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ABSTRACT 

The strong effect of the electrolyte cation on the activity and selectivity of the CO2 reduction 

reaction (CO2RR) can only be understood and controlled if the cation’s effect on the 

interfacial potential distribution is known. Using CO (the key intermediate in the CO2RR) 

adsorbed on Pt as a probe molecule, and combining IR spectroscopy, capacitance 

measurements and ab initio molecular dynamics, we show that the cation size determines the 

location of the outer Helmholtz plane, whereby smaller cations increase not just the 

polarisation but, most importantly, the polarizability of adsorbed CO (COad) and the 

accumulation of electronic density on the oxygen atom of COad. This strongly affects its 

adsorption energy, the degree of hydrogen bonding of interfacial water to COad and the 

degree of polarisation of water molecules in the cation’s solvation shell, all of which can 

deeply affect the subsequent steps of the CO2RR. 

Keywords: double-layer structure; cation effects; CO2 reduction reaction; adsorbed CO; 

vibrational Stark effect 

1. Introduction 

Electrochemistry is central to a multitude of technologically relevant processes. The essential 

event in any electrochemical process is the electron transfer across the interface between two 

heterogeneous media. The microscopic structure of the electric double layer (EDL) plays, 

therefore, a critical role in determining the rate and selectivity of electrochemical reactions. 

Particularly, the potential profile across the interface is of the utmost importance, because it 

can affect the stability of adsorbed intermediates[1–3] or polarise molecules within the EDL 

[4,5].  

The effect of the electrolyte cation on the efficiency and selectivity of the CO2 reduction 

reaction (CO2RR) was discovered by Hori and co-workers [6], although the effect of cations 

on the kinetics of electrochemical reduction reactions had been known since Frumkin’s 



pioneering work in the 1930’s [7]. The dependence of the location of the outer Helmholtz 

plane (OHP) on the size of the hydrated cation has been identified as one of its main causes 

[8–10]. 

Singh et al. [4] have recently suggested that the pKa of cation hydrolysis at the EDL differs 

from that in the bulk, due to the polarisation of water molecules in the cation’s hydration 

shell, which results in cation-dependent interfacial buffering capacities. As the activity and 

selectivity of the CO2RR are pH dependent [11–13], this could explain the cation effect on 

this reaction. Our group [5] later provided spectroscopic evidence that the pH increase at the 

interface during the CO2RR in CO2-saturated bicarbonate buffers is indeed cation dependent. 

Perez-Gallent et al. [14] have also recently shown that adsorbed COCOH (the likely 

intermediate in the formation of C2 products) is better stabilised in the presence of Li+, Na+ or 

K+ than with Rb+ or Cs+. Although differing in the details, the interpretations of both Singh et 

al. [4] and Pérez-Gallent et al. [14] rest both on cation-induced differences in the electric field 

at the EDL. An in principle alternative explanation was proposed very recently by Li et al. 

[15], who suggested that the degree of hydrogen bonding of interfacial water to adsorbed CO 

(COad) is cation dependent, but did not discuss how and why different cations leed to 

different degrees of hydrogen bonding of interfacial water to surface species. As we will 

show in this contribution, this is also a consequence of cation-induced differences in the 

electric field at the EDL. 

CO-terminated Pt electrodes are an excellent platform to investigate double layer effects. 

They have been very well characterised spectroscopically and electrochemically [16–24]. CO 

adsorbs strongly on Pt, remains in the same structure over a wide potential range, and blocks 

the specific adsorption of ions on the electrode surface. These characteristics also make it 

most suitable for first-principles calculations. Furthermore, COad is an intermediate in the 

reduction of CO2 to hydrocarbons [25–27], and evidence of a cation effect on its stability or 



on its interaction with interfacial water has therefore direct relevance to understanding the 

CO2RR. Recently, Koper and co-workers [23,24] have shown that both the interfacial 

capacitance and the dependence of the C-O stretching frequency of a CO-terminated Pt 

electrode on the potential (
𝜕𝜈̅COL

𝜕Δ𝜙
, often called the Stark tuning rate, STR) are independent of 

the concentration of the supporting electrolyte for concentrations above 10-3 mol L-1. This 

implies that the interfacial capacitance is dominated by that of the Helmholtz layer (so-called 

Helmholtz capacitance, CH), which must be determined by the location of the OHP and, 

therefore, CO-terminated Pt electrodes offer an ideal platform to explore the consequences of 

a cation-dependent location of the OHP. 

Here, we combine surface-enhanced infrared absorption spectroscopy in the attenuated 

total reflection mode (ATR-SEIRAS) and capacitance measurements to show that the size of 

the hydrated cation determines the interfacial potential profile. We develop a theoretical 

formulation that explains the experimental observations and is supported by ab-initio 

molecular dynamics (AIMD) simulations, and identify the key effects, all of them due to 

cation-induced differences in the electric field at the EDL, that combine and reinforce each 

other to yield the strong cation sensitivity of the CO2RR. An adequate control of the delicate 

balance between these three effects should lead to a better control of the activity and 

selectivity of this extremely important reaction.  

2. Experimental 

2.1. Materials. The working electrode was a Pt film deposited on the totally reflecting plane 

of a Si prism bevelled at 60o, following a procedure reported elsewhere [28]. The Pt-covered 

Si prism was attached to the spectroelectrochemical cell using an O-ring seal. Electrical 

contact to the film was made by pressing onto it a circular platinum wire. Prior to any IR 

measurements, the electrode was cycled repetitively in 0.1 M HClO4. The cell was then 

rinsed thoroughly with Ultrapure water (Milli-Q) and fill with the desired electrolyte. A 



Ag/AgCl (KClsat) electrode was used as reference, but all the potentials in the text are 

referred to the SHE. The counter electrode was a flame-annealed Pt wire. 

Electrolytes were prepared dissolving HClO4 (70%, Merck p.a.), H2SO4 (96%, Merck 

Suprapur), LiClO4 (Aldrich, 99.99% trace metals basis), NaClO4 (Fluka for HPLC, ≥ 99.0%), 

K2SO4 (Aldrich, 99.99% trace metals basis), Rb2SO4 (Aldrich 99.8% trace metals basis), 

CsClO4 (Aldrich, 99.995% trace metals basis), MgSO4·7H2O (Sigma BioUltra ≥ 99.5%), 

Sr(ClO4)2·3H2O (Alfa Aesar 98%), Ca(ClO4)2·4H2O (Aldrich 99%), (NH4)2SO4 (Aldrich 

9.999% trace metals basis), [N(CH3)4]ClO4 (Acros Organics 98%), [N(CH2CH3)4]BF4 

(Sigma-Aldrich for electrochemical analysis, ≥ 99.0%), [N((CH2)2CH3)4]ClO4 (Acros 

Organics 98%) or [N((CH2)3CH3)4]ClO4 (Sigma-Aldrich for electrochemical analysis, ≥ 

99.0%) in ultrapure water (MilliQ). All solutions were prepared to a concentration 0.1 M 

except in the case of [N(CH2CH3)4]BF4, for which a concentration of 0.01 M was used. In 

order to confirm that the lower concentration does not affect either CT or 
𝑑𝜈̅

𝑑Δ𝜙
 experiments 

were also performed with a 10-3 M concentration of [N(CH2CH3)4]BF4, and the same values 

were obtained for both magnitudes. As the potential region of stability of COad is much more 

negative than the potential of zero charge (pzc) of a CO-covered Pt electrode (1.10 V vs. SHE 

for Pt(111)[18]), we do not expect the nature of the anion to have any effect on the spectra or, 

in general, the interfacial structure and properties. For H+, both H2SO4 and HClO4 yielded the 

same results. 

The electrolyte was saturated with research grade carbon monoxide (99.9995 % purity 

from BOC) for 30 minutes before every experiment, and CO was bubbled through the 

electrolyte throughout the experiment. 

2.2. Experimental Methods. ATR-SEIRA spectra were recorded using a Nicolet iS50R 

FTIR spectrometer equipped with an MCT detector and a home- made ATR accessory, using 

unpolarized light. Differential spectra are reported in absorbance units, calculated as 



−log(Rsample/Rreference), where Rreference and Rsample are the reference and sample spectra, 

respectively. Positive bands corresponds to species present (or at higher concentration) in the 

sample spectrum that were absent (or at lower concentration) in the background spectrum, 

while negative bands correspond to species present (or at higher concentration) in the 

background spectrum that are absent (or at lower concentration) in the sample spectrum. 

Potential-step differential spectra were obtained by accumulating 100 interferograms with a 

resolution of 4 cm−1. The electrode potential was controlled with an EmStat3 mini USB 

potentiostat (PalmSens). 

The interfacial capacitance of a CO-covered Pt electrode in the different electrolytes was 

recorded by cycling the potential of a polycrystalline Pt electrode between 0.1 and 0.4 V at 

0.05 V s-1. The capacitance was obtained by dividing the current density (which is constant 

within this potential range) by the scan rate. 

2.3. Computational methods. The CO-covered Pt(111) surface was modelled using a p(4 × 

4) periodic slab of 4 layers of Pt atoms. Based on the experimental results, the total surface 

CO coverage is set to be 3/4 ML (2 x 2 arrangement), with 1/4 ML CO on top sites and 1/2 

ML on three-fold hollow sites. The box size of the simulation model is 11.246 x 11.246 x 40 

Å3, and three dimensional periodic boundary condition is applied. Then, the vacuum space 

between the geometrically-optimized Pt(111)-CO surface and its images is fully filled with 

water molecules. This model replicates the PZC condition of the Pt(111)-CO/water interface.  

The electric double layers are modelled by inserting Na atoms at ~3 Å away from the 

surface in the Pt(111)-CO/water interface. As expected, Na atoms are spontaneously oxidized 

to Na+ in liquid water. As the whole interface has to be neutral, a charge identical in 

magnitude but of opposite sign to that of the Na+ ions emerges on the Fermi level of the 

Pt(111)-CO surface. The charge density (σ) on the Pt(111)-CO surface is therefore 



determined by the number of Na atoms inserted in the simulation cell. In this work, we have 

modelled three Pt(111)-CO/water interfaces: σ = 0, -14.6 and -29.2 μC cm-2.  

The DFT implemented in CP2K is based on a hybrid Gaussian plane wave (GPW) 

scheme, the orbitals are described by an atom-centred Gaussian-type basis set, and an 

auxiliary plane wave basis set is used to re-expand the electron density in the reciprocal 

space. The 2s, 2p electrons of O, 2s, 2p electrons of C, 2s, 2p, 3s electrons of Na, and 5d, 6s 

electrons of Pt are treated as valence, the rest core electrons are represented by Goedecker-

Teter-Hutter (GTH) pseudopotentials. The Gaussian basis set is double-ζ with one set of 

polarization functions (DZVP), and the energy cut-off is set to 400 Ry. We employ BLYP 

functional to describe the exchange-correlation effects, and the dispersion correction is 

applied in all calculations with the Grimme D3 method. The second-generation Car-

Parrinello molecular dynamics is used for the DFTMD simulation, and the target temperature 

is set to 330 K. The discretized integration step is 0.5 fs, with γL = 0.001 fs−1. The first 2 ps 

of the simulation trajectory was regarded as the equilibration period, then followed by a 

production period of 15∼20 ps. Due to the large size of the cell, only the Γ point in reciprocal 

space was used. To obtain the vibrational density of states (VDOS) spectra of CO, the 

velocity-velocity autocorrelation function is used. 

3. Results and discussion 

We use ATR-SEIRAS to analyse cation effects on the C-O and O-H stretching modes of 

COad and of interfacial water, respectively, in CO-saturated solutions. ATR-SEIRAS (Fig. 1a) 

combines the ATR geometry with the short range of the SEIRA effect for improved 

interfacial sensitivity [29,30]. A deeper insight into the EDL structure was reached with 

AIMD simulations making use of the computational standard hydrogen electrode (SHE) [31]. 

Figure 1b illustrates the model of the Pt(111)-CO/water interface used for AIMD simulations. 



 

Figure 1. (a) Schematic illustration of the surface sensitivity of surface-enhanced infrared absorption 

spectroscopy in the attenuated total reflection mode (ATR-SEIRAS), due to the combination of the thin layer of 

electrolyte probed by the evanescent wave (typical of the ATR configuration) and to the short rage of the SEIRA 

effect generated by surface plasmon excitation within the rough metal film deposited on the Si prismatic window. 

(b) Model of the Pt(111)-CO/water interface used for AIMD simulations. Pt, C, O, H and cation are coloured by 

grey, brown, red, white and blue, respectively. The Pt(111) surface is covered by the (2 x 2)-3CO structure ( = 

0.75 ML) known to exist on this surface in CO-saturated solutions at E ≤ 0.45 V vs. RHE [32]. (c) ATR-SEIRA 

spectra of a Pt electrode in CO-saturated 0.1 M Rb2SO4 in the spectral region corresponding to the C-O stretching 

of adsorbed CO. The spectra are shown at potential intervals of 0.20 V for the sake of clarity and were calculated 

using the spectrum of the CO-free Pt surface at the open-circuit potential as background. (d) ATR-SEIRA spectra 

of a Pt electrode in CO-saturated 0.1 M Rb2SO4 in the spectral region corresponding to the O-H stretching of H2O. 

The spectra are show at potential intervals of 100 mV for the sake of clarity and were calculated using the spectrum 

of CO-covered Pt surface at +0.4 V as background. 

Experiments were performed with 14 different cations: H+, NH4
+, Li+, Na+, K+, Rb+, Cs+, 

Mg2+, Ca2+, Sr2+, tetramethylammonium (TMA+), tetraethylammonium (TEA+), 

tetrapropylammonium (TPA+) and tetrabutylammonium (TBA+). Figs. 1c and d show the 



spectra obtained with Rb+ in the CO and OH stretching regions, respectively. Spectra for all 

the cations can be found in Fig. S1. 

3.1. Cation effect on the potential dependence of 𝝂̅𝐂𝐎𝐋 and on CT: EDL model. In the CO 

stretching region, all the spectra consist of two bands that red-shift with increasingly negative 

potential (Fig. 1c and Fig. S1a). The band between ca. 2000 and ca. 2090 cm-1 corresponds to 

linearly adsorbed CO (COL), while the band between 1800 and 1900 cm-1 corresponds to 

bridge-bonded adsorbed CO (COB). The dependence of the COL frequency (𝜈̅COL) on 

potential is shown in Fig. 2a. There is a wide potential region of linear dependence (shown in 

more detail in Fig. S2). The deviation from linearity at negative potentials is not central to 

this discussion and is explained in more detail in the Supporting Information (SI). We will 

focus our discussion on COL. COB shows a similar dependence on potential, but the bands are 

broader, and a detailed analysis is subject to a larger error. 

The STR can be expressed as: 

𝜕𝜈̅COL

𝜕Δ𝜙
=

𝜕𝜈̅COL

𝜕𝐹

𝜕𝐹

𝜕Δ𝜙
      Eq. 1 

where, in a first approximation, 
𝜕𝜈̅COL

𝜕𝐹
 can be considered as constant. As the interfacial 

electric field is 𝐹 =
Δ𝜙

Δ𝑥dl
, where xdl is the thickness of the EDL, 

𝜕𝐹

𝜕Δ𝜙
=

1

∆𝑥dl
. Therefore, 

assuming that xdl is determined by the size of the cation, a direct proportionality between the 

STR and the inverse of the cation radius should be obtained. Fig. 2c shows a plot of the STR 

(in the region of linear dependence between 𝜈̅COL and the potential) vs. the charge number to 

hydrodynamic radius ratio (i.e., the radius of the cation plus its hydration shell). The latter 

was calculated from the cation’s limiting molar conductivity,  (see SI). Similar cation 

effects on the STR have been found by Roth and Weaver [16] for COad on Pt in non-aqueous 

media, and have also been recently reported for COad on Cu [15,33]. The values of the STR 

for all the cations used in this study are provided in Table S1. The value obtained for H+ is in 



good agreement with literature values for polycrystalline Pt [34]. Although a reasonable 

direct proportionality is obtained as the cation size decreases from aqueous TBA+ to aqueous 

Li+, for smaller cations (
𝑧

𝑟H
> 4.5 × 10−3) there is a clear deviation from the expected 

behaviour. 

 

Figure 2. (a) Plot of the COL stretching frequency as a function of the electrode potential for all the cations used 

in this study. (b) Plot of the Stark tuning rate vs. the interfacial capacitance for all 14 cations used in this study. 

The dashed red line is the best linear fit to the data corresponding to the three largest cations (TBA+, TPA+ and 

TEA+). The dashed blue line is a linear fit to the rest of the data. (c) and (d), Plots of the interfacial capacitance 

and the Stark tuning rate, respectively, as a function of the ratio between the charge number of the cation and the 

cation’s hydrodynamic radius, 
𝑧

𝑟H
, as obtained from the corresponding limiting ionic conductivity, . The dashed 

horizontal lines in c and d correspond to the interfacial capacitance and the Stark tuning rate, respectively, when 

H+ is the electrolyte cation, and the vertical dashed lines correspond to the resulting estimated effective radius of 

hydrated H+ at the electrical double layer. 



A similar deviation from the expected behaviour is observed for the interfacial 

capacitance, as, in the simplest possible model of the EDL, 𝐶H =
𝜀𝜀o

Δ𝑥dl
, with o the vacuum 

permittivity and  the dielectric constant of the interfacial region As shown in Fig. 2d, a 

reasonable direct proportionality is obtained again only for cations larger than aqueous Li+. 

The values of CT for all the cations used in this study are reported in Table S1. 

Please note that, due to proton hopping between water molecules [35], the size of hydrated 

H+ cannot be determined from , and H+ has therefore not been included in Figs. 2c and d. 

However, these figures allow for an estimation of the effective size of hydrated H+ of 

approximately 2.2 Å. It is also worth noting that both the STR and CH show a good 

correlation, not with the radius of the cation, but with 
𝑧

𝑟H
. In other words, the ratio between 

the cation’s charge and its hydrodynamic radius behaves as the effective cation size. This has 

to be due to the fact that the potential generated by a central ion decays with the distance 

from the ion, r, as 
𝑧

𝑟
 and, consequently, a monovalent ion with a hydrodynamic radius rH and 

a divalent ion with a hydrodynamic radius 2rH will induce exactly the same potential at the 

surface of the solvation shell, leading to the same CT and the same STR, as found 

experimentally (Figs. 2c and d). This also implies that the potential drop across the cation’s 

hydration shell contributes to the overall interfacial potential drop and must be taken into 

account when describing the structure of the EDL. 

AIMD simulations offer a deeper insight into the EDL structure. We first calculate the 

electrode potential at different surface charge densities (). Computing costs limit our 

calculations to Na+ and to σ = 0, -14.6 and -29.2 μC cm-2, corresponding to 0, 1 or 2 Na+ ions 

in the simulation cell, respectively. The computed pzc of the Pt(111)-CO/water interface is 

∼1.1 V vs SHE (Fig. 3a, inset), in good agreement with the experimental value [18]. The 

computed CT is 13 μF cm-2 (Fig. 3a, inset), also in good agreement with the experimental 



result for Na+ (Table S1). Computed IR spectra of the (2 x 2) structure of CO on Pt(111) can 

be found in the SI (Fig. S3), and yield a computed STR of 40 cm-1 V-1 for COL, in reasonable 

agreement with experimental values in this work and elsewhere [20,36,37]. In summary, our 

AIMD simulation captures well the structure and properties of the EDL. At the pzc, the 

surface water is approximately 6 Å away from the Pt(111) surface and ~2 Å away from the 

oxygen atom of COad, and shows a negligible degree of dipole orientation (Fig. 3a), in 

agreement with previous work with this and other surfaces [18,31]. At negative charge 

densities, water approaches closer to the electrode and orients with H pointing towards the 

surface (Fig. 3a, c, and d). 

 

Figure 3. (a) Water density (ρH2O, upper panel) and dipole orientation (ρH2OcosΨ, lower panel) distributions 

along the surface normal direction (z-coordinate) at the pzc (+1.1 V), -0.1 V and -1.2 V. Zero in the z-coordinate 

axis corresponds to the Pt(111) surface, and the averaged positions of the C and O atoms of adsorbed CO have 

been labelled. The inset shows the surface charge density on the CO-covered Pt(111) electrode () and the 

vibrational frequency of COL (CO) at three different potentials, from which a pzc of +1.1 V  and a capacitance of 

13 F cm-2 results. (b), (c) and (d) show representative snapshots from AIMD at the pzc (+1.1 V), -0.1 V and -

1.2 V, respectively. (e) Number of hydrogen bonds (ρH2ONdonor) formed between CO and water along the z-

coordinate at the pzc (+1.1 V), -0.1 V and -1.2 V, averaged in the XY plane. (f) and (g) show the distribution of 



radial distances between Na+ and O at -0.1 and -1.2 V vs SHE, respectively. The blue and red lines indicate the 

coordination of Na+ with H2O and CO, respectively, and the black line corresponds to the total number of oxygen 

atoms coordinated to Na+. 

Fig. 4 shows a model of the EDL which accounts for the experimental observations (Fig. 

4a), the AIMD distribution of charge density (Fig. 4b) and the AIMD potential profile (Fig 

4c). Fig. 4a takes into account that the effective radius of a cation at the interface is given by 

𝑟eff =
𝑟H

𝑧
, as suggested by Figs. 2c and d and discussed above. At the pzc, the potential drop 

across the interface is small, but not zero. At -0.1 and -1.2 V the potential drop has three 

contributions (Figs. 4a and c), corresponding to (i) the CO adlayer, (ii) the ca. 2 Å wide gap 

between the electrode surface and interfacial water and (iii) the slice of interfacial water up to 

the OHP. The accumulation of electronic density on the oxygen atom of COad at -0.1 and, 

particularly, -1.2 V, is clear in Fig. 4b. This is equivalent with having three capacitors in 

series, corresponding to the capacitance of the CO adlayer (𝐶a =
𝜀0𝜀a

∆𝑥a
), the capacitance of the 

gap (𝐶g =
𝜀0𝜀g

∆𝑥g
) and the capacitance of the water layer between the gap and the OHP (𝐶w =

𝜀0𝜀w

𝑟eff
), where a, g and w are the dielectric constants of the CO adlayer, the gap and the water 

layer, respectively, and xa and xg are the thicknesses of the CO adlayer and the gap, 

respectively. I.e., within this picture, CT is given by: 

𝐶T ≈
1

𝐶H
=

1

𝐶a
+

1

𝐶g
+

1

𝐶w
=

𝜀o𝜀a𝜀g𝜀w

𝜀g𝜀w∆𝑥a+𝜀a𝜀w∆𝑥g+𝜀a𝜀g𝑟eff
   Eq. 2 

The fraction of the potential drop falling within the CO adlayer will be given by 
∆𝜙a

Δ𝜙
=

𝐶T

𝐶a
 

(similarly, the fractions of the potential drop corresponding to the gap and the interfacial 

water layer will be given by 
∆𝜙g

Δ𝜙
=

𝐶T

𝐶g
 and 

∆𝜙w

Δ𝜙
=

𝐶T

𝐶w
, respectively). The COad stretching 

frequency is determined by the potential drop across the CO adlayer, a, or, equivalently, by 

the electric field felt by the CO adlayer, 𝐹a =
Δ𝜙a

Δ𝑥a
. Accordingly: 



𝜕𝜈̅COL

𝜕Δ𝜙
=

𝜕𝜈̅COL

𝜕𝐹a

𝜕𝐹a

𝜕Δ𝜙a

∂∆𝜙a

∂Δ𝜙
=

𝜀g𝜀w

𝜀g𝜀w∆𝑥a+𝜀a𝜀w∆𝑥g+𝜀a𝜀g𝑟eff

𝜕𝜈̅COL

𝜕𝐹
=

1

𝜀o𝜀a

𝜕𝜈̅COL

𝜕𝐹
𝐶T Eq. 3 

 

Figure 4. (a) Model illustrating the potential profile across the electrode-electrolyte interface, and the effect of 

the cation size on the interfacial properties and on the polarisation of the CO adlayer. The red cation is divalent, 

and therefore the situation depicted corresponds to twice the charge density than in the case of the monovalent 

blue and green cations. xa and xg correspond to the thickness of the CO adlayer and the vacuum gap, 

respectively, and rH is the radius of the hydrated cation. The dashed lines illustrate the potential drops across the 

CO adlayer and the vacuum gap had a remained constant. (b) Distribution of excess electronic density along the 

surface normal direction, as calculated from AIMD simulation and averaged in the XY plane. The excess 



electronic density is defined as Δ𝜌𝑒 = 𝜌𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 − 𝜌𝑃𝑡 − 𝜌𝑤𝑎𝑡𝑒𝑟 − 𝜌𝑁𝑎. (c) Potential distribution across the 

interface. The zero z-coordinate corresponds to the Pt(111) surface. Blue, red and green curves correspond to the 

interface at the pzc (+1.1), -0.1 V and -1.2 V, respectively. 

The clear direct proportionality between CT and 
𝑧

𝑟H
 for 

𝑧

𝑟H
< 4.5 × 10−3 pm-1 (𝑟eff > 2.2 Å) 

shown in Fig. 2c suggests that, for the larger cations, the interfacial capacitance is dominated 

by that of the region between then end of the gap and the OHP, i.e., 
1

𝐶w
≫

1

𝐶a
+

1

𝐶g
 (see Eq. 2). 

As reff decreases, the contribution of the other two regions to the total capacitance and the 

overall potential drop become non-negligible, resulting in a deviation from the direct 

proportionality between CT and 
𝑧

𝑟H
. 

According to Eqs. 2 and 3, exactly the same dependence on 
𝑧

𝑟H
 should be expected for the 

STR and CT, and the STR should be directly proportional to CT if a remains constant. Such 

behaviour would imply a rather expectable cation-dependent polarisation of COad, sufficient 

to explain the trend observed with the largest cations. However, the deviation from a direct 

proportionality with 
𝑧

𝑟H
 for 𝑟eff < 2.2 Å is stronger for the STR (Fig. 2c) than for CT (Fig. 2d), 

which leads to the lack of direct proportionality between STR and CT for cations smaller than 

TEA+ observed in Fig. 2b. Assuming, in a first approximation, that 
𝜕𝜈̅COL

𝜕𝐹
 is a constant, the 

deviation from a direct proportionality is only possible if, for sufficiently small cations, a 

becomes cation dependent. I.e., the small distance between the OHP and the electrode surface 

must provoke too large an electric field across COad, to which it reacts with an increase of its 

polarizability (note that 𝜀 = 1 + 𝜒, where  is the polarizability), which results in an electric 

field across COad smaller than it would have been had the polarizability not increased. An 

increase in a must lead to a stronger deviation from a direct proportionality with 
𝑧

𝑟H
 for the 

STR, because, while increasing a affects both the numerator and the denominator of CT, it 



affects only the denominator of the STR. Actually, the higher sensitivity of the STR to 

changes in a was to be expected, as capacitance measurements probe the whole interface, 

while 
𝜕𝜈̅COL

𝜕Δ𝜙
 probes only the CO adlayer and must therefore be more sensitive to variations in 

its properties. 

3.2. Hydrogen bonding between interfacial water and COad. At E < pzc, the interfacial 

water layer approaches closer to the surface and orientates itself with H pointing towards the 

surface (Fig. 3a, c and d). This will favour formation of hydrogen bonds with COad, as 

confirmed by AIMD (Fig. 3e). The O-H stretching region of our spectra provides evidence of 

increased hydrogen bonding between interfacial water and COad at increasingly negative 

potentials, as discussed below. 

The spectra with H+, NH4
+, the alkaline-metal cations, Mg2+, Ca2+ and Sr2+ (see Fig. 1d 

and Fig. S1b) are consistent with Yamakata’s and Osawa’s [38–40], who used CO-covered Pt 

electrodes and ATR-SEIRAS to study the hydration shell of several hydrophilic and 

hydrophobic cations. The spectra are dominated by positive bands at ~3600 cm-1, 

corresponding to the O-H stretching of water molecules in the hydration shell of hydrophilic 

cations [38,39]. The lower frequency and broader bands observed in the case of NR4
+ [38–40] 

(not shown in Fig. 1Sb) is evidence that hydrogen bonding within their solvation shells is 

stronger [38,39]. The relatively sharp negative band at 3670 cm-1 in Fig. 1d and Fig. S1b is 

characteristic of water with a low degree of hydrogen bonding, and has been assigned to the 

OH stretching of water molecules at the interface between hydrophobic CO-covered Pt and 

the electrolyte [41–43]. It is accompanied by a positive band around 3650 cm-1 that Yamakata 

and Osawa [39] have attributed to a red-shift of the band at 3670 cm-1, due to the approach of 

the hydrated cations, resulting in a bipolar band that grows with increasing negative potential. 

Although we agree that this band is indeed due to a red-shift of the 3670 cm-1 band, we 

suggest instead that such shift is due to the increased hydrogen-down orientation of 



interfacial water (Figs. 3c and d) and the resulting increased degree of hydrogen bonding with 

COad (Fig. 3e). 

Figs. 2c and d suggest that the cations’ primary hydration shell is retained at the 

electrochemical double layer, at least at E > -0.1 V. The corresponding band about 3600 cm-1 

red-shifts with increasing negative potentials (Fig. S4), providing evidence of increased 

polarisation of solvation water. (This band and this effect are not observed with NR4
+, for this 

reason and for the sake of clarity, these cations were not included in Fig. S1b.) However, both 

its frequency and its shift with potential are cation independent (Fig. S4), i.e., any cation 

effect on the degree of polarisation or on how much that polarisation increases with 

increasing negative potential is too small to be detected. 

3.3 Relevance for the CO2RR. Although the intense electric field at the EDL has been 

previously proposed as responsible for the remarkable cation sensitivity of both the activity 

and selectivity of the CO2RR [14,44–46], ours is the first direct experimental evidence that 

field-induced effects go beyond increasing the degree of polarisation of adsorbed species. 

With sufficiently small cations, the close proximity of the OHP to the electrode surface 

generates an electric field across COad intense enough to lead to a rearrangement of its 

electronic density large enough to result in an increased polarizability, the degree of which is 

cation dependent. This must have an effect on the adsorption energy of COad (a critical 

reaction intermediate in the path to both C1 and C2 hydrogenated products) much stronger 

than that resulting from a simple increase in its polarisation. Other reaction intermediates, 

such as adsorbed OCCO and OCCOH, can also be affected by this kind of effects. 

Altogether, this must have a considerable impact on the apparent activation barriers of the 

different possible pathways. Although our work has focused on saturated CO adlayers on Pt, 

there is experimental evidence that the effects reported here are also at work for CO on Cu 

electrodes [33], probably the most studied material for CO2 reduction. 



Our spectra (Fig. 1d and Fig. S1b) and those in previous work [38–40] in the O-H 

stretching region, show evidence of increased hydrogen bonding at increasing negative 

potentials. Combined with the clear cation dependence of CT (Fig. 2c), and because the 

charge density at a given potential will be larger the larger CT, and so will be the degree of 

dipole orientation, we can conclude that the cation-dependent intensity of the electric field at 

the EDL must lead to a cation-dependent degree of hydrogen bonding of interfacial water 

with COad, which contributes to the effect of cations on the CO2RR, as recently suggested 

[15]. Although we have not found direct evidence in this work of differences in the degree of 

polarisation of solvation water for different cations, this might simply mean that the effect is 

too small to be detected spectroscopically. However, previous evidence from our own group 

[5] is strong enough to suggest that the cation-dependent intensity of the electric field at the 

EDL leads to a cation-dependent buffering capacity at the interface, which also contributes to 

the cation effect on the CO2RR. 

4. Conclusions 

A detailed analysis of the correlation between CT and the STR, and of each one of these 

magnitudes with 
𝑧

𝑟H
, combined with AIMD simulations, allows to formulate a detailed EDL 

model, in which the size of the hydrated cation determines the location of the OHP, which, 

for the same potential drop across the interface, results in a cation-dependent intensity of the 

interfacial electric field. The most relevant consequences of this are: 

1. A cation dependent effective potential at the plane where the electron transfer 

happens, as recognised in early work [8]. This will affect the apparent activation 

energy of the overall reaction and, through it, its activity. It will also affect the 

activation energy of each individual step involving an electron transfer, including 

those determining the rates of parallel paths, and will also have, therefore, an effect on 

the reaction selectivity and on how it varies with potential. 



2. A cation-dependent reorganisation of the electronic density of adsorbates. Depending 

on the cation and the adsorbate, this might result in a simple cation-dependent 

polarisation or have a stronger effect and lead to a change in the adsorbate’s 

polarizability, as shown here for the case of COad and cations smaller than TEA+. If 

the electric field-induced reorganisation of electronic density is different for different 

adsorbed intermediates this will affect their adsorption energy in different degrees and 

will lead to a change in the apparent activation energy of the different possible paths. 

3. As the pzc should, in principle, not be affected by the cation, smaller cations that 

result in larger CT will lead to a larger negative charge density at the same applied 

potential, E (as far as E < pzc). This will result in a cation-dependent degree of 

orientation of interfacial water dipoles and, consequently, to differences in the degree 

of hydrogen bonding of interfacial water with adsorbed intermediates. In the 

particular case of COad, this will, furthermore, be enhanced by the accumulation of 

electronic density on the oxygen atom resulting from the reorganisation of electronic 

density described in the preceding paragraph. As hydrogen bonding to adsorbed 

intermediates can play an important role in hydrogenation reactions, this must play a 

role in determining the activity and selectivity of these reactions. 

4. The more intense interfacial electric fields with smaller cations will also result in a 

higher polarisation of their solvation shells, which will lead to differences in the pKa 

of cation hydrolysis at the interface. In good agreement with this assertion, recently 

reported results [5] show that precisely those cations which have been shown here to 

have a smaller effective radius in aqueous electrolytes have a higher buffering 

capacity at the interface during the CO2RR in CO2-bicarbonate buffer solutions. 

All these effects contribute to the sensitivity of the activity and selectivity of the CO2RR to 

the electrolyte cation and reinforce each other, providing a comprehensive explanation to 



previous results [4,5,14,15]. The question is, therefore, not which of them is responsible for 

the observed trends, but to which extent each one of them is determining those trends, and 

how they can be controlled to improve the activity and yield the desired product distribution. 

Acknowledgements 

The continuous support of the University of Aberdeen and financial support from the 

Leverhulme Trust through Research Grant RPG-2015-040 is gratefully acknowledged. A.C. 

and G.H. acknowledge the support of Universities UK international (UUKi) and the 

Department for Business, Energy & Industrial Strategy (BEIS) for a Rutherford Strategic 

Partner Grant (RF-2018-79) and a Rutherford Fellowship, respectively. J.C. is grateful for the 

financial support by the National Natural Science Foundation of China (Grants Nos. 

2181101075 and 21621091), and J.L. thanks the China Postdoctoral Science Foundation 

(2018M642563) for support. 

REFERENCES 

[1] K.A. Schwarz, R. Sundararaman, T.P. Moffat, T.C. Allison, Formic acid oxidation on 

platinum: a simple mechanistic study, Phys. Chem. Chem. Phys. 17 (2015) 20805–

20813. 

[2] L.D. Chen, M. Urushihara, K. Chan, J.K. Nørskov, Electric Field Effects in 

Electrochemical CO2 Reduction, ACS Catal. 6 (2016) 7133–7139. 

[3] H. Xiao, T. Cheng, W.A. Goddard, R. Sundararaman, Mechanistic Explanation of the 

pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical 

Reduction of CO on Cu (111), J. Am. Chem. Soc. 138 (2016) 483–486. 

[4] M.R. Singh, Y. Kwon, Y. Lum, J.W. Ager, A.T. Bell, Hydrolysis of Electrolyte 

Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu, J. Am. 

Chem. Soc. 138 (2016) 13006–13012. 

[5] O. Ayemoba, A. Cuesta, Spectroscopic Evidence of Size-Dependent Buffering of 



Interfacial pH by Cation Hydrolysis during CO2 Electroreduction, ACS Appl. Mater. 

Interfaces. 9 (2017) 27377–27382. 

[6] A. Murata, Y. Hori, Product Selectivity Affected by Cationic Species in 

Electrochemical Reduction of CO2 and CO at a Cu Electrode, Bull. Chem. Soc. Jpn. 64 

(1991) 123–127. 

[7] A.N. Frumkin, Wasserstoffuberspannung und Struktur der Doppelschicht, Z. Phys. 

Chem. 164 (1933) 121. 

[8] W.R. Fawcett, The effect of ionic size in the double layer on the kinetics of electrode 

reactions, J. Electroanal. Chem. 22 (1969) 19–28. 

[9] W.R. Fawcett, Examination of the role of ion size in determining double layer 

properties on the basis of a generalized mean spherical approximation, J. Electroanal. 

Chem. 500 (2001) 264–269. 

[10] R.R. Nazmutdinov, D. V. Glukhov, G.A. Tsirlina, O.A. Petrii, Exploring the molecular 

features of cationic catalysis phenomenon: Peroxodisulfate reduction at a mercury 

electrode, J. Electroanal. Chem. 582 (2005) 118–129. 

[11] Y. Hori, A. Murata, R. Takahashi, Formation of hydrocarbons in the electrochemical 

reduction of carbon dioxide at a copper electrode in aqueous solution, J. Chem. Soc. 

Faraday Trans. 1 85 (1989) 2309–2326. 

[12] C.W. Li, J. Ciston, M.W. Kanan, Electroreduction of carbon monoxide to liquid fuel 

on oxide-derived nanocrystalline copper, Nature. 508 (2014) 504–507. 

[13] X. Feng, K. Jiang, S. Fan, M.W. Kanan, A Direct Grain-Boundary-Activity 

Correlation for CO Electroreduction on Cu Nanoparticles, ACS Cent. Sci. 2 (2016) 

169–174. 

[14] E. Pérez-Gallent, G. Marcandalli, M.C. Figueiredo, F. Calle-Vallejo, M.T.M. Koper, 

Structure- and Potential-Dependent Cation Effects on CO Reduction at Copper Single-



Crystal Electrodes, J. Am. Chem. Soc. 139 (2017) 16412–16419. 

[15] J. Li, X. Li, C.M. Gunathunge, M.M. Waegele, Hydrogen bonding steers the product 

selectivity of electrocatalytic CO reduction., Proc. Natl. Acad. Sci. 116 (2019) 9220–

9229. 

[16] J.D. Roth, M.J. Weaver, Role of double-layer cation on the potential-dependent 

stretching frequencies and binding geometries of carbon monoxide at platinum-

nonaqueous interfaces, Langmuir. 8 (1992) 1451–1458. 

[17] A. López-Cudero, A. Cuesta, C. Gutiérrez, The effect of chloride on the 

electrooxidation of adsorbed CO on polycrystalline platinum electrodes, J. Electroanal. 

Chem. 548 (2003) 109–119. 

[18] A. Cuesta, Measurement of the surface charge density of CO-saturated Pt(111) 

electrodes as a function of potential: The potential of zero charge of Pt(111), Surf. Sci. 

572 (2004) 11–22. 

[19] S. Baldelli, Probing Electric Fields at the Ionic Liquid−Electrode Interface Using Sum 

Frequency Generation Spectroscopy and Electrochemistry, J. Phys. Chem. B. 109 

(2005) 13049–13051. 

[20] A. López-Cudero, A. Cuesta, C. Gutiérrez, Potential dependence of the saturation CO 

coverage of Pt electrodes: The origin of the pre-peak in CO-stripping voltammograms. 

Part 1: Pt(111), J. Electroanal. Chem. 579 (2005) 1–12. 

[21] A. López-Cudero, Á. Cuesta, C. Gutiérrez, Potential dependence of the saturation CO 

coverage of Pt electrodes: The origin of the pre-peak in CO-stripping voltammograms. 

Part 2: Pt(100), J. Electroanal. Chem. 586 (2006) 204–216. 

[22] A. Cuesta, A. Couto, A. Rincón, M.C. Pérez, A. López-Cudero, C. Gutiérrez, Potential 

dependence of the saturation CO coverage of Pt electrodes: The origin of the pre-peak 

in CO-stripping voltammograms. Part 3: Pt(poly), J. Electroanal. Chem. 586 (2006) 



184–195. 

[23] R. Sundararaman, M.C. Figueiredo, M.T.M. Koper, K.A. Schwarz, Electrochemical 

Capacitance of CO-Terminated Pt(111) Dominated by the CO–Solvent Gap, J. Phys. 

Chem. Lett. 8 (2017) 5344–5348. 

[24] M.C. Figueiredo, D. Hiltrop, R. Sundararaman, K.A. Schwarz, M.T.M. Koper, 

Absence of diffuse double layer effect on the vibrational properties and oxidation of 

chemisorbed carbon monoxide on a Pt(111) electrode, Electrochim. Acta. 281 (2018) 

127–132. 

[25] K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the 

electrochemical reduction of carbon dioxide on metallic copper surfaces, Energy 

Environ. Sci. 5 (2012) 7050–7059. 

[26] A.M. Appel, J.E. Bercaw, A.B. Bocarsly, H. Dobbek, D.L. DuBois, M. Dupuis, J.G. 

Ferry, E. Fujita, R. Hille, P.J.A. Kenis, C.A. Kerfeld, R.H. Morris, C.H.F. Peden, A.R. 

Portis, S.W. Ragsdale, T.B. Rauchfuss, J.N.H. Reek, L.C. Seefeldt, R.K. Thauer, G.L. 

Waldrop, Frontiers, Opportunities, and Challenges in Biochemical and Chemical 

Catalysis of CO2 Fixation, Chem. Rev. 113 (2013) 6621–6658. 

[27] J.D. Goodpaster, A.T. Bell, M. Head-Gordon, Identification of Possible Pathways for 

C–C Bond Formation during Electrochemical Reduction of CO2: New Theoretical 

Insights from an Improved Electrochemical Model, J. Phys. Chem. Lett. 7 (2016) 

1471–1477. 

[28] A. Miki, S. Ye, M. Osawa, Surface-enhanced IR absorption on platinum nanoparticles: 

an application to real-time monitoring of electrocatalytic reactions, Chem. Commun. 

(2002) 1500–1501. 

[29] M. Osawa, In-situ Surface-Enhanced Infrared Spectroscopy of the Electrode/Solution 

Interface, in: R.C. Alkire, D.M. Kolb, J. Lipkowsky, P.N. Ross (Eds.), Advances in 



Electrochemical Science and Engineering, John Wiley & Sons, Ltd, Weinheim, 

Germany, Vol. 9, 2008: pp. 269–314. 

[30] R. Kas, O. Ayemoba, N.J. Firet, J. Middelkoop, W.A. Smith, A. Cuesta, In‐Situ 

Infrared Spectroscopy Applied to the Study of the Electrocatalytic Reduction of CO2 : 

Theory, Practice and Challenges, ChemPhysChem. doi:10.1002/cphc.201900533. 

[31] J. Le, M. Iannuzzi, A. Cuesta, J. Cheng, Determining Potentials of Zero Charge of 

Metal Electrodes versus the Standard Hydrogen Electrode from Density-Functional-

Theory-Based Molecular Dynamics, Phys. Rev. Lett. 119 (2017) 016801. 

[32] I. Villegas, M.J. Weaver, Carbon monoxide adlayer structures on platinum (111) 

electrodes: A synergy between in-situ scanning tunneling microscopy and infrared 

spectroscopy, J. Chem. Phys. 101 (1994) 1648–1660. 

[33] C.M. Gunathunge, V.J. Ovalle, M.M. Waegele, Probing promoting effects of alkali 

cations on the reduction of CO at the aqueous electrolyte/copper interface, Phys. 

Chem. Chem. Phys. 19 (2017) 30166–30172. 

[34] K. Kunimatsu, W.G. Golden, H. Seki, M.R. Philpott, Carbon Monoxide Adsorption on 

a Platinum Electrode Studied by Polarization Modulated FT-IRRAS. 1. CO Adsorbed 

in the Double-Layer Potential Region and Its Oxidation in Acids, Langmuir. 1 (1985) 

245–250. 

[35] N. Agmon, The Grotthuss mechanism, Chem. Phys. Lett. 244 (1995) 456–462. 

[36] S.-C. Chang, M.J. Weaver, Coverage- and potential-dependent binding geometries of 

carbon monoxide at ordered low-index platinum- and rhodium-aqueous interfaces: 

comparisons with adsorption in corresponding metal-vacuum environments, Surf. Sci. 

238 (1990) 142–162. 

[37] L.W.H. Leung, A. Wieckowski, M.J. Weaver, In situ infrared spectroscopy of well-

defined single-crystal electrodes: adsorption and electrooxidation of carbon monoxide 



on platinum(111), J. Phys. Chem. 92 (1988) 6985–6990. 

[38] A. Yamakata, M. Osawa, Destruction of the Water Layer on a Hydrophobic Surface 

Induced by the Forced Approach of Hydrophilic and Hydrophobic Cations, J. Phys. 

Chem. Lett. 1 (2010) 1487–1491. 

[39] A. Yamakata, M. Osawa, Cation-dependent restructure of the electric double layer on 

CO-covered Pt electrodes: Difference between hydrophilic and hydrophobic cations, J. 

Electroanal. Chem. 800 (2017) 19–24. 

[40] A. Yamakata, M. Osawa, Destruction of the Hydration Shell around 

Tetraalkylammonium Ions at the Electrochemical Interface, J. Am. Chem. Soc. 131 

(2009) 6892–6893. 

[41] M. Osawa, M. Tsushima, H. Mogami, G. Samjeske, A. Yamakata, Structure of Water 

at the Electrified Platinum−Water Interface: A Study by Surface-Enhanced Infrared 

Absorption Spectroscopy, J. Phys. Chem. C. 112 (2008) 4248–4256. 

[42] A. Cuesta, Comments on the paper by H. Shiroishi, Y. Ayato, K. Kunimatsu and T. 

Okada entitled “Study of adsorbed water on Pt during methanol oxidation by ATR-

SEIRAS (surface-enhanced infrared absorption spectroscopy)” [J. Electroanal. Chem. 

581 (2005) 132], J. Electroanal. Chem. 587 (2006) 329–330. 

[43] J.A. Santana, Y. Ishikawa, Density-functional theory study of interactions between 

water and carbon monoxide adsorbed on platinum under electrochemical conditions, 

Chem. Phys. Lett. 478 (2009) 110–114. 

[44] S.A. Akhade, I.T. McCrum, M.J. Janik, The Impact of Specifically Adsorbed Ions on 

the Copper-Catalyzed Electroreduction of CO2, J. Electrochem. Soc. 163 (2016) F477–

F484. 

[45] R.B. Sandberg, J.H. Montoya, K. Chan, J.K. Nørskov, CO-CO coupling on Cu facets: 

Coverage, strain and field effects, Surf. Sci. 654 (2016) 56–62. 



[46] L.D. Chen, M. Urushihara, K. Chan, J.K. Nørskov, Electric Field Effects in 

Electrochemical CO2 Reduction, ACS Catal. 6 (2016) 7133–7139. 

 


