Supplementary information

The role of conductivity and molecular mobility on the photoanisotropic response of a new azo-polymer containing sulfonic groups.

Sakinah Mohd Alauddin¹,², Nurul Fadhilah Kamalul Aripin¹,², T.S. Velayutham²,³, Irakli Chaganava⁴,⁵, Alfonso Martinez-Felipe⁶, *

¹ Faculty of Chemical Engineering, University of Technology MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia.
²Fundamental and Frontier Sciences in Nanostructure Self-Assembly Center, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
³ Low Dimensional Material Research Center, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
⁴ Laboratory of Holographic Recording and Processing of Information, Institute of Cybernetics, GTU. 5 Sandro Euli str., 0186 Tbilisi. Georgia.
⁵ Georgian State Teaching University of Physical Education and Sport.49, Chavchavadze ave. 0179, Tbilisi. Georgia.
⁶ Chemical and Materials Engineering Research Group, School of Engineering, University of Aberdeen, King's College, Old Aberdeen AB24 3UE, UK.

* Corresponding author: a.martinez-felipe@abdn.ac.uk

Keywords: azo-polymers; dielectric spectroscopy; UV-Vis spectrophotometry; photoanisotropy; trans-to-cis photoisomerisation; conductivity.
Contents

1. Chemical characterisation.

Figure ESI1. 1H-NMR of 4-(methoxyazobenzene -4'-oxy) methacrylate, 3 (DMSO-d$_6$).

Figure ESI2. Chemical characterisation of MeOAzB/AMPS/MMA (room temperature): (a) 1H-NMR; (b) IR spectra; (c) GPC curve.

2. Results and discussion.

Figure ESI3. Kinetics of thermal back *cis*-to-*trans* photo-isomerisation of MeOAzB/AMPS/MMA measured in: (◇) bulk; (□) THF solution (R^2 > 0.99). t_0 is the time at irradiation.

Figure ESI4. UV-Vis spectra of MY-26 and BiN-GP, obtained at room temperature on thin films cast on quartz.

Figure ESI5. Chemical structures of: (a) 10-MeOAzB/MMA; (b) FIII; (c) CFAO and (d) CFMAO, in Table 1.
1. Chemical characterisation

Some additional information regarding the preparation of MeOAzB/AMPS/MMA and its intermediates is now shown. The proton Nuclear Magnetic Resonance, 1H-NMR, of 4-(methoxyazobenzene -4’-oxy) methacrylate, 3, is shown as **Fig. ESI1**. **Fig. ESI2(a) and (b)**, on the other hand, show the proton Nuclear Magnetic Resonance, 1H-NMR, and infrared, IR, spectra, respectively, measured at room temperature for MeOAzB/AMPS/MMA. The monomer composition in the terpolymer chain was then estimated in terms of equivalent units, by using the peaks in the 7 – 8 ppm region for the MeOAzB units (aromatic contributions, overall area / 8H), the peak at ~2.8 ppm for the AMPS units (s, adjacent to the sulfonic acid groups, CH_2SO_3, peak area / 2H) and the peak ~3.6 ppm (s, associated with the methyl groups, $\text{CO.OC}\text{H}_3$, peak area / 3H)$^{1-2}$. The IR spectrum is consistent with the chemical structure in **Fig. 2**, and some characteristic signals are found at 1750 - 1700 cm$^{-1}$ (C=O stretching, st., vibrations from MeOAzB and MMA groups), 3400, 1670 and 1550 cm$^{-1}$ (amide vibrations from AMPS groups), aromatic vibrations (1600, 1500 cm$^{-1}$)3. **Fig. ESI2(c)** shows the Gel Permeation Chromatogram (GPC) of MeOAzB/AMPS/MMA.

Figure ESI1. 1H-NMR of 4-(methoxyazobenzene -4’-oxy) methacrylate, 3 (DMSO-d6)
2. Results and discussion

In this section we depict some additional figures supplementing the discussion of the experimental results in the main manuscript. **Fig. ESI3** shows a comparison between the kinetics of the thermal back-isomerisation of MeOAzB/AMPS/MMA in the bulk and in THF solution. **Fig. ESI4** displays the UV-Vis absorbance of the chromophores, MY-26 and BiN-GP\(^4\), whose photoanisotropic responses are compared to MeOAzB/AMPS/AMPS. In **Fig. ESI5**, we have plotted the chemical structures of 10-MeOAzB/AMPS/MMA (a); FIII (b); CFAO (c) and CFMAO (d), which are used to rationalise the dielectric response of the present terpolymer in the main text\(^5\)\(^-\)\(^7\).

Figure ESI2. Chemical characterisation of MeOAzB/AMPS/MMA (room temperature): (a) \(^1\)H-NMR; (b) IR spectra; (c) GPC curve.

Figure ESI3. Kinetics of thermal back *cis*-to-*trans* photo-isomerisation of MeOAzB/AMPS/MMA measured in: (\(\bullet\)) bulk; (\(\square\)) THF solution \((R^2 > 0.99)\). \(t_0\) is the time at irradiation.
Figure ESI4. UV-Vis spectra of MY-26 and BiN-GP, obtained at room temperature on thin films cast on quartz.

Figure ESI5. Chemical structures of: (a) 10-MeOAzB/AMPS/MMA; (b) FIII; (c) CFAO and (d) CFMAO, in Table 1.
References

