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Abstract  
The fungal cell wall is an essential organelle that maintains cellular morphology and 

protects the fungus from environmental insults.  For fungal pathogens such as Candida 
albicans, it provides a degree of protection against attack by host immune defences.  However, 
the cell wall also presents key epitopes that trigger host immunity, and attractive targets for 
antifungal drugs.  Rather than being a rigid shield, it has become clear that the fungal cell wall 
is an elastic organelle that permits rapid changes in cell volume and the transit of large 
liposomal particles such as extracellular vesicles.  The fungal cell wall is also flexible in that it 
adapts to local environmental inputs, thereby enhancing the fitness of the fungus in these 
microenvironments.  Recent evidence indicates that this cell wall adaptation affects host-
fungus interactions by altering the exposure of major cell wall epitopes that are recognised by 
innate immune cells.  Therefore, we discuss the impact of environmental adaptation upon 
fungal cell wall structure and immune evasion, focussing on C. albicans and drawing parallels 
with other fungal pathogens.   

 
Introduction 

The ascomycete fungus, Candida albicans, is carried as a relatively harmless 
commensal by most healthy individuals in their oral cavity, or urogenital and gastrointestinal 
tracts.  In general, the local epithelial barriers, innate immune defences and microbiota limit 
the colonisation and outgrowth by C. albicans cells.  However, the perturbation of any of these 
local defences often leads to local mucosal infection (thrush) (1,2).  Most women suffer at least 
one episode of vaginitis in their lifetime, and oral thrush is common in babies, the elderly, 
diabetics, and HIV patients.  C. albicans is the most common cause of fungal mucosal 
infections (3).  In neutropenic patients, whose immune defences are severely compromised, 
C. albicans can cause systemic infections of the blood and internal organs (4,5).  Despite the 
availability of several classes of antifungal drug, including azoles, polyenes, echinocandins, 
and flucytosine (6), these systemic infections display about 40% mortality (7,8).  This, 
combined with the emergence of resistance to the current antifungal drugs in clinical use, 
means that there is a clear need for the development of new, more effective antifungals (7).  

From a clinical perspective, the fungal cell wall represents an attractive target for the 
development of new antifungal drugs (6,9).  This is because human cells lack a cell wall, 
whereas the cell wall is essential for the viability of fungal pathogens such as C. albicans (10-
12).  Therefore, drugs that target cell wall biosynthesis or function are less likely to perturb 
human cells.  The C. albicans cell wall also represents the first point of direct contact with the 
host, and cell wall molecules are exploited as key recognition targets by our immune defences.  
For this reason, the cell wall is also an attractive target for the development of vaccines and 
immunotherapeutics that might prevent or combat Candida infections.  In addition, structural 
distinctions between the cell walls of pathogenic fungal species (13) represent a point of 
leverage for the development of the novel diagnostics that are required to accelerate the 
diagnosis, and thereby improve the prognoses of life-threatening systemic infections (7).  
Therefore, a comprehensive understanding of the structure and function of the fungal cell wall 
is vital for the elaboration of the new antifungal drugs, immunotherapies, diagnostics, and 
vaccines that ultimately will improve patient outcomes.  

 From the perspective of the fungus, the cell wall is a vital organelle that requires 
significant metabolic and energetic investment to construct.  (The wall comprises about 30% 
of the dry weight of a yeast cell (14). The cell wall provides protection against environmental 
insults (9).  It maintains cell shape and osmotic integrity, asserting the cellular morphology 
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driven by the regulatory apparatus that establishes the balance between isotropic and 
polarised growth, generating morphogenetic transitions between yeast, pseudohyphal and 
hyphal growth forms in response to the environmental conditions (15).  Yet the cell wall is an 
elastic, not a rigid structure, which permits the transit of large liposomes and extracellular 
vesicles (16,17), as well as rapid changes in cell volume in response to osmotic challenges 
(18).  Furthermore, rather than being a relatively inert shield, the cell wall responds to local 
inputs as the fungus adapts to environmental change (19-21).  Therefore the fungal cell wall 
is a remarkable organelle that is simultaneously robust but elastic, and stable but flexible. 

In this article we focus on the cell wall of the major pathogen, C. albicans.  We review 
the structure of the C. albicans cell wall, its stability and elasticity; how the cell wall responds 
to environmental challenges, whether natural or therapeutic; and how changes in the 
C. albicans cell wall affect host-fungus interactions.  We then discuss parallels with other 
fungal pathogens before suggesting key questions for the future.   

 

Structure and synthesis of the C. albicans cell wall   
Significant differences exist between the cell walls of the major fungal pathogens of 

humans (9,13).  Nevertheless, some of the macromolecular building blocks that comprise the 
cell wall are conserved across most of these fungal species.  These consist of β-1,3- and β-
1,6-glucan, chitin and mannoproteins.  Additionally, some fungal cell walls contain melanin, 
chitosan and β-1,4-glucan (9,22-24).  A combination of microscopy, biochemistry and 
molecular genetics has shown clearly that the C. albicans cell wall comprises two main layers: 
an inner layer of chitin and glucan cross-linked together, and an outer layer of mannan fibrils 
that are covalently attached to this inner layer via their anchoring mannoproteins (Figure 1).  

Chitin is a linear homopolymer of β-1,4-linked N-acetylglucosamine, which forms anti-
parallel chains linked by intra-chain hydrogen bonds.  Chitin accounts for only about 2-3% of 
the dry weight of the C. albicans yeast cell wall.  Yet it is a strong fibrous structural component 
of the inner layer that contributes significantly to the overall integrity of the cell wall.  C. albicans 
mutants with impaired chitin synthesis present with a disordered cell wall architecture and 
display osmotic instability (25,26). In C. albicans, a small fraction of chitin (less than 5%) is 
deacetylated to chitosan by one or more chitin deacetylases, making chitin fibrils more elastic 
and protecting them from the action of hostile chitinases (26).  

In C. albicans chitin is synthesized by a family of four chitin synthases, representing 
three different classes of chitin synthase that generate chitin microfibrils of different lengths 
(25). Together, these enzymes engineer the chitin skeleton in the fungal cell wall and septum. 
Chs1 is an essential Class II enzyme that is required for the synthesis of the primary septum. 
Chs3 is a Class IV enzyme, which is usually located in the tip of buds and hyphal cells and 
synthesizes the majority of chitin found in the fungal cell wall and septum. Chs2 and Chs8 also 
contribute to cell wall integrity during normal growth and stress conditions. These Class I 
enzymes account for most of the chitin synthase activity that is measurable in vitro, and indeed 
the deletion of CHS2 alone reduces in vitro chitin synthase activity by 80–91% (11,26-28). 

β-Glucan is the major structural polysaccharide of the C. albicans cell wall, accounting 
for 50–60% of the dry weight of the yeast cell wall (22,23).  β-Glucan is composed of chains 
of glucose residues linked via β-1,3- or β-1,6 linkages. β-1,3-Glucan fibrils represent the main 
structural component of the C. albicans cell wall, and chitin, β-1,6-glucan and mannoproteins 
are covalently attached to this β-1,3-glucan network in the inner layer of the wall.  β-1,3-Glucan 
is synthesized at the plasma membrane and extruded into extracellular space by the beta-1,3-
glucan synthase complex, which consists of catalytic subunits encoded by GSC1/FKS1 and 
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GSC2/FKS2, and a small regulatory GTPase encoded by RHO1 (29,30). β-1,3-Glucan 
synthase is essential for fungal viability and is the target of echinocandin drugs, such as 
caspofungin (10). 

β-1,6-Glucan is less abundant than β-1,3-glucan. Branched β-1,6-glucan structures are 
crosslinked to β-1,3-glucan in the inner layer of the C. albicans cell wall, providing an additional 
platform for the covalent anchoring of some cell wall mannoproteins (31).  A number of genes 
are involved in β-1,6-glucan biosynthesis, including KRE5, KRE6, KRE9, BIG1 and SKN1.  
Although it is not clear where β-1,6-glucan synthesis occurs, it does involve enzymes localised 
in the endoplasmic reticulum and the Golgi apparatus (32).  

The mannoproteins in the C. albicans cell wall are frequently heavily decorated with N- 
and/or O-linked oligosaccharides (23,33).  Together with phospholipomannans, these 
represent up to 30-40% of the dry weight of the cell wall.  The O-mannans are relatively short 
linear carbohydrate polymers comprised of two to six α-1,2-linked mannose units.  Their 
synthesis requires the activities of PMR1, the PMT gene family, MNT1, and MNT2 (34-37).  
The addition of the first mannose residue to the polypeptide chain is catalysed by O-
mannosyltransferases (encoded by PMT genes), whilst Mnt1 and Mnt2 are responsible for the 
addition of the first and second α-1,2-mannose units into the α-mannose backbone.  The 
resultant O-linked oligosaccharides are thought to promote a rod-like conformation to the 
serine-threonine-rich repeats to which they are generally attached (38).  

The outer layer of the C. albicans cell wall is composed of highly branched N-linked 
oligosaccharide structures that are covalently linked to asparagine residues in the 
mannoproteins.  These N-mannans contain a N-glycan core, to which are attached long 
branched chains with an α-1,6-mannose backbone and side chains of oligomannosides linked 
via α-1,2 or α-1,3 bonds (23).  The synthesis of the N-linked oligosaccharide core structure 
occurs in the endoplasmic reticulum and involves the sequential addition of sugar residues by 
glycosyltransferases, encoded by asparagine-linked glycosylation (ALG) genes.  The 
mannosyltransferase Och1 catalyses the addition of the first alpha-1,6-mannose (39) and the 
branched oligosaccharide structure is then added to the nascent protein by the 
oligosaccharyltransferase complex.  After the initial glycosylation, the mannoprotein is further 
modified in the ER and Golgi apparatus.  Golgi resident enzymes, encoded by members of 
the KTR/KRE/MNT and MNN gene families, process and elongate the N-linked as well as O-
linked oligosaccharides (40-42).  Phosphomannan is a β-1,2-mannose moiety linked to the 
branched N-glycan via a phosphodiester bond.  A similar moiety can be linked to lipid domains 
creating the phospholipomannans. Different enzymes from the MNN and BMT families 
participate in the synthesis of phosphomannan and phospholipomannans (42-44). 

There are two main classes of cell wall mannoprotein in C. albicans based on the nature 
of their linkage to cell wall polymers.  GPI-anchored proteins, which are the most abundant 
class of cell wall mannoprotein, are covalently attached via their carboxy-terminal 
glycosylphosphatidylinositol (GPI) anchor to β-1,6-glucan which, in turn, is linked to β-1,3-
glucan (31).  Pir proteins (proteins with internal repeats) are less abundant, and these are 
covalently linked directly to β-1,3-glucan (31,45).   

Cell wall proteins provide anchors for the mannan outer layer of the cell wall.  They 
contribute to the structural integrity of the cell wall, and some are cell wall remodelling 
enzymes responsible for generating essential covalent linkages between cell wall components 
(18,46,47).  Transglycosylases from the GH72 family catalyse glucan remodelling, and their 
inactivation affects growth, morphology and virulence. For example, PHR1 and PHR2 (pH-
responsive genes 1 and 2) encode members of this family, and they catalyse the pH-regulated 
cross-links between β-1,6- and β-1,3-glucans.  PHR1 plays a crucial role in the formation of 
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the hyphal cell wall and in pathogenesis (47,48).  The GPI-anchored yapsin-like aspartic 
proteases Sap9 and Sap10 have functions in cell surface integrity and cell separation during 
budding, while the CRH family of chitin-glucanosyltransferases (Crh11, Crh12, Utr2) are 
involved in formation of linkages between β-1,3-glucan and chitin (46). The degree of cross-
linking between components of the cell wall is important for its organization and integrity, as 
this determines its elasticity, resistance and porosity. This is evidenced by the deletion or over-
expression of genes encoding cell wall remodelling enzymes, which results in altered 
sensitivity to cell wall disrupting agents, such as Congo Red, Calcofluor White, SDS, and high 
Ca2+ concentrations (18,46,47).   

Besides its structural role, the cell wall promotes C. albicans pathogenicity, for example 
through adhesion, invasion and damage.  Adhesins are important not only for fungal 
colonisation, but also for biofilm formation and interactions with other microbes.  Most of the 
known adhesins are GPI anchored proteins, and many are members of multigene families 
such as the ALS and HWP gene families (49,50).  Some adhesion genes, such as ALS3 and 
HWP1, are expressed during hypha formation, which is why this morphotype is particularly 
adherent.  The HWP adhesin family is required for adhesion to host cell proteins, biofilm 
formation, cell-cell aggregation and mating (49,51). HWP1, HWP2, and RBT1 expression is 
induced not only during hypha formation but also during mating of opaque cells. Another 
member of this family, EAP1, is expressed in both yeast and hyphal cells and is differentially 
regulated during yeast phenotypic switching (51,52).  Als3 acts both as an adhesin and an 
invasin as it binds to a host receptor on epithelial or endothelial cells to induce endocytosis 
(53).  Als3 also enables iron acquisition by binding transferrin and has effects on host cell 
damage and cytokine induction (54).  

The general structure of the C. albicans cell wall has been reasonably well understood 
for some time (9,22,23).  However, recent technological advances are extending our 
knowledge of this field.  For example, atomic force microscopy is providing direct information 
about cell wall structure and elasticity (55).  Also, super-resolution microscopy has shown that 
phosphomannans, which are negatively charged, are critical for glucan masking at the cell 
surface (56).  Furthermore, high resolution electron tomography has permitted the 
development of the first scale model of C. albicans cell wall architecture (Megan Lenardon 
and Neil Gow, personal communication).  This deeper understanding of C. albicans cell wall 
biosynthesis, structure and organisation is helping the development of new therapies and 
diagnostics.  

In the past, the fungal cell wall was often portrayed as a rigid shield-like structure in 
which, for example, chitin was compared to the steel in reinforced concrete.  However, it has 
become clear that the cell wall is actually a surprisingly elastic structure.  C. albicans releases 
extracellular vesicles which carry diverse cargo (including enzymes, toxins and nucleic acids, 
for example) that are believed to function in cell-to-cell communication, metabolism, and 
pathogenesis (16,57,58).  These extracellular vesicles vary in size from 50 to 850 nm, and yet 
these membrane-bound compartments are able to transit through the cell wall into the 
surrounding milieu (16).  Another study has demonstrated that large liposomal particles can 
gain entry to the cell by traversing the C. albicans cell wall.  Transmission electron microscopy 
has revealed that Ambisome particles of 60 to 80 nm, which are much larger than the predicted 
pore size of the cell wall (approximately 6 nm), are able to transit through the cell wall whilst 
both particle and cell wall retain their integrity (17).  The remarkable elasticity of the C. albicans 
cell wall is further reflected in the ability of C. albicans cells to undergo rapid and dramatic 
changes in volume in response to acute hyper-osmotic stress (18).  Therefore, the cross-
linked polymers of the C. albicans cell wall have evolved to provide an elastic and flexible 
structure, not a rigid shield.  
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Cell wall remodelling in response to damage 

The C. albicans cell wall is a dynamic structure that changes in response to 
morphogenetic triggers, other environmental inputs, genetic perturbation, and antifungal 
treatment.  Transcriptomic, proteomic and biochemical studies from a number of research 
groups have revealed condition-specific programmes of cell wall protein expression (33) and 
carbohydrate content or synthesis (21).  A complex network of signalling pathways regulates 
this cell wall adaptation.  These pathways include the cell wall integrity pathway, high 
osmolarity glycerol (Hog1) mitogen activated protein kinase (MAPK) signalling, the 
calcineurin-calmodulin pathway, the protein kinase A (PKA) pathway, the Cek1 MAPK 
pathway, mitochondrial reactive oxygen species (ROS) signalling, casein kinase I (Yck2, 
Yck3), and the heat shock transcription factor (Hsf1)-Hsp90 auto-regulatory circuit (59-64) 
(Figure 2).  This complexity probably reflects the absolute requirement to retain cell wall 
homeostasis in the face of a diverse range of environmental inputs and challenges.  

This complex regulatory network presents an issue for antifungal therapy because, 
following exposure to an agent that compromises cell wall integrity, the network provides 
mechanisms for compensatory changes to the fungal cell wall.  The major classes of antifungal 
drug impose major insults on the cell wall by targeting the synthesis or structural integrity of 
the cell wall and plasma membrane.  Echinocandins, such as Caspofungin, target β-glucan 
biosynthesis via the catalytic subunit of glucan synthase, Fks1.  The inhibition of Fks1, and 
hence β-glucan synthesis, by Caspofungin induces compensatory activities in the form of 
increased chitin synthesis and deposition in the cell wall (65).  This elevation in cell wall chitin 
then protects cells against further Caspofungin treatment both in vitro and in vivo, thereby 
compromising the efficacy of the antifungal drug (66).  

Azole drugs, such as fluconazole, target lanosterol 14-α-demethylase (Erg11) on the 
ergosterol biosynthesis pathway.  This induces significant changes in plasma membrane 
rigidity and integrity.  Although azoles do not appear to affect the cell wall directly, proteomics 
and cell wall sensitivity assays have shown that fluconazole treatment indirectly perturbs the 
integrity of the cell wall (67).   

Clearly, genetic perturbation of cell wall components can significantly affect cell wall 
architecture.  The loss of β-glucan synthase (Fks1) is lethal to C. albicans (10,29).  However, 
only one of the four chitin synthase genes (CHS1) is essential for viability (12,68), due to 
compensatory changes in chitin synthesis rescuing the loss of other CHS genes (25).  In 
general, cell wall mannoproteins themselves are rarely essential for viability, but the 
inactivation of some specific GPI-anchored proteins can perturb integrity of the C. albicans 
cell wall (69,70).  Mutations with more general effects upon the localisation or mannosylation 
of GPI anchored cell wall proteins also affect the sensitivity of C. albicans to cell wall stresses 
(34-36,39,71,72).  This type of approach, involving the analysis of cellular responses to the 
disruption of cell wall genes or to cell wall perturbing agents, has helped to elucidate the roles 
of specific proteins or protein families in virulence-related phenotypes, such as adhesion and 
biofilm formation.  In the context of this article, it has also highlighted key mechanisms 
underlying cell wall maintenance and homeostasis.  

The cell wall integrity signalling pathway drives the main compensatory changes in the 
cell wall that are initiated in response to antifungal drugs, other cell wall stresses, and genetic 
insults.  This pathway has been evolutionarily conserved across those fungi investigated, and 
has been extensively studied in the model yeast, Saccharomyces cerevisiae.  The cell wall 
integrity pathway responds to the activation of cell wall stress sensors by up-regulating the 
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expression of cell wall synthesis genes via a highly conserved MAPK signalling cascade 
(Figure 2).  In S. cerevisiae, signalling via the cell wall integrity pathway is initiated by the 
membrane proteins Wsc1, Wsc2, Wsc3, Mid2, and Mtl1, which act as cell integrity sensors 
(73).  Upon loss of cell wall integrity, these sensors interact with Rom2 to activate Rho1, which 
then activates protein kinase C (Pkc1).  Pkc1 signals to a MAPK module comprising Bck1, 
which activates MKK1/2, which phosphorylate and activate the MAPK, Slt2.  Slt2 then 
activates the transcription factors Rlm1 and Swi4/6, which induce the expression of genes that 
include the cell wall synthesis machinery (73).   

C. albicans has homologs for many components of the cell wall integrity pathway (74-
76).  Mutations in many affect the virulence of C. albicans, as well as its cell wall integrity, 
which suggests a key role for the cell wall integrity pathway in host niches.  Furthermore, some 
components of this PKC-MAPK module in C. albicans have broader roles than their homologs 
in S. cerevisiae. For example, Mkc1, the C. albicans homolog of the S. cerevisiae MAPK Slt2, 
has an expanded role in regulating cellular morphogenesis under certain conditions (75).  In 
addition, in C. albicans, Cas5 (rather than Rlm1) appears to be the transcription factor that 
plays the major role in controlling key gene outputs of the cell wall integrity pathway (77).  The 
cell wall integrity pathway also engages in cross talk with other important signalling pathways 
that include the cAMP-PKA, target of rapamycin (TOR), and Hog1 pathways, which helps to 
coordinate the response to specific stressors (78,79) (Figure 2).  It is worth noting that the cell 
wall integrity pathway also regulates important virulence traits in other fungi, for example 
capsule synthesis in Cryptococcus neoformans (80) and drug resistance and virulence in 
Aspergillus fumigatus (81).  

 

Cell wall remodelling in response to environmental change  
The ability of the C. albicans cell wall to remodel itself in response to sub-lethal 

concentrations of cell wall damaging agents (above) reflects the fact that cell wall remodelling 
is simply an important component of the normal adaptive responses of this fungus to 
environmental change.  Yeast-hypha morphogenesis is one of the most studied adaptive 
responses of C. albicans because of the importance of this reversible morphological transition 
for host-fungus interactions and virulence (82-84).  A range of environmental stimuli trigger 
hyphal development, including temperatures above 36°C, neutral pH, serum, bacterial 
peptidoglycan, high CO2 levels, release from quorum sensing and nutrient starvation.  The 
resultant yeast-to-hypha transition is accompanied by shifts in the carbohydrate and proteomic 
content of the cell wall (27,85-87).  The cell walls of C. albicans hyphae can have up to two-
fold less mannan, three-fold more glucan, and five times more chitin than the walls of yeast 
cells (27).  Furthermore, changes in glucan structure are associated with hypha formation (88).  
These changes in cell wall structure attenuate Dectin-1 mediated recognition of hyphae by 
innate immune cells, which compounds the physical challenges associated with the 
phagocytosis of mycelia (88-91).   

Carbon source availability differs significantly between host niches.  For example, 
glucose concentrations are about 0.06–0.1% in the bloodstream, but are essentially zero in 
the colon (92), whilst significant amounts of short chain fatty acids, such as lactate, are present 
in the vagina and colon (93,94).  Changes in carbon source have been found to exert major 
effects on the architecture and content of the C. albicans cell wall.  Although the relative 
amounts of chitin, glucan and mannan remain similar, C. albicans cells grown on lactate, 
rather than glucose, have a thinner and less elastic cell wall (18,20).  These changes in cell 
wall architecture correlate with changes in the cell wall proteome and secretome.  In particular, 
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the levels of certain chitinases increase (Cht1, Cht3), as do the cell wall remodelling enzymes 
Pga4, Phr1, Phr2, Pir1 and Xog1 (95).    

The availability of essential micronutrients such as iron and zinc also varies between 
host niches, and this is exacerbated by the host’s attempts to deprive invading pathogens of 
these micronutrients via nutritional immunity (96-98).  Therefore, the ability to scavenge iron 
and zinc is critical for fungal pathogenicity and tissue invasion (99,100).  In C. albicans, 
adaptation to iron starvation triggers changes in the expression of genes encoding cell wall 
proteins, biosynthetic enzymes and cross-linking enzymes (e.g. Als2, Bgl2, Cht2, Mnt4, Phr2, 
Pir1, Scw11) (101) and the elevation of Hwp1 and Rbt5 in the cell wall proteome (19).  Recent 
data from our laboratory has shown that iron limitation is also accompanied by significant 
changes in cell wall architecture (unpublished).  Changes in zinc availability also affect the 
C. albicans cell wall.  Adaptation to zinc deprivation yields more adherent C. albicans cells 
that expose less mannan, but more chitin at their cell surface (102).  Also, zinc mobilisation is 
linked to PKA signalling (103), which influences cell wall remodelling (59).     

Host niches also vary significantly in their ambient pH.  For example, the bloodstream is 
maintained at around pH 7.4, whereas the vaginal mucosa varies from pH 4 to pH 5 (1,104), 
and the major compartments of the gastrointestinal tract range from pH 2 to pH 7.5 (105-107).  
This type of change in ambient pH has a significant effect upon the C. albicans cell wall.  When 
cells are exposed to low pH, the chitin content of the cell wall increases and the mannan fibrils 
in the outer layer of the cell wall become shorter and more disorganised (108).  The expression 
of cell wall protein genes is also affected by changes in ambient pH.  For example, exposure 
to alkaline pHs leads to the up-regulation of genes encoding cell wall biosynthetic enzymes 
(Kre6, Ecm38), modifying enzymes (Cht2, Crh1, Phr1), adhesins (Als3, Hwp1) and other cell 
wall mannoproteins (Hyr1, Rbt1, Rbt4) (109-111).  Growth at an alkaline pH also induces the 
expression of cell wall and secreted proteins that play important roles in host-fungus 
interactions, such as the zincophore Pra1 and the candidalysin precursor, Ece1 
(100,111,112).   

Oxygen levels vary dramatically between host niches, approaching zero in the human 
colon and in some fungal lesions (113-115).  Adaptation to hypoxia drives changes to the 
architecture of the C albicans cell wall (Figure 3), yielding a thinner inner glucan-chitin layer 
and thinner mannan outer layer (64).  Hypoxia up-regulates ECM33, which is important for cell 
wall biogenesis and integrity (116), and ALG2, which encodes a putative mannosyltransferase 
(117).  There is also an increase in the abundance of specific GPI-anchored proteins in the 
cell wall proteome (Hwp1, Pir1, Rbt5) (19).  Hypoxic regulation of cell wall changes depend 
largely upon a combination of mitochondrial, PKA and Efg1 signalling (64,117).   

Changes in ambient temperature also affect the C. albicans cell wall.  When C. albicans 
yeast cells grow at 42°C their chitin content increases relative to cells grown at 30°C (118).  
Furthermore, the levels of the cell wall β-glucan glycosidases, Phr1 and Phr2, and chitin 
transglycosidases, Crh11 and Utr2, increase during growth at 42°C (118).  In addition, 
temperature has an effect on the branched N-mannan composition of the cell wall: there is a 
decrease in β-1,2-linked mannose and an increase in α-1,3-linked mannose during growth at 
higher temperatures (119).  Unsurprisingly, the perturbation of thermal regulatory processes 
in C. albicans also affects the cell wall.  For example, depletion of the molecular chaperone 
Hsp90, which regulates the transcription factor Hsf1, affects the chitin content of the cell wall 
and leads to an increase in the thickness of both the inner and outer layers of the wall (120).   

As discussed above, exposure to antifungal drugs or to cell wall stresses triggers cell 
wall remodelling.  Other types of environmental stress also affect the cell wall.  C. albicans is 
exposed to oxidative stress during phagocytic attack, and the cell wall provides a first line of 
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defence against the oxidative damage caused by reactive oxygen species (ROS).  ROS 
detoxifying enzymes such as superoxide dismutases (Sod4, Sod5) and catalase (Cat1) are 
found at the cell surface (121,122).  Furthermore, the peroxidase Tsa1 is localised to the 
hyphal cell wall (123).  All of these are up-regulated upon encountering oxidative stress (122-
124).  Oxidative stress also influences cell wall architecture by inducing elongation of β-1,2-
linked mannose side chains (125).   

Changes in osmolarity drive changes in cell volume.  Under these circumstances, the 
elasticity of the cell wall underlies the ability of C. albicans cells to adjust their volume without 
incurring fatal rupturing of the wall or plasma membrane (18).  This cell wall elasticity is 
dependent on the expression of the CHR family of transglycosylases (Chr11, Chr12, Utr2) 
(18).  Adaptation to osmotic shock is dependent on signalling through the MAP kinases Hog1 
and Mkc1, both of which regulate cell wall synthesis and remodelling (75,126-128) (Figure 2).   

Quorum sensing also influences cell wall biogenesis by modulating yeast hypha 
morphogenesis and PKA signalling at high cell densities (Figure 2).  C. albicans generates 
farnesol, which accumulates at high cell densities.  Farnesol attenuates the activity of adenyl 
cyclase, thereby down-regulating PKA activity (129).  Farnesol also inhibits hyphal 
development by blocking Ubr1-mediated protein degradation of Nrg1, which represses hyphal 
development (130,131).  

Clearly the cell wall is a flexible organelle that responds to local environmental inputs.  
These adaptive changes in cell wall structure and organisation directly affect the fitness of the 
fungus in these microenvironments.  However, they also affect the fitness of the fungus 
indirectly in these microenvironments by influencing host-fungus interactions (below).   
 
The cell wall in immune surveillance  

As mentioned above, the cell wall is the first point of direct contact between C. albicans 
cells and innate immune cells.  The cell wall polymers chitin, β-glucan and mannan are present 
on diverse fungal pathogens (13).  The immune system has evolved to recognise these cell 
wall polymers as key epitopes, or pathogen-associated molecular patterns (PAMPs) (132).  
Professional phagocytes (including neutrophils, macrophages and dendritic cells) and non-
professional phagocytes (such as epithelial and endothelial cells) express an array of fungal-
sensing receptors, or pattern recognition receptors (PRRs) (133,134).  These host receptors 
detect C. albicans PAMPs, many of which are located at the cell surface, and this recognition 
elicits innate immune responses (135-137).  

Chitin is located in the inner layer of the C. albicans cell wall, in relatively low abundance 
compared to the other main cell wall components.  Consequently most of the chitin in the 
lateral cell wall is largely shielded by the outer layer of mannan fibrils.  Nevertheless, chitin is 
exposed at the cell surface in bud/birth scars and at sites of cell wall damage and does act as 
a PAMP (132).  Chitin is thought to undergo degradation into small particles (<1 um) during 
the inactivation of fungal cells by neutrophils and macrophages and by chitinase digestion 
(138).  These chitin particles are recognised by the mannose receptor (MR) and, thereafter, 
intracellularly by NOD2 and TLR9, eliciting an anti-inflammatory programme that includes 
elevated IL-10 expression and the dampening of TNF-α levels (138).  Furthermore, C. albicans 
chitin suppresses the generation of nitric oxide by macrophages and shifts macrophage 
polarization from a pro-inflammatory M1 state towards anti-inflammatory M2 activation (139).  

β-Glucan is highly immunogenic and the recognition of this PAMP is critical for antifungal 
immunity.  While most β-glucan is buried in the inner layer of the C. albicans cell wall and 
masked by mannan fibrils (56,140), some β-glucan is exposed at bud scars and at small 
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puncta over the lateral cell surface (89; Bain et al. unpublished).  β-Glucan recognition occurs 
predominantly through the C-type lectin receptor (CLR), Dectin-1 (133).  Dectin-1 mediated 
recognition of β-glucan promotes formation of a phagocytic synapse, which activates pro-
inflammatory signalling through Syk/CARD9, driving the respiratory burst and the release of 
cytokines such as TNF-α, IL-6 and IL-12 (141).  In addition, the recognition of β-glucan by 
Dectin-1 triggers phagocytosis, phagosome maturation and ultimately clearance of the 
offending fungal cell (142).   

The critical importance of Dectin-1 in anti-Candida immunity is highlighted by the 
susceptibility of Dectin1 knockout mice to lethal infection (143), as well as by the association 
of a genetic polymorphism in human Dectin-1, which disrupts β-glucan recognition by 
phagocytes and abrogates cytokine expression, with familial recurrent vulvovaginal 
candidiasis (144).  Furthermore, elevated β-glucan exposure on C. albicans cells correlates 
with their reduced fitness in the gastrointestinal tract (145), probably because this exposure 
enhances Dectin-1-mediated clearance of the fungal cells from the gut.  In addition to 
activating phagocytosis and pro-inflammatory functions, Dectin-1-mediated sensing of 
C. albicans β-glucan enables “trained immunity” via epigenetic reprogramming of monocyte 
metabolism to drive enhanced protection against secondary infections (146).  Also, a link to 
adaptive immunity was demonstrated in a study showing that Dectin-1 expressed on dendritic 
cells controls CD4+ T cell-mediated gut immunity in mice (147).  

These observations illustrate the central importance of Dectin-1 in anti-Candida innate 
and adaptive immune defences.  However, additional receptors contribute to the recognition 
of β-glucan.  CR3 (Mac1, CD11b/CD18) is an integrin expressed on several myeloid and 
lymphoid cell types with affinity for a variety of ligands including iC3b-opsonized target cells 
(148). The I-domain of the CD11b subunit can bind β-glucan (149) and contributes, along with 
Dectin-1, to the recognition of C. albicans hyphae by macrophages (150).  Other β-glucan 
receptors include the glycosphingolipid Lactosylceramide, the scavenger receptors SCARF 
and CD36, and CD23 (151-153).  

As stated above, the frond-like mannan fibrils that decorate the outer cell wall limit the 
exposure of β-glucan to immune recognition (56).  Nevertheless, the mannan fibrils 
themselves contain molecular signatures that potentiate host immune responses (132).  N-
mannan is detected by the mannose receptor, which promotes the oxidative burst and 
Th1/Th17 responses to control C. albicans infection (154).  DC-SIGN (SIGN-R in mice), which 
is expressed by dendritic cells, also binds fungal N-mannan.  This leads to interactions with 
plasma membrane “pickets”, such as CD44, that connect the N-mannan-DC-SIGN synapse 
to the cytoskeleton, thereby stabilising phagocytic binding to the target C. albicans cells (155).   

The PRRs Dectin-2 and Dectin-3 (MCL, ClecSF8) recognise hyphal α-mannan (156-
158).  Indeed, hetero-dimerization of Dectin-2 with Dectin-3 drives a more potent NFkB 
response than either of these receptors alone (158).  The Mincle (macrophage inducible Ca++-
dependent lectin) receptor also recognises α-mannan in the C. albicans cell wall to drive TNF-
α production, thereby promoting protection against systemic infection in mice (137,159).  In 
humans, Mincle expression on monocytes is non-phagocytic, but drives pro-inflammatory 
responses, whereas Mincle expression on neutrophils mediates phagocytosis and killing of 
C. albicans (160).  C. albicans α-mannans are also recognised by CD23, resulting in NFkB 
activation (153). 

Mannose-binding lectin (MBL) is a secreted circulatory PRR that supports opsono-
phagocytosis, and mice that lack MBL succumb to lethal C. albicans infections (161).  Gut 
epithelial cells secrete MBL upon sensing C. albicans to regulate gut homeostasis and control 
infection (162).  Galectin-3, which is expressed in the cytoplasm of host cells and in body fluids 
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(163), has direct fungicidal activity against C. albicans cells (164).  Galectin-3 binds fungal β-
1,2 mannoside residues, which are found in phospholipomannan and occasional side branch 
caps of N-mannan chains in the outer wall of C. albicans (165) .  Meanwhile the PRR Langerin 
recognises mannan and β-glucan and is the dominant receptor on Langerhans cells, which 
are specialised dendritic cells that are positioned within the epidermis to sample Candida 
species during gut colonisation (166,167).   

The role of Toll-Like Receptors (TLRs) in mammalian antifungal defences was initially 
suggested by a Drosophila melanogaster study that revealed the regulation of drosomycin by 
the Toll pathway (168).  Subsequently, TLR2 and TLR4 were shown to modulate cytokine 
production during candidiasis (169).  These TLR receptors recognise phospholipomannan and 
O-linked mannan in the C. albicans cell wall, respectively (170-172).  

Host receptors do not act efficiently in isolation.  Instead, sensing of fungal targets is 
best achieved by collaboration between PRRs and the multi-valent engagement of multiple 
PAMPs on the cell surface.  The inflammatory programme is maximised by co-stimulation of 
TLR and CLR and activation of MyD88 and Syk/CARD9 pathways, respectively.  For example, 
Dectin-1 and TLR2 cooperate to drive TNF-α production following recognition of C. albicans 
β-glucan (173,174).  Dectin-1 also mediates cooperative signalling with CR3 and SIGN-R1 
(175,176) and, as mentioned above, the paired engagement of Dectin-2 and Dectin-3 
synergistically boosts inflammatory responses (158).  Our understanding of fungal recognition, 
combinatorial signalling and effector function is limited, and this is further complicated by the 
context of immune cells involved, their activation status and the nature of the fungal target 
encountered.   
 
The cell wall in immune evasion 

Most studies of fungal immunology have focussed on the immune cell – the receptors 
and their ligands, mechanisms of intracellular and cytokine signalling, and phagocytosis, for 
example.  Less attention has been paid to the fungus and in particular to the impact of fungal 
adaptation upon PAMP exposure.  Indeed most fungal immunology studies have examined 
fungal cells that were grown under standardised, but non-physiological conditions in vitro.  Yet, 
as described above, C. albicans remodels its cell wall in response to environmental change.  
It is therefore unsurprising that the conditions under which C. albicans is grown significantly 
affect PAMP exposure, and thereby, the outcome of host-fungus interactions (91).  It is 
becoming clear that, in reality, C. albicans is a moving target for the immune system.   

Early indications that C. albicans is a moving immunological target arose from Wheeler’s 
work showing that dynamic morphogenetic changes during infection affect the degree of β-
glucan exposure on the fungal cells (177).  In part this effect appears to be mediated by the 
damage that neutrophil extracellular traps cause to the fungal cell surface in situ, and the 
subsequent fungal cell wall remodelling and repair, which is largely mediated by Hog1-
dependent processes (178).  

The paradigm of the moving immunological target was clearly demonstrated by the 
observation that exposing C. albicans cells to physiological levels of lactate (a metabolite 
generated in the vagina and gut by host cells and the microbiota) triggers β-glucan masking 
at the fungal cell surface (179).  C. albicans cells detect extracellular lactate via the receptor 
Gpr1, which signals through Gpa2, PKA, Crz1 and Ace2, leading to reduced β-glucan 
exposure at the cell surface (64,179) (Figure 3).  This results in decreased macrophage 
phagocytosis, lower rates of neutrophil recruitment to sites of infection, and decreased 
production of the pro-inflammatory cytokines TNF-α and MIP-1 (179).  This work, together with 
the correlative studies of Sem and co-workers (145), suggests that C. albicans exploits local 
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environmental signals to evade immune recognition and thereby enhance its fitness in certain 
host niches.  

More recently, C. albicans has been shown to trigger β-glucan masking and immune 
evasion in response to hypoxia (64,115).  During the development of a lesion, oxygen 
concentrations are lower through the combined activities of the infecting C. albicans cells and 
the neutrophils in immune infiltrates that form in an attempt to clear these fungal cells.  The 
resultant hypoxic microenvironment activates β-glucan masking by the C. albicans cells, 
thereby protecting them from clearance by the surrounding neutrophils (115).  The hypoxic 
signal is transduced via the mitochondrion, which leads to PKA-mediated β-glucan masking 
(64) (Figure 3).  More recently, we have shown that iron depletion also promotes β-glucan 
masking in C. albicans (Pradhan et al. unpublished).  Iron depletion is highly relevant to 
systemic infection as the fungus becomes exposed to iron-limiting conditions in tissues as a 
consequence of the nutritional immunity imposed by immune infiltrates around fungal lesions 
(98). Clearly, C. albicans is able to exploit the local signals in certain host niches to evade 
immune recognition.  

Other host niches appear to trigger PAMP exposure and inflammation, rather than 
PAMP masking and immune evasion.  C. albicans cells that are exposed to the relatively low 
ambient pH of the human vagina tend to expose higher levels of β-glucan and chitin at their 
surface than cells grown at neutral pH of the bloodstream, for example (108).  The elevated 
chitin exposure appears to be mediated by a reduction in chitinase (Cht2) expression via Bcr1 
and Rim101 signalling (Figure 3).  The exposed fungal cells are phagocytosed more efficiently 
by macrophages and neutrophils, they stimulate increased production of pro-inflammatory 
cytokines, and they recruit immune cells more efficiently to infection sites (108).  These 
observations appear to resonate with the inflammatory behaviour of C. albicans during 
vulvovaginal candidiasis (180).  

Artificial environmental inputs, such as antifungal drugs, also convert C. albicans into a 
moving immunological target.  Exposure to sub-inhibitory concentrations of caspofungin 
increases β-glucan exposure in C. albicans to sufficient levels to elicit a potent TNF-α 
response from macrophages (140).  This caspofungin-mediated β-glucan exposure is relevant 
in vivo during infection (177).  A heightened immune response to C. albicans can also be 
caused by mannan grazing by Bacteroidetes (a Gram-negative member of the gut microbiota), 
possibly via trimming of the outer fibrillar layer of the cell wall to reveal the underlying β-glucan 
(181). 
 
Parallels with other fungal pathogens  

C. albicans is not the only fungal pathogen to evade host immune responses by masking 
a major PAMP in their cell wall.  A. fumigatus, C. neoformans, Histoplasma capsulatum, and 
other dimorphic fungal pathogens have evolved effective mechanisms to avoid Dectin-1-
mediated immune responses.  These fungal pathogens mask PAMPs via two major 
mechanisms: firstly, by physically masking the PAMP with non-stimulatory cell wall molecules; 
or secondly, by hydrolase-mediated remodelling of the exposed PAMP. 

A. fumigatus is the most common cause of invasive mould infections in 
immunocompromised patients (7).  The initial host-pathogen interaction, and an important 
stage for immune evasion, occurs between conidia, lung epithelial cells, and resident alveolar 
macrophages.  The A. fumigatus cell wall contains pro-inflammatory PAMPs, such as 
galactomannans and β-glucan, which stimulate robust antifungal immune responses and 
clearance mechanisms (182-184).  A. fumigatus PAMP exposure peaks with conidial swelling 
and early hyphal germination, but is masked in mature hyphae and ungerminated conidia 
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(185).  These ungerminated conidia mask their cell wall PAMPs under a rodlet layer composed 
of DHN-melanin and the hydrophobic RodA protein (186). 

RodA masks Dectin-1- and Dectin-2-mediated detection of A. fumigatus conidial 
PAMPs, and this promotes early immune evasion and fungal survival in the host (187).  DHN-
melanin plays an important role in preventing phagosomal acidification, thereby enhancing 
virulence (188,189).  However, DHN-melanin is also a PAMP and the ligand for the newly 
characterised host PRR, MelLec (184).  Sensing of DHN-melanin by MelLec is important for 
the control of systemic A. fumigatus infection and MelLec polymorphisms are associated with 
increased risk of aspergillosis in certain cohorts of transplant patients (184).   

The protective rodlet layer is lost during A. fumigatus germination to reveal the 
underlying PAMPs.  However, A. fumigatus hyphae synthesize a cell wall polysaccharide, 
galactosaminogalactan, which masks β-glucan whilst mediating adherence to host cells (190). 
A. fumigatus mutants with defects in galactosaminogalactan biosynthesis display increased 
β-glucan exposure, they are attenuated in their virulence, and they induce hyper-inflammation 
in mice (190).   

C. neoformans is another environmentally prevalent human fungal pathogen that causes 
disease in immunocompromised patients (7,191).  Despite its clinical significance, relatively 
little is known about how the immune system recognises C. neoformans (192).  In addition to 
the conserved carbohydrate polymers that typically form fungal cell walls (e.g. chitin, β-
glucans, and mannans (13), C. neoformans possesses a unique polysaccharide capsule, 
primarily composed of glucuronoxylomannan, which masks its cell wall PAMPs.  
Glucuronoxylomannan is recognised by the receptor TLR4, but TLR4 engagement is not 
sufficient to induce TNF-α or influence mouse susceptibility to cryptococcosis (193,194).  
Interestingly, the collectin SP-D binds to glucuronoxylomannan in vitro, and its interaction with 
C. neoformans cells facilitates fungal protection from macrophage killing (195). This suggests 
a possible proactive immune evasion role for C. neoformans capsule beyond simply passively 
shielding cell wall PAMPs (195). 

Acapsular C. neoformans mutants are avirulent and are phagocytosed more efficiently 
than encapsulated cells (195), which is likely due to the unmasking of the underlying immune-
stimulatory PAMPs.  These appear to include mannoprotein moieties recognised by the 
Mannose Receptor (196), as mice lacking the Mannose Receptor are more susceptible to 
infection than wild-type mice (197).  Other major receptors, such as Dectin-1, Dectin-2, and 
Dectin-3, are not essential for in vivo defences against cryptococcosis (198-200).   

The virulence of dimorphic fungal pathogens, such as H. capsulatum, Blastomyces 
dermatitidis and Paracoccidioides brasiliensis, has been linked to α-1,3-glucan in their cell 
walls.  α-1,3-Glucan blocks the recognition of cell wall β-1,3-glucan via Dectin-1 by physically 
masking β-1,3-glucan (201).  Consequently, P. brasiliensis and B. dermatitidis mutants with 
low α-1,3-glucan production display decreased virulence in mouse models of infection 
(202,203).  However, this association between H. capsulatum virulence and α-1,3-glucan is 
dependent on strain chemotype.  H. capsulatum strains of chemotype II require α-1,3-glucan 
for virulence (204) and the inactivation of α-1,3-glucan synthesis attenuates H. capsulatum 
virulence in mice (205). 

In addition to physically masking β-1,3-glucan with α-1,3-glucan, H. capsulatum also 
enzymatically reduces β-glucan exposure in its cell wall (206).  This is achieved by expressing 
Eng1, an endoglucanase that hydrolyses β-(1,3)-glycosyl linkages.  Eng1 decreases β-glucan 
exposure at the cell surface, thereby reducing Dectin-1-mediated recognition of H. capsulatum 
cells, and enhancing the virulence of H. capsulatum (206).  Therefore the combined effects of 
physical masking (via α-1,3-glucan) and enzymatic trimming (via Eng1) provide H. capsulatum 
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with effective PAMP masking mechanisms (Figure 3).  No doubt these contribute to the 
inability of innate immune cells to control H. capsulatum infection, with macrophages 
ultimately serving as a reservoir for disseminated infection (206).  Interestingly, Eng1 
homologs exist in other important fungal pathogens, including C. albicans, suggesting that 
PAMP trimming mechanisms might contribute to immune evasion in these fungi.  
 
Conclusions and outlook  

To summarise, the fungal cell wall is a remarkable organelle that retains a high degree 
of elasticity and permeability, whilst retaining sufficient tensile strength and spatial integrity to 
preserve the morphology of the cell.  In this way the cell wall is able to protect the fungal cell 
against certain acute environmental stresses, whilst permitting communication with the host 
or local microbiota through the release of large extracellular vesicles.  Furthermore, through a 
complex signalling network that regulates cellular adaptation and cell wall synthesis, the cell 
wall is responsive to a wide variety of environmental challenges.  This cell wall remodelling 
allows a fungal pathogen to evade the potentially lethal effects of certain antifungal drugs or 
debilitating mutations, and of local cell wall stresses imposed by host niches.   

However, the cell wall is also a point of fragility for a fungal pathogen, as it carries 
immuno-stimulatory epitopes that can trigger antifungal host defences.  Therefore the cell wall 
has a major influence upon host-fungus interactions.  Nevertheless, the ability to remodel the 
cell wall has provided fungal pathogens with the capacity to evolve effective immune evasion 
strategies that either mask or remove cell surface PAMPs.  C. albicans, in particular, has 
“learned” to exploit a variety of host-derived signals to activate β-glucan masking and immune 
evasion, including lactate, iron deprivation and hypoxia.   

A number of fascinating questions remain to be answered.  For example, what is the 
exact nature and frequency of the covalent cross-links between the major cell wall polymers 
in the C. albicans cell wall?  And how, together with the properties of these polymers, do these 
cross-links promote the remarkable elasticity and morphological stability of the cell wall?  The 
development of monoclonal or recombinant antibodies that are specific for particular cross-
links would permit the frequency and spatial distribution of these linkages to be analysed in 
situ on the C. albicans cell wall.  This would be particularly interesting in the context of 
environmental or genetic changes that affect cell wall elasticity and/or morphology (e.g. 
(18,20,46,48).  

It would be fascinating to screen for host inputs that influence β-glucan exposure in 
C. albicans and thereby affect immune evasion.  A number of specific host inputs have been 
identified already, but an unbiased screen of host signals has yet to be reported.  Then, given 
the complexity and diversity of host niches, it would be important to test combinations of inputs 
to establish which signals are most influential in particular niches, and to test PAMP exposure 
on cells isolated directly from these niches.  For example, recent data (e.g. (207) suggests 
that lactate-mediated β-glucan masking might dominate over pH-mediated β-glucan exposure 
during vulvovaginal infection.  But what signals dominate in the gastrointestinal tract, and how 
does this affect C. albicans colonisation of the colon, for example?  

It is also important to understand exactly how do C. albicans cells mask β-glucan at their 
cell surface – by covering it with mannan or by trimming via an Eng1-like activity (56,208)?  
Does β-glucan masking attenuate C. albicans-phagocyte interactions by simply delaying 
phagocytic recognition, or does masking (also) reduce the dynamics of phagocytic uptake 
and/or phagolysosomal maturation?   
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These questions are not simply of academic interest.  A better understanding of the 
intricacies of cell wall structure and biogenesis is likely to reveal new therapeutic targets that 
will compromise this essential organelle.  Furthermore, a better understanding of the immune 
evasion strategies exploited by fungal pathogens might reveal ways in which PAMP masking 
might be blocked.  This type of drug might provide a potential means of augmenting antifungal 
immunotherapies.  Time will tell.   
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FIGURE LEGENDS 
 

Figure 1: Architecture of the C. albicans cell wall.  The model of the cell wall structure 
illustrates the organisation of chitin and glucan in the inner cell wall, and the N-mannan fibrils 
of the outer cell wall, which are linked to the inner cell wall via the GPI-anchored proteins from 
which these fibrils radiate.  GPI-proteins are attached to β-1,6-glucan which, in turn, is linked 
to β-1,3-glucan, whereas Pir proteins are linked directly to β-1,3-glucan.  The cartoon, which 
is taken with permission from (13), is compared with a transmission electron micrograph of 
the C. albicans cell wall (upper panel), which is an expanded region (blue box) from a 
micrograph of a complete cell (lower panel).  The diameters of inner and outer layers of the 
cell wall are each about 0.14 µm across (64).   
 
Figure 2: A complex network of signalling pathways regulates cell wall synthesis and 
remodelling in C. albicans.  Cell wall remodelling depends on the cell integrity pathway (red) 
(74,75).  Cell wall damage is thought to be detected by Wsc1/2/4, which activates protein 
kinase C (Pkc1) via Rho1.  This leads to activation of the Mkc1 MAPK module which triggers 
cell wall remodelling via the transcription factor Rlm1 but primarily via Cas5 (76,77,209).  The 
Hog1 pathway (blue) also contributes to the control of cell wall synthesis and remodelling (59).  
Cell wall or osmotic stress down-regulates Sln1, which leads to the activation of the Hog1 
MAPK module via the Ypd1 and Ssk1 phosphorelay (126,127,210,211).  Hog1 then modulates 
cell wall largely via the transcription factor Sko1, which also represses Brg1 (212).  Hog1 is 
down-regulated by the phosphatases Ptp2/3, which are activated by TOR signalling (grey) 
(212).  Hog1 also activates Mkc1 signalling, and represses the Cek1 pathway (dark green) 
(213).  Msb2 acts in concert with Sho1 to activate the Cek1 pathway in response to osmotic 
stress or cell wall damage, and Opy2 also contributes to Cek1 activation via Cst20 (214-217).  
Cek1 activates Cph1 which is thought to contribute to cell wall remodelling during hyphal 
development.  Morphogenesis is also activated by cAMP-PKA signalling (purple), which leads 
to cell wall remodelling.  In response to a variety of environmental inputs, the Gpr1-Gpa2 and 
Ras modules activate adenyl cyclase (Cyr1), which leads to cAMP accumulation and 
inactivation of the PKA regulatory subunit Bcy1 (218).  This leads to activation of the PKA 
catalytic subunits (Tpk1, Tpk2) which stimulates a network of transcription factors (Efg1, 

http://www.mrc.ac.uk/
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Ume6, Brg1) and releases Nrg1-Tup1-mediated repression to activate hypha-specific genes, 
hyphal development and cell wall remodelling (27,85-87,219).  This pathway is repressed by 
quorum sensing (brown), which inhibits adenyl cyclase (Cyr1), and also stabilises the 
repressor Nrg1 via Ubr1, Cup9 and Sok1 (129,130,220).  Calcium (Ca++) – camodulin (Cmd1) 
– calcineurin (Cna/b) signalling (lime green) also plays an important role in cell wall 
remodelling (59,221,222).  Activation of this pathway, possibly via the stretch-activated 
channel Mid1, leads to the up-regulation of the transcription factor Crz1, which promotes cell 
wall remodelling (223,224).  
 
Figure 3: Environmental factors modulate the exposure of cell surface epitopes to 
promote immune evasion or inflammation.  A number of factors have been shown to 
influence the exposure of key epitopes (PAMPs) on the C. albicans cell surface.  Caspofungin 
treatment leads to β-glucan exposure via the cell integrity (Mkc1) pathway (red) (140,177).  In 
contrast, host-derived lactate triggers β-glucan masking via Gpr1-Gpa2 and PKA signalling 
(purple) (64,179).  Hypoxia also initiates β-glucan masking, but this is mediated by 
mitochondrial signalling (grey), which then activates the PKA pathway (purple) (64).  
Micronutrient depletion leads to morphological changes that coincide with elevated chitin 
exposure at the cell surface (102).  This might be transduced via PKA signalling (103).  Growth 
in acidic pHs leads to increased β-glucan and chitin exposure (108).  The increase in chitin 
exposure is mediated by Bcr1 and Rim101 signalling (108).    
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