007 [.003] .001	.014
rost.→caud48 [.03] .42	.55
$\frac{\text{direction}}{\text{caud.} \rightarrow \text{rost.}} \qquad .32 [.02] \qquad .27$.37
DC LMM	.55
(resting state time direction \times rost. \rightarrow caud. affected .47 [.03] .41	.54
windows) hemisphere healthy .31 [.02] .26	.36
caud. \rightarrow rost. affected .33 [.02] .28	.38
rost.→caud48 [.03] .42	.54
Model S2directioncaud. \rightarrow rost35 [.02].31	.39
dxyHb: Figure S1) resting .38 [.02] .34	.41
breathing .46 [.02] .42	.49
Model S3 resting .46 [.02] .42	.49
DC LMM condition breathing .58 [.02] .54	.62
Model S4 direction rost. \rightarrow caud39 [.03] .33	15

105 in the linear mixed models

Model (Figures)	Effect	Factor Level	l	Estimate [SE]	Estimate [SE] Lower CL Upper CL			
PDC LMM (dxyHb; Figure S2)		caud.→rost.		.27 [.02]	.23	.31		
Model S5 PDC LMM (oxyHb; Figure S2)	direction	rost.→caud.		.37 [.03]	.31	.42		
		caud. \rightarrow rost.		.28 [.02]	.23	.33		
	direction × hemisphere	rost.→caud.	healthy	.39 [.03]	.33	.45		
			affected	.35 [.03]	.29	.41		
		1	healthy	.27 [.02]	.22	.32		
		caud.→rost.	affected	.29 [.02]	.24	.34		
	1	rost.→caud.		.50 [.03]	.45	.56		
	direction	caud. \rightarrow rost.		.30 [.02]	.26	.34		
	condition	resting		.37 [.02]	.33	.40		
Model S6		breathing		.44 [.02]	.40	.47		
DC vs. PDC LMM	VAR model	DC		.45 [.02]	.42	.49		
(healthy hemisphere;	type	PDC		.35 [.02]	.32	.39		
Figure 4 vs Figure 5)	condition × VAR model type	resting	DC	.39 [.02]	.35	.43		
			PDC	.34 [.02]	.30	.38		
		breathing	DC	.51 [.02]	.47	.55		
			PDC	.36 [.02]	.32	.40		
Model S7 DC vs. PDC LMM (affected hemisphere; Figure 4 vs Figure 5)	direction	rost.→caud.		.44 [.03]	.38	.50		
		caud. \rightarrow rost.		.33 [.02]	.28	.38		
	condition	resting		.36 [.02]	.33	.39		
		breathing		.41 [.02]	.38	.44		
	VAR model	DC		.45 [.02]	.41	.48		
	type	PDC		.33 [.02]	.30	.36		
	condition × VAR model type	resting	DC	.40 [.02]	.36	.43		
			PDC	.33 [.02]	.29	.36		
		breathing	DC	.49 [.02]	.46	.53		
			PDC	.33 [.02]	.29	.36		

NB: Estimates and confidence limits were obtained using the lsmeans package (Lenth 2016) with Satterthwaite
 approximation of degrees of freedom. For effects involving the continuous predictor PSD_{fNIRS} (underlined) the

108 estimates represent its slopes, while for effects only involving discrete predictors the estimates refer to the

109 predicted marginal means on the given factor level. Abbreviations: caud., caudal; CL, confidence limits; DC,

110 directed coherence; LMM, linear mixed model; PDC, partial directed coherence; PSD_{fNIRS}, power spectral

density of the fNIRS signal; rost., rostral; SE, standard error; VAR, vector autoregressive.

113 Supplementary Table S2: Random effects for linear mixed models

Model	Factor	Туре	Variance		
	participant	intercept	.0024		
Model 1	aannaatian	intercept	.0074		
DC LMM	connection	slope for direction	.0200		
	residual		.0617		
Model 2	participant	intercept	.0027		
PDC LMM	aannaatian	intercept	.0057		
(aBP corrected	connection	slope for direction	.0126		
connectivity)	residual		.0465		
	participant	intercept	.0013		
Model 4 DC I MM with	connection	intercept	.0074		
fNIRS PSD covariate	connection	slope for direction	.0200		
	residual		.0612		
Model S1	participant	intercept	.0022		
DC LMM	connection	intercept	.0089		
(resting state time	connection	slope for direction	.0231		
windows)	residual		.0557		
Model S2 DC LMM (dxvHb)	participant	intercept	.0021		
	connection	intercept	.0071		
	connection	slope for direction	.0165		
	residual		.0677		
M. 1.162	participant	intercept	.0018		
DC LMM	connection	intercept	.0014		
(oxyHb)		slope for direction	.0051		
	residual		.0632		
Model S4	participant	icipant intercept			
PDC LMM	connection	intercept	.0056		
(dxyHb)		slope for direction	.0132		
	residual		.0515		
Model 85	participant	intercept	.0052		
PDC LMM	connection	intercept	.0027		
(oxyHb)		slope for direction	.0053		
	residual		.0419		
Model S6	participant	intercept	.0016		
DC vs. PDC LMM	connection	intercept	.0055		
(healthy hemisphere)		slope for direction	.0118		
	residual		.0567		
Model 87	participant	intercept	.0016		
DC vs. PDC LMM	connection	intercept	.0079		
(affected hemisphere)		slope for direction	.0223		
· · · · · ·	residual		.0529		

Model (Figures)	Effect	df	Error df	F value	p value
	direction	1	12	12.90	.0037
Model S1 DC LMM (resting state time windows)	time window	3	2460	1.09	.3513
	hemisphere	1	2460	.44	.5053
	direction × time window	3	2460	.48	.6961
	direction × hemisphere	1	2460	4.89	.0272
,	time window × hemisphere	3	2460	.01	.9995
	direction \times time window \times hemisphere	3	2460	.11	.9559
	direction	1	12	11.07	.0060
	condition	1	1223	28.63	1 × 10 ⁻⁷
Model S2	hemisphere	1	1223	1.17	.2806
DC LMM (dxvHb:	direction × condition	1	1223	.55	.4602
Figure S1)	direction × hemisphere	1	1223	1.73	.1881
0)	condition × hemisphere	1	1223	.13	.7228
	direction × condition × hemisphere	1	1223	2.04	.1531
	direction	1	12	.78	.3943
	condition	1	1212	76.02	< 10 ⁻¹⁵
Model S3	hemisphere	1	1212	.09	.7590
DC LMM	direction × condition	1	1212	.99	.3205
(OXYHD; Figure S1)	direction × hemisphere	1	1212	3.77	.0525
rigure 51)	condition × hemisphere	1	1212	.02	.9037
	direction × condition × hemisphere	1	1212	2.87	.0903
Model S4 PDC LMM (aBP corrected connectivity;	direction	1	12	11.55	.0053
	condition	1	1223	1.46	.2274
	hemisphere	1	1223	.81	.3677
	direction × condition	1	1223	.94	.3312
	direction × hemisphere	1	1223	1.97	.1607
Figure S2)	condition × hemisphere	1	1223	1.39	.2387
0)	direction × condition × hemisphere	1	1223	.34	.5620
	direction	1	12	13.74	.0030
Model S5 PDC LMM (aBP corrected connectivity;	condition	1	1212	.72	.3974
	hemisphere	1	1212	.24	.6246
	direction × condition	1	1212	1.81	.1789
	direction × hemisphere	1	1212	8.42	.0038
Figure S2)	condition × hemisphere	1	1212	.21	.6438
118410 (22)	direction × condition × hemisphere	1	1212	.39	.5318
	direction	1	12	36.83	.0001
	condition	1	1212	28.02	1 × 10 ⁻⁷
Model S6 DC vs. PDC LMM (healthy hemisphere; Figure 4 vs Figure 5)	VAR model type (DC vs. PDC)	1	1212	56.19	1×10^{-13}
	direction × condition	1	1212	1.60	2064
	direction × VAR model type	1	1212	24	6215
	condition × VAR model type	1	1212	.2-1 13.60	0007
	direction × condition × VAR model type	1	1212	3 13	0770
	direction	1	1212	6.13	.0770 0201
Model S7	condition	1	12	1/ 22	.0291
(affected hemisphere)	VAR model type (DC vg PDC)	1	1223	17.32 82.64	.0002
Figure 4 vs Figure 5)	direction X condition	1	1223	03.04	× 10 ···
00 0)	uncenton × condition	1	1223	1./3	.1830

115 Supplementary Table S3: Type III statistics for supplementary models

Model (Figures)	Effect	df	Error df	F value	p value
	direction × VAR model type	1	1223	.09	.7588
	condition × VAR model type	1	1223	14.36	.0002
	direction \times condition \times VAR model type	1	1223	.01	.9141

116 NB: Tests of linear mixed models (LMM) were performed using the lmerTest package (Kuznetsova et al. 2016),

117 with Satterthwaite approximation of degrees of freedom. Abbreviations: DC, directed coherence; df, degrees of

118 freedom; LMM, linear mixed model; PDC, partial directed coherence; VAR, vector autoregressive.

Supplementary Material

Schumacher et al.

120 **References**

- 121 Cui X, Bray S, Reiss AL (2010) Functional near infrared spectroscopy (NIRS) signal improvement
- based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics.

123 Neuroimage 49:3039–46. doi: 10.1016/j.neuroimage.2009.11.050

- 124 Kirilina E, Jelzow A, Heine A, et al (2012) The physiological origin of task-evoked systemic artefacts
 125 in functional near infrared spectroscopy. Neuroimage 61:70–81. doi:
 126 10.1016/j.neuroimage.2012.02.074
- 127 Kuznetsova A, Bruun Brockhoff P, Haubo Bojesen Christensen R (2016) ImerTest: Tests in Linear
 128 Mixed Effects Models
- Lenth R V (2016) Least-Squares Means: The R Package Ismeans. J Stat Softw 69:1–33. doi:
 10.18637/jss.v069.i01
- Obrig H, Neufang M, Wenzel R, et al (2000) Spontaneous low frequency oscillations of cerebral
 hemodynamics and metabolism in human adults. Neuroimage 12:623–39. doi:
 10.1006/nimg.2000.0657
- Santosa H, Aarabi A, Perlman SB, Huppert TJ (2017) Characterization and correction of the falsediscovery rates in resting state connectivity using functional near-infrared spectroscopy. J
 Biomed Opt 22:55002. doi: 10.1117/1.JBO.22.5.055002
- Satterthwaite TD, Wolf DH, Loughead J, et al (2012) Impact of in-scanner head motion on multiple
 measures of functional connectivity: relevance for studies of neurodevelopment in youth.
 Neuroimage 60:623–32. doi: 10.1016/j.neuroimage.2011.12.063
- 140 Sutoko S, Chan YL, Obata A, et al (2019) Denoising of neuronal signal from mixed systemic low-
- 141 frequency oscillation using peripheral measurement as noise regressor in near-infrared imaging.
- 142 Neurophotonics 6:015001. doi: 10.1117/1.NPh.6.1.015001
- 143 Zhang Q, Strangman GE, Ganis G (2009) Adaptive filtering to reduce global interference in non144 invasive NIRS measures of brain activation: How well and when does it work? Neuroimage

20190724_Schumacher_Kaller_Supplements.docx11

Schumacher et al.

145 45:788–794. doi: 10.1016/j.neuroimage.2008.12.048