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1.0 INTRODUCTION  28 

The oil palm tree is a monocotyledon of the family Arecaceae with the scientific name Elaeis 29 

guineensis. Though of African origin, it thrives on tropical soils and is, therefore, abundant in 3 30 

continents of the world, namely; Africa, Asia and South America and serves as the major source of 31 

palm oil [1]. Oil palm is reported to be the highest yielding edible oil crop in the world with a lifespan 32 

of between 20-30 years [2]. Oil palm is a huge source of vegetable fibres such that Malaysia and 33 

Indonesia which are the largest palm oil producers in the world continually face difficulties in managing 34 

the wastes generated from its cultivation and processing activities [3]. 35 

Among the wastes generated from oil palm plantation sites are oil palm shell, empty fruit bunch fibre 36 

(EFBF), oil palm pressed fruit (or mesocarp) fibre (OPMF), oil palm trunk fibres (OPTF) and oil palm 37 

frond fibres (OPFF). These are usually disposed indiscriminately or used by the locals as cooking fuel, 38 

both of which are not environmentally friendly [3-5]. As a result, several studies have recommended 39 

possible uses of the fibres ranging from paper production [6] to structural applications like natural fibre-40 

reinforcement in concrete [7] and polymer composites [8].  41 

1.1 Oil Palm Broom Fibres (OPBF) 42 

Oil palm broom fibres (OPBF) are the ribs of the leaflets of oil palm trees. Studies on OPBF for 43 

engineering applications are very few and recent [9,10]. OPBF is presently mainly used as sweeping 44 

brooms in many countries around the world. Compared to other oil palm fibres (such as EFBF, OPMF, 45 

OPTF and OPFF), OPBF are larger in size with their average diameter ranging from less than 1mm to 46 

3mm and length between 500 and 1200mm. In other words, the fibres possess the least aspect ratio 47 

among all oil palm fibres. Fig 1.1 illustrates the location of OPBF in the oil palm leaflets. By physical 48 

examination, OPBF seem to be stiff. They do not absorb water readily and do not rot easily like other 49 

natural fibres. Generally, oil palm fibres have good resistance to deterioration due to the presence of 50 

silica bodies [11]. Cross-sectional dimension of OPBF vary along its length: being thickest at the 51 

connection to the leaflet stalk and thinnest at the free end. 52 
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The popular extraction technique for OPBF is with the aid of a machete or knife. The leaflets are first 53 

detached from the petioles, then the leaves are peeled-off the ribs; herein referred to as OPBF. The 54 

fibres are then tied into broom units only to be sold at local markets [9]. Each broom unit consists of 55 

between 150-200 individual fibres. The first attempt at automating the fibre-extraction process is 56 

reported in the study of Nwankwojike et al. [12]. The study designed, developed and patented a palm 57 

frond broom peeling machine to reduce drudgery and fatigue associated with its extraction. The electric-58 

powered version of the machine extracts over 6000 broom fibres per hour with an efficiency of 88.33% 59 

while the manually-powered version produces only about 2000 broom fibres per hour with an efficiency 60 

of 91.7%.  61 

The main chemical constituents of fibres obtained from oil palm tree include, cellulose, lignin, 62 

hemicellulose, holocellulose and ash [13]and studies have shown that the tensile strength of the plant 63 

matter is proportional to its cellulose content as it is responsible for the plant structure rigidity [14-16].  64 

The development of several structures such as chairs, baskets, roofs, oil palm fibre-concrete [17], oil 65 

palm fibre-reinforced earth-bricks [18], oil palm fibre-reinforced polymeric composites [19], insulation 66 

panels [20], paper-based products [21] etc, from other oil palm fibres and recent drives towards 67 

environmental sustainability has necessitated investigation into some physical and mechanical 68 

properties of OPBF for which research information is non-existent at the moment. The uniqueness of 69 

OPBF could create a paradigm for both structural and non-structural use of the palm fibre in 70 

reinforcement for composites. 71 

2.0       EXPERIMENTAL PROGRAMME  72 

2.1       Specimen sampling and preparation  73 

Oil palm broom fibres (OPBF) were obtained from ñRice and Spiceò Aberdeen UK, in the form of 74 

broom units. The procedure for extracting the fibres from the palm trees has been discussed in section 75 

1.1. Blemish-free fibres having average length of 0.8 m were selected by visual inspection and 76 

handpicking. Fibres. It was observed that OPBF possess an axial gradation in which the fibres are 77 

thickest and thinnest in cross-sectional diameter at the head and tail respectively. For this reason, each 78 
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fibre was cut into four (4) specimens, each of 150mm length and grouped under four (4) categories. 79 

Category A are fibres 150mm long starting from the petiole joint (head) while category B are fibres 80 

150mm long beginning from the end of category A. Similarly, category C are fibres 150mm long 81 

beginning from the end of category B and category D being fibres 150mm long beginning from the end 82 

of category C (See Fig 2.1). This leaves out about 200mm cut off length at the tail. In other words, this 83 

study focused on an OPBF length of 600 mm measured from the head of the fibres. This approach was 84 

employed to better understand possible variations in strength behaviour along the length of the fibre. 85 

Cross-sectional areas of a total of 150 specimens were measured. All OPBF used for this study were 86 

more than 365 days old after harvesting from the oil palm trees. Other tests carried out include 87 

measurement of cross-sectional areas of OPBF, determination of moisture content, water-absorption, 88 

specific gravity and tensile strength of the OPBF. 89 

In a bid to further understand the structure/stability of OPBF, proximate analysis was carried out 90 

according to ASTM D5142ï02a [22], using a TGA/SDTA851e thermobalance, supplied by Mettler 91 

Toledo, while ultimate analysis was performed using a ThermoFisher Scientific FlashEA 1112 series 92 

analyser, according to ASTM D 5373 ï 02 [23].  The TGA/SDTA851e thermobalance was also used 93 

for the pyrolysis and combustion experiments after calibration with indium and aluminium at an 94 

accuracy of Ñ0.5K and 1.0 ɛg.  About 20 mg of OPBF were weighed inside an aluminium oxide 95 

crucible, and placed in the TGA furnace, using nitrogen and air as carrier gases.  Firstly, pyrolysis was 96 

carried out under nitrogen atmosphere, by heating from room temperature up to 9500C, at a heating rate 97 

of 200C min-1.  Then, the sample was exposed to air, in order to promote combustion, from 9500C to 98 

12000C, at the same heating rate of 200C min-1. 99 

2.2       Determination of cross-sectional areas of OPBF 100 

Cross-sectional areas of the fibres were measured with the aid of a digital calliper with a precision of 101 

0.01 mm. Due to the varying shapes of the fibre cross-sections, two diameter measurements were 102 

recorded for each cross-section and equivalent cross-sectional areas were determined to assume a 103 

circular cross-section. To determine the sufficiency of the sample size for determining standard cross-104 

sections, Eqn (1) of ASTM D2915-17 [24] explained in section 3.1 was used.  105 
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2.3 Moisture content test 106 

Moisture content determination was carried out in accordance with the requirement of ASTM D4442-107 

16 [25]. The fibres were cut into lengths of 50 mm and placed in a metallic dish. The specimen was 108 

weighed and placed in an oven and set to 1030C for 24 hours. The OPBF was then weighed until a 109 

constant mass was achieved. Moisture content was calculated using Eqn 2.1: 110 

ὓὅ Ϸ
ύ ύ

ύ
 Ø ρππȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȣȣȣȣȣȢȢςȢρ 111 

where; w = original mass, and wd = oven-dry mass. The test was carried out on three batches of specimen 112 

and the average moisture content of the OPBF was determined.  113 

2.4      Water absorption test 114 

The fibres were cut into lengths of 50 mm, weighed and placed in a plastic jar. Water was added to the 115 

specimen in the jar until the specimen was fully submerged and left to stand undisturbed at room 116 

temperature. The fibres floated to the surface of the water at the beginning of the test due to their low 117 

specific weight. At specified time intervals, the OPBF were taken out of the water, cleaned with a dry 118 

cloth, and weighed. Water absorption was calculated using Eqn 2.2. 119 

ὡὃ Ϸ
ύ ύ

ύ
 Ø ρππȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȣȣȣȣȣȢȢςȢς 120 

where; wwet = wet mass of OPBF, and w = original mass of OPBF. The test was carried out on three 121 

batches of specimen for 10, 30, 60, 180, 360, 1440, 2880, 7200, 8640 and 11520 minutes.  122 

2.5        Specific gravity determination 123 

The specific gravity of OPBF was determined according to the requirements of ASTM D854 ï 14 [26]. 124 

The specimens were cut into lengths of 50 mm with the aid of a knife, so they can be put in a 125 

pycnometer. Specific gravity was found to be 0.84 at a moisture content of 9.86%. The low specific 126 

gravity makes it superior to steel in terms of strength-to-weight ratio. At a moisture content of less than 127 

1%, the specific gravity of OPBF is 0.45. This, therefore, implies that the specific gravity is a function 128 

of the moisture content in the fibre at any instantaneous time.  129 
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2.6 Tensile strength test 130 

A major indicator of the structural performance of a material is its strength in tension. Tests were 131 

performed to measure the tensile strength of OPBF. To avoid damage from the jaw grips of the machine, 132 

epoxy glue was applied to the ends of the specimen in the form of a bulb (about 20mm and 4mm in 133 

length and thickness respectively) and allowed to set for about 60 hours to allow for sufficient hardening 134 

of the glue bulbs prior to testing. This resulted in a specimen gauge length of 110mm (Figs 2.2a and 135 

2.2b). The determination of the tensile strength of the fibres was carried out on a Hounsfield universal 136 

testing machine (Model H10KS). Each fibre was inserted into the grips at the bulb ends and secured in 137 

a vertical position (see Fig 2.2c). The test was performed according to the requirements of ASTM 138 

D4761-13 [27] using a load cell of 3kN in displacement control at 5mm/mm. Average test time for each 139 

fibre was 2 minutes. Results from fibres which failed prematurely by pulling-out at the hardened glue 140 

ends were discarded. The stress-strain relationships are based on the lowest cross-sectional area of each 141 

fibre since the fibres failed at this point (see Fig 2.2d). All off-cut fibres beyond 600mm were neglected 142 

from the tensile test. The machine was equipped with a computer and was used to set up load and strain 143 

rate and displayed the load-extension curve during testing as well. The measured cross-sectional area 144 

and gauge length of each OPBF tested in tension was used to convert the load-deformation curve into 145 

the corresponding stress-strain curve. A total of 120 OPBF specimens (that is, 30 specimens for each 146 

group) were prepared and tested in tension. Specimens that generated extreme results were neglected 147 

and a stress-strain curve was obtained for each category of fibre.  148 

2.7 Microscopic examination of OPBF 149 

Scanning Electron Microscopy (SEM) images of OPBF surfaces and cross-sections were obtained using 150 

a CarlZeiss GeminiSEM 300VP scanning electron microscope. A 20nm-thick carbon coating was 151 

applied over the OPBF surfaces after which a 10nm-thick sputter coating of gold/palladium alloy (60% 152 

Au and 40% Pd) was applied over the carbon coating in order to enhance the conductivity of the 153 

samples. SEM was carried out to investigate and understand the shapes of fibre cross-section, fibre 154 

morphology and the nature of the failure surfaces. SEM was performed at the Aberdeen Centre for 155 

Electron Microscopy, Analysis and Characterisation (ACEMAC), University of Aberdeen, UK. 156 
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3.0 RESULT AND DISCUSSION 157 

3.1 Cross-sectional area of OPBF 158 

Mean cross-sectional area of OPBF was calculated as 1.837mm2 with standard deviation s as 0.546 mm2. 159 

Substituting appropriate values into Eqn 3.1 gave an n value of 138 specimens for a 95% confidence 160 

level. Hence the number of samples investigated (150) for determination of standard cross-sectional 161 

areas is sufficient.  162 

ὲ
ὸί

ὼ
ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȣȣȣȣȣȢȢσȢρ 163 

where n = sample size 164 

s = standard deviation of the specimen values 165 

x = specimen mean value 166 

Ŭ = estimate of precision, (0.05), and 167 

t = value of t statistic from Table 1 of ASTM D2915-17 [24]. 168 

The relationship between cross-sectional area and length of OPBF was found to be exponential (Fig 169 

3.1) and can be expressed as Eqn 3.2.  170 

ὃὼ ὃὩ ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȣȣȣȣȣȢȢσȢς 171 

where A is OPBF cross-sectional area (mm2) at any length x(mm) from the head of the fibre. A0 is the 172 

intercept on the vertical axis of the graph of cross-sectional area vs length of OPBF and is equal to 173 

3.7006 for OPBF used in this study (see Fig 3.1). ɓ is the coefficient of x in Eqn 3.2 and is equal to 174 

0.004 for this study. The relationship in Eqn 3.2 could be used as a generic expression for defining the 175 

dimension of natural fibres and plant parts in their undamaged condition. It is noteworthy that the 176 

performance of a composite is a function of the bond strength between the fibres and the matrix. A 177 

variation of cross-sectional area with length also implies a possible variation of bond strength with 178 

length. Therefore, Eqn 3.2 presents a quick method for assessing variation in bond strength along the 179 

fibres. Furthermore, it is possible to accurately simulate bond stress with respect to the length of fibre 180 

if the parameters of Eqn 3.2 are defined. A numerical analysis of the bond pull-out behaviour of OPBF 181 
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from a matrix can also be enhanced since the axial pull-out force will depend on the part of the fibre 182 

(i.e. head or tail) embedded in the matrix. 183 

3.2      Morphology of OPBF 184 

OPBF possess a rough surface with globular protrusions on the surface of the fibres (Fig 3.2a). This is 185 

consistent with the studies of Sreekala et al. [28] and Izani et al. [29] for EFBF.  These protrusions 186 

otherwise known as tyloses have been reported to improve the bond between EFBF and matrix resin 187 

during composite fabrication due to an enhancement in mechanical interlock [28]. The presence of 188 

impurities on the surface of the fibres implies that they need to be cleaned in order to enhance bonding 189 

with a host matrix. An observation of the cross-section of OPBF (Fig 3.2b) reveals that the filaments 190 

making up each fibre are bonded by lignin of varying thickness. This together with unevenly distributed 191 

phloem and xylem cavities are responsible for varying inter-filament bond strength. Phloem and xylem 192 

are tubules through which water and solutes travel throughout plant members [30]. Under tension, the 193 

weakest bonds fail first and the stress is transferred unto another section of the fibre in a sudden manner. 194 

This results in brittle shear failure mode experienced at fracture for most of Category-A as can be 195 

observed in some of the fractured OPBF (Fig 2.2d).  196 

Among the four categories of fibres tested, D-fibres recorded the highest tensile strengths while A-197 

fibres recorded the lowest tensile strengths.  Close observation of the SEM images of the cross-sections 198 

of the fibres (Fig 3.2b) reveals that the A-fibres have cross-sectional areas in the range of 2-3.5mm2 and 199 

have filaments around their cortex densely packed, while the core is dominated with cavities in the 200 

range of 100-140,000µm2 in cross-sectional area. As one proceeds down the length of the fibre, the 201 

cross-section area reduces with cavities ranging between 1500-7000 µm2 (see Table 3.1). Therefore, 202 

whereas, fibres with larger cross-sections are expected to have higher tensile strength, the effective area 203 

of cross-section resisting axial tension is relatively lower than that of the fibres with smaller cross-204 

sections.  205 

Further observation of the longitudinal section showed increasing sideway openings of phloem and 206 

xylem tubules towards the cap (head) of the fibres (Fig 3.2c). This creates a truss system which is 207 
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biologically engineered and causes the fibre to bear increased bending moments caused by the weight 208 

of the leaflets and the action of wind incident upon the leaflets. This is possible through a cell-based 209 

mechanosensor which transforms environmental stimulus into a biologically recognisable signal 210 

controlling growth characteristic [31]. Consequently, an increase in fibre stiffness towards the stalk 211 

(head) of the leaf occurs. Oil palm broom fibres can, therefore, be classified as Natural Functionally 212 

Graded Materials (NFGM) and the radial and longitudinal density gradient is responsible for the 213 

phenomenon whereby the fibres are stiffer in bending (but possess lesser strength in tension) towards 214 

the head. This explains the lower strength values observed for the fibre categories with larger cross-215 

sections.  216 

Due to these cavities, failure in tension is in a sudden brittle manner. This can also be seen from the 217 

stress-strain curves. The uneven distribution of cavities causes stress to be borne in an uneven manner 218 

across fibre cross-section thereby causing an abrupt change in the effective cross-sectional area resisting 219 

tensile stress at a time. Generally, OPBF specimens failed at the point of smallest cross-section just 220 

before the epoxy grip end.  221 

3.3     Moisture content of OPBF 222 

Moisture content of OPBF were determined as 9.86%. Puspasari et al. [32] recommended that OPFF 223 

be dried to a moisture content below 10% to prevent fungal attack during storage. Usually, the alkalinity 224 

of cementitious matrices, will not allow for the growth of fungal organisms. Nonetheless, OPBF 225 

because of their size, possess cavities that could trap moisture that will eventually be lost thereby 226 

causing shrinkage with subsequent debonding of fibres from the host matrix. Drying the fibres to a 227 

moisture content below 10% would minimise dimensional instability and enhance fibre-matrix bond. 228 

3.4 Water absorption behaviour of OPBF 229 

The 24 hours average water absorption of discrete OPBF were determined as 44.7%. This maximum 230 

amount of water absorption occurs by capillary action through porous fibre membrane and exposed 231 

cavities from the broken ends of the fibres. Danso [33], reported a 54% water absorption for oil palm 232 

empty fruit bunch fibres (EFBF) at 24 hours. The study compared the water absorption rates for coconut 233 
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fibres, sugarcane bagasse and EFBF. Zawawi et al [34] reported more than 80% water absorption for 234 

EFBF. Generally, oil palm fibres have a low water absorption capacity compared to other natural fibres. 235 

Furthermore, the result obtained in this study indicate that OPBF have the least absorption capacity 236 

among oil palm fibres. Some studies have shown that natural fibres usually can absorb more than twice 237 

their weight, when exposed to water, in less than 24 hours [33,35].  238 

Fig 3.3 presents water absorption behaviour of unbroken (whole) OPBF and 50mm discrete OPBF in 239 

water at room temperature. Water absorption rate for both samples is identical and rapid only in the first 240 

3 hours. OPBF absorbs between 15-20% of its weight within the first 60 minutes after which the rate 241 

of absorption slows down. After 11520 minutes (8days), the percentage water absorption was obtained 242 

for both samples. Eqn 3.3a and 3.3b were also derived to predict OPBF rate of water absorption at room 243 

temperature for discrete OPBF and unbroken OPBF respectively.  244 

%WA = 8.862 ln (T) -11.106, ȣȣȣȣȣȣȣȣȣȢȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣ 3.3a 245 

%WA = 6.4904 ln (T) ɀ 5.0797, ȣȣȣȣȣȣ.ȣȣȣȣȣȣȣȣȢȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȢ 3.3b 246 

where, percentage water absorption (%WA) is a function of time (T) in minutes. Sreekala et al. [36] 247 

opines that the main factors that affect oil palm fibres interaction with water are diffusion, permeability 248 

of fibre surface and sorption. The increased absorption of the discrete (broken) OPBF is a consequence 249 

of exposed cavities at the fibre ends resulting from breakage into discrete units. The delayed absorption 250 

between 24 and 48 hours is more pronounced for unbroken OPBF due to sealing of micropores on the 251 

surface of the fibres.  After soaking the OPBF in water for about 24 hours, the colour of the water 252 

changed to brownish-red signifying the dissolution of water-soluble amorphous lignin, waxes and 253 

impurities.  As a result, the micropores of the fibre surface were exposed and a jump in water absorption 254 

is observed for both samples at 48 hours (2880 minutes). This is sometimes referred to as a two-step 255 

water absorption for natural fibres [36]. 256 

Natural fibres due to their organic origin are hydrophilic in nature due to their organic origin. This 257 

characteristic threatens their potential to be used as structural materials since their environmental 258 

stability could be compromised by moisture. It is therefore important therefore to assess the water 259 
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absorption characteristic of OPBF and seek for possible treatments towards enhancing hydrophobicity, 260 

or otherwise make recommendations for alternative applications. It also enhances understanding of fibre 261 

volume changes with the (un)availability of moisture. In fibre-reinforced concrete, for example, the 262 

strength of the composite is enhanced by the bond strength between the fibres and the matrix. The 263 

integrity of this bond depends on the degree of dimensional stability of the fibres which is usually 264 

governed by fibre water absorption characteristics. In order words, in the presence of water, the increase 265 

in fibre volume due to water absorption creates internal stresses in the matrix. This creates cracks that 266 

weaken fibre-matrix bond. Conversely, the fibres may lose water under dry condition and shrink. 267 

Shrinkage causes the fibres to be de-bonded from the matrix, thereby causing a reduction in fibre-matrix 268 

bond strength and subsequent poor performance of the composite.  269 

3.5     Tensile strength of OPBF 270 

Observation of the stress-strain curves reveal that OPBF failure is not pre-empted by any warning and 271 

the fibres fail in a sudden brittle manner. Fig 3.4 presents the stress-strain relationships of the 4 272 

categories of fibres. The stress-strain curves of OPBF (Fig 3.4) shows an initial non-linear part at the 273 

onset of loading. Bourmaud et al. [37] refers to this phenomenon as fibrillar reorientation and attributes 274 

it to the reorientation of cellulose fibres due to shear action within the polysaccharide chain during 275 

loading. In other words, at the onset of loading, the microfibrils making up natural fibres begin to stretch 276 

and increase in length. Beyond a certain limit, the stretch stops and the load is borne in a linear elastic 277 

manner until fracture. The linear zone is as a result of cellulose fibrils becoming aligned in the axis of 278 

tensile loading. It is believed that the tensile strength of natural fibre is proportional to its cellulose 279 

content [14,28,38]. 280 

 281 

 282 

 283 

 284 

 285 

 286 
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 291 

The relationship between tensile strength and cross-sectional area of OPBF shown in Fig 3.5, 292 

corroborates the findings of Genet et al. [14]. Although the correlation is poor, it is not unusual. Natural 293 

fibres show high variability in both mechanical and physical properties even if derived from the same 294 

plant [39]. Some factors responsible for such variability are the presence of natural defects located 295 

within the fibre tissues during growth and development of the parent plant and build-up of plant tissue 296 

within strategic areas to withstand forces of nature (e.g. wind) during plant life [31].  297 

 298 

There is also a correlation between the strain at failure e and the cross-sectional area at the point of 299 

fracture of OPBF sample and it is expressed as Eqn 3.4. Fig 3.6 shows the relationship between strain 300 

at failure and cross-sectional area of OPBF. 301 

Ὡ πȢππψρὰὲὃ πȢπτςχȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȣȣȣȣȣȢȢσȢτ 302 

Where e is the maximum OPBF strain (mm/mm) and A is the cross-sectional area (mm2) at the point of 303 

fracture of OPBF sample.  304 

OPBF 

Group 

Average cross-

sectional Area 

(mm2) 

Average Largest 

Single  

Cavity in cross-

section 

(µm2) 

Average Max. 

Tensile strength  

(MPa) 

Average 

Maximum 

Strain  

(mm/mm) 

A 3.659 ± 0.916 137,500 300.54 0.0534 ± 0.0105 

B 1.893 ± 0.569 48,760 312.35 0.0464 ± 0.0103 

C 1.107 ± 0.373 21,150 389.86 0.0463 ± 0.0087 

D 0.688 ± 0.324 7,420 555.28 0.0383 ± 0.0090 

Average 1.837 ± 0.546  NA 389.51 0.0461 ± 0.0128  

Table 3.1: Summary of Tensile Properties of OPBF 
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Overall, category-D OPBF have the highest tensile strength while the tensile strength seems to reduce 305 

with increase in cross-sectional area. Hence, category-A OPBF recorded the lowest tensile strength. 306 

This is true for cellulosic fibres [14]. The axial and longitudinal gradation of cavities is responsible for 307 

such behaviour and this is revealed in the SEM images (Fig 3.2a, b and c) obtained and discussed in 308 

section 3.2. 309 

3.6 Proximate and thermogravimetric analysis  310 

Fig 3.7 shows the weight loss (TG) and derivative thermogravimetric (DTG) curves, obtained by 311 

proximate analysis of 20 mg of Oil Palm Broom Fibres (OPBF), including pyrolysis (T < 950°C) and 312 

combustion (T > 950°C).  Pyrolytic thermal degradation can be divided into three stages: moisture 313 

desorption (below 150°C), main devolatilisation, and continuous slight devolatilization [40].  The 314 

proximate analysis indicates that OPBF consist of 6.5% moisture, 53.8% volatile carbon matter, 28% 315 

ash and 11.53% fixed carbon.  316 

The volatile carbon matter (53.8 %) was released in the main devolatilization step, which ranges from 317 

170oC to 530oC, through two main processes (Tp,1 = 306°C and Tp,2 = 361°C) [41,42]. Thermal 318 

decomposition of the fibres takes place through a complex mechanism that is greatly influenced by heat 319 

and mass transfer [43]. The appearance of different peaks in the DTG curve of Fig 3.7, suggests that 320 

the different fractions of the fibres maintain their identities and their decomposition is in distinguishable 321 

steps [41]. 322 

The relative intensities of the peaks in Fig 3.7 can be then related to the amounts of hemicelluloses, 323 

cellulose and lignin present in the sample.  More precisely, the main degradation process, Tp,2 = 361°C, 324 

is associated to the thermal decomposition of cellulose, while decomposition of hemicellulose takes 325 

place at slightly lower temperatures, Tp,1 = 306°C [44]. Lignin, on the other hand, is expected to 326 

decompose at lower rates, and over a wider range of temperature (137 ï 667°C) [41], due to the presence 327 

of various oxygen functional groups. Their cleavage releases low molecular weight products, while the 328 

complete rearrangement of the backbone at higher temperatures leads to the formation of char and to 329 

the release of volatile products [45]. As a result, lignin degradation may be obscured by the other 330 

prominent thermal degradation processes shown in Fig 3.7, and only the low-intensity shoulder 331 
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observed between 400°C and 550°C is visible, corresponding to the latest states of lignin devolatisation 332 

and char oxidation [40,44].  333 

Overall, these results are in excellent agreement with average compositions of cellulose, hemicellulose 334 

and lignin reported for other biomass, in the 40 - 45%, 30 - 35 % and 20 - 25 % (weight %) ranges, 335 

respectively [46-48] and indicate a limited interaction between these components in the fibres. The 336 

maximum decomposition rate for the combustion of the OPBF takes place at 970°C and is associated 337 

with the formation of ash at high temperature.  The element composition of the OPBF was determined 338 

using ultimate analysis, resulting in C = 52.5 %, N = 9.8 %, H = 1.8% and O = 35.9% (weight %). This 339 

result is also consistent with the composition of the fibre in terms of cellulose, hemicellulose and lignin, 340 

derived from the TG and DTG curves.  341 

A comparison of the thermogravimetric data for OPBF and oil palm empty fruit bunch fibres (EFBF) 342 

presented in other studies [28,29,49,50] show that OPBF has better resistance to thermal degradation. 343 

Findings from this thermogravimetric analysis will help to develop design guidance and 344 

recommendations for OPBF-reinforced elementsô fire-resistance. In addition, the findings will be useful 345 

for further studies aimed at determining appropriate treatment techniques for enhancing physical, 346 

thermal and mechanical properties of OPBF.    347 

3.7     Use of OPBF in composites 348 

Like other natural fibres, there may be durability concerns associated with the use of OPBF as 349 

reinforcement for composites. Concerns include the presence of impurities that are non-compatible with 350 

the host matrix, presence of hemicellulose, lignin and oils which easily decompose at the fibre-matrix 351 

interface, moisture-prone dimensional instability [13,28,29] and alkali-induced embrittlement of fibres 352 

(in cementitious matrix) [7,9]. However, treatment methods such as alkalisation, silanization, 353 

acetylation [28] and hot water treatment [29] have been reported to eliminate fibre impurities, modify 354 

fibre surfaces, enhance fibre hydrophobicity and improve tensile strength. Consequently, durability can 355 

be enhanced, and the overall performance of the composites improved through these treatments [34,38]. 356 

A study of an appropriate treatment method for OPBF is recommended. Nevertheless, untreated OPBF 357 
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have been successfully employed as reinforcement for laterite-based roofing tiles [10] with 100% 358 

increase in flexural strength of the roofing tiles due to the addition of OPBF mesh. 359 

Due to the range of tensile strength (200-900 MPa) and size of OPBF, it is possible to develop 360 

reinforcement tendons by combining more than one OPBF. The fibres can be twisted together in a 361 

helical form and held together as tendon units by hose clamps. The use of hose clamps on bamboo 362 

reinforcement bars was reported to improve bamboo-concrete bond with the clamps acting as shear 363 

connectors [51]. Likewise, OPBF tendons can be used as reinforcement bars in cementitious matrices 364 

to increase mechanical (shear) interlock between fibres and matrix. A study in this direction is therefore 365 

recommended. 366 

4.0 THEORETICAL PREDICTIONS  367 

4.1        Empirical equations 368 

According to Sreekala et al. [28], the major predictors of tensile strength (ů) properties for a natural 369 

fibre are its fibrillar structure, micro-fibrillar angle and cellulose content (w). Using the correlation 370 

between strain e, and micro-fibrillar angle Ŭ as stated in Eqn 4.1 and 4.2, and using the corresponding 371 

average values from Table 3.1, we have the following; 372 

Å  πȢππχχɻ2 πȢπχςψɻ  ςȢχψ ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȢȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȢ4.1 373 

ʎ = 12.22w ɀ ςȢψσπɻ ɀ σστȢππυ ȣȣȣȣȣȢȢȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȢȣȣȣȣȣȣȣȣȣȣȢȢ4.2 374 

The micro-fibrillar angle of OPBF is found to be 150 and the cellulose content of OPBF by weight is 375 

calculated as 62.3% from Eqn 4.2. Bourmaud et al. [37] reported that natural fibres with low 376 

microfibrillar angle are characterized by higher tensile strength. On the other hand, the calculated 377 

cellulose content falls within the range reported in the review of Momoh and Osofero [9] for other oil 378 

palm fibres but is not within the range deduced from section 3.6 of this study. This implies that the 379 

prediction equations (Eqns 4.1 and 4.2) alone may not be adequate for OPBF. Generally, high cellulose 380 

content and low micro-fibrillar angle is believed to make OPBF stiffest among oil palm fibres. A more 381 

direct method of measuring cellulose content in OPBF is advised. 382 
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4.2 Finite element modelling of OPBF in tension 383 

Tensile behaviour of OPBF can also be predicted by linear finite element procedure. Fig 3.4 suggests 384 

that the behaviour of OPBF between onset of loading till failure can be approximated to be elastic. 385 

Therefore, in modelling for tension, an OPBF strand can be modelled as a one-dimensional bar element 386 

considering its low aspect ratio. Now consider an OPBF with length L (Fig. 4.1) fixed at one end (A) 387 

and free at the other (B) with internal stresses b due to an externally applied tension T. Then the 388 

mathematical expression is of the form given by Koutramanos [52]: 389 

ὨὝ

Ὠὼ
ὦὼ πȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢτȢσ 390 

 In this case, however, the axial force T can be re-written in terms of axial strain thus; 391 

Ὁ
ό

ὼ
ὦὼ πȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȢτȢτ 392 

To approximate the solution over the entire OPBF domain, the weak form of Eqn 4.4 is found by 393 

multiplying both sides by an arbitrary virtual displacement ŭu and integrating over the whole length of 394 

the fibre so that; 395 

όὉ
ό

ὼ
ὦὨὼ πȣȣȣȣȣȣȣȣȣȣȣȣȣȢȢȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȢȣτȢυ 396 

Integrating Eqn 4.5 by parts gives; 397 

ό

ὼ
ȢὉȢ
ό

ὼ
Ὠὼ  όὦὨὼόȢὉȢ

ό

ὼ
πȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȣτȢφ 398 

Then using the general expression for strain can be written as; 399 

u(x) å В ᶮȢό ſ N.d ééééééééééééé.ééééééééééééééééééééé4.7 400 

then;     ŭu(x) å N.ŭd      and hence,   N.ŭd = ŭὨȢὔ  401 

T 

L 
x 

b 

B A 

        Fig 4.1: One-dimensional illustration of OPBF 
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where ɲ Ȣό is the elemental linear shape function and N is the sum of all elemental shape functions. 402 

Furthermore, ŭu(x) can be substituted with ŭὨȢὔ in Eqn 4.6 to give the form of Eqn 4.8. 403 

ὨȢὔ

ὼ
ȢὉȢ
ὔȢὨ

ὼ
Ὠὼ  ὨȢὔȢὦȢὨὼ „ὨȢὔȢ πȣȣȣȣȣȣȣȣȣȣȣτȢψ 404 

Re-arranging Eqn 4.8; 405 

Ὠ
ὔ

ὼ
ȢὉȢ
ὔ

ὼ
ὨὼȢὨ Ὠ  ὔȢὦὨὼ ὔ„ ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȢȢȢȢτȢω 406 

Or simply; 407 

Ὠ ὯȢὨ Ὢ πȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȢȣȣȣȣȣȣȣȣτȢρπ 408 

Where; 409 

Ὧ
ὔ

ὼ
ȢὉȢ
ὔ

ὼ
Ὠὼ ὥὲὨ Ὢ  ὔȢὦὨὼ ὔ„ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȢτȢρρ 410 

This holds true if; 411 

k.d = f ééééééééééééééééééééééééééééééééééé..ééééé4.12 412 

which is, in fact, Hookeôs law of elasticity. 413 

Therefore, for every element of OPBF in pure axial tension, the elemental stiffnesses ki can be integrated 414 

for each finite element (ei) and then summed up to be solved in the form of algebraic equations. 415 

Therefore; 416 

Ὧ  

ɲ
ὼ
ɲ
ὼ

ȢὉȢ
ɲ

ὼ
    
ɲ

ὼ
 ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣτȢρσ 417 

ὥὲὨ  418 

 419 

Ὢ  
ᶮ

ᶮ
ὦὨὼȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȣȣȣȣȢτȢρτ  420 

where ɲ  is the elemental shape function at node i, h is the length of each finite OPBF element and k is 421 

stiffness as a function of OPBF elastic modulus and dimensions. Future direction for this research would 422 
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be to apply this fundamental derivation to the simulation of fibre behaviour in a commercially available 423 

finite element software such as ABAQUS. 424 

5.0 CONCLUSIONS 425 

The following conclusions can be made from this study: 426 

¶ OPBF possess good tensile strength. Average tensile strength of OPBF at 400 days after 427 

harvesting is 389 MPa, 428 

¶ There exist radial and longitudinal density gradient along the length of OPBF which promotes 429 

stiffening on bending (but reduces tensile strength) towards the cap, 430 

¶ The relationship between cross-sectional diameter and length of OPBF can be expressed by the 431 

following generic expression: 432 

A(x) = A0 e -ɓx 433 

where A is the OPBF cross-sectional area (mm2) at any length x (mm) from the head of the 434 

fibre, A0 = 3.7006 is the intercept of the curve of cross-sectional area vs length, and ɓ = 0.004 435 

is the coefficient of x, 436 

¶ Also, the relationship between strain at failure and cross-sectional area at the point of failure of 437 

OPBF sample can be expressed with the following mathematical expression: 438 

e = 0.0081 ln A + 0.0427 439 

where e is the maximum OPBF strain (mm/mm) and A is the cross-sectional area at the point 440 

of fracture,  441 

¶ Thermal degradation of OPBF becomes rapid at a temperature of 361oC, 442 

¶ A theoretical estimation of the cellulose content in OPBF is given as 62.3% (by weight), 443 

¶ Appropriate OPBF pre-treatment is recommended to improve quality. 444 

OPBF is cheap and can be obtained at a minimal/no cost in developing countries. Due to its availability, 445 

affordability, lightweight, non-toxicity, environmental friendliness, size and good tensile properties, 446 

OPBF can be employed as a reinforcement in concrete and polymer composites either as discrete fibres 447 

or as tendons analogous to steel reinforcement fibres/bars.  448 
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Recommendation  449 

All investigations in this study were carried out at an OPBF-moisture content of 9.8% and at a fibre age 450 

of about 400 days. The effect of moisture content and age on the physical and mechanical properties of 451 

OPBF would enhance understanding of its behaviour and inform decisions on possible applications in 452 

both polymeric and cement composites.  453 
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Fig 2.1: Illustration of the 4-Categories of OPBF 
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Fig 1.1: Illustration of OPBF from Oil palm fronds 
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Fig. 2.2a: An OPBF prepared for tensile test 

Epoxy-

glue bulb  

Epoxy-glue 

bulb  

110 mm Gauge 

length  

OPBF  

20mm  

20mm  

4mm  
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Fig 2.2c: An OPBF sample mounted on 

machine grips for Tensile Testing 
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Fig 2.2d: Some OPBF samples tested in tension to failure (Tensile-shear failure mode for 

Category-A fibres) 
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Fig 3.2a: SEM images of OPBF surface: 100X (left): 1000X (right) 
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Fig 3.2b: SEM images of OPBF cross-sections: 50X (left): 500X (right) 

 


