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Abstract

A flexible Integrated Bayesian Multhodel Uncertainty Estimation Framework (IBMUEF) is
presented to simultaneously quantify conceptual model structure, input and parameter
uncertainty of a groundwater flow model. In this fully Bayesian frammkewtbe DiffeRential
Evolution Adaptive Metropolis (DREAM) algorithm with a novel likelihood function is
combined with Bayesian Model Averaging (BMA). Four alternative conceptual models,
representing different geological representations of an overexplageder, have been
developed. The uncertainty of the input of the model is represented by multipliers. A novel
likelihood function based on a new heteroscedastic error model is included to extend the

applicability of the framework. The results of thedsticonfirm that neglecting conceptual
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model structure uncertainty results in unreliable prediction. Consideration of both model
structure and input uncertainty are important to obtain confident parameter sets and better
model predictions. This study showbkat the IBMUEF provides more reliable model

predictions and accurate uncertainty bounds.

Keywords: Conceptual model structure uncertainty, Bayesian approach, Input
uncertainty, Bayesian model averaginglUncertainty quantification, Groundwater flow

model.
1. Introduction

The reliability of predictions of numerical groundwater flow models is strongly influenced by
different sources of uncertaintylo ensure reliable predictions and decision support in
sustainable water resources management, it isrigomoto assess all different sources of
uncertainty.Conceptual model structure uncertairggn be related to theomplexity of a
groundwater mode{Elshall and Tsai, 2014which may vary from a simple to a detailed
representation of the processes and geological information of the groundwater (Rgsn

et al., 2019 Mustafa et al., 2009 The geological structure is often very complex and
heterogeneous and onpartially known. Hence, he incomplete and biased representation of
the processesand the omplex structure of a system often result in uncertainty in model
predictiongRefsgaard et al., 2006; Rojas et al., 2008)

It is important to assess the different sources of uncertainty to ensure accuriatepseand
reliable decision support in sustainable water resources management. The conventional
treatment of uncertainty in groundwater modelipgimarily focuses on parameter
uncertainty whereasincertainties due tthe model structure are often negied (Gaganis &

Smith, 2006; Rojas et al., 200&lowever, many researchers have recently acknowledged
that the uncertainty arisingdim the conceptual model structure has a significant effettteon
model predictios and that parameter uncertainty does not cover the whole range of
uncertainty (Bredehoeft, 2005; Hgjberg & Refsgaard, 2005; Mustafa et al.8, 22019
Neuman, 2003; Poeter & Anderson, 2005; Refsgaard et al., 2006, 2007; Rojas et al., 2008;
Troldborg et al., 2007)Therefore, neglectingonceptual modestructureuncertaintymay

result in unreliable predictiarand underestimetn of the total predictive uncertainty.

Most of recent studies only consider a single conceptual neidedtureand may fail to

adequately sample the relevant apaof plausible conceptual models. Single model
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techniques are unable to account for errors in model output resulting from structural
deficiencies ofa specific model as single models canrz#pture all hydrogeological
processes of the systefdjami et al., 2007; Rojas et al., 2Q08lustafa et al., 2009 As a
conequence, avell-calibrated model does not always accurately predict the behavior of the
dynamic systen{Van Straten & Keesman, 1991Choosing a single model out of equally
plausiblealternative models may contribute to either type | (reject true model) or type Il (fall
to reject false model) model ersdii & Tsai, 2009 Neuman, 2003)

Bredehoeft(2005) has presented different examples where the ctale of new data and
unforeseen elements challenged vesitablished conceptual models. Hence, researchers in
hydrogeological science have suggested to use different alternative conceptual models for a
single hydrogeological syste(hgjberg & Refsgaard, 2005; Mustafaa., 20D; Nettasana

et al., 2012; Refsgaard et al., 2006; Troldborg et al., 2@uchmulti-model approaascan

be used toestimate a broader uncertaintyand so that it is more likely to include the
unknown true predicted valu@Rojas et al., 2010)However, conceptual modstructure
uncertainty arising from the simpbid representation of the hydro(geo)logic processes,
geological stratification and boundary condigphas received less attentifRefsgaard et

al., 2006; Rojas et al., 20110

A model averaging technique can be used to combine predictions of multiple models.
Hydrologistshave beerusing different model averaging techniquesotmtain an average
prediction anda reliable uncertainty band from a number of plausible conckptoaels
(Vrugt, 20163 The predictions of multiple models are combirgdusing weightswhich

can be equal or can be determined through regrebsieed approach€¥in and Tsai, 2018)
Poeter & Andersorf2005) have proposed an approach in whichighes are connectetb

model performance anthe predictions ofthe conceptual models are combined using
Ak ai k e 0 s(Akaike,i 1§74)tHewever, in the mukmodel predictios, this approach

does not consistently include prior kn@dge about parameters and conceptual models.
Refsgaard et al. (2006) have proposed a method to incorporate prior knowledge of multiple
model structures. In this approach, a set of conceptual models are calibrated separately and
the consistency ahesemockls was assessed using pedigree analysis. However, this method
does not provide resslin a quantitative way that can be used to analyse uncertainty in terms

of probabilities.
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On the other hand, the Bayesian Model Averaging (BMA) me(Bodper, 1994; Hoeting et

al., 1999)derives predictions from a set of alternative conceptual models to construct a
predictive uncertainty distribution using probabilistic techniques. The weights in the BMA
method are assessed based on the relgirformance of each model to reproduce system
behavior during the observation peridtecently, BMA has receiveattentionof researchers

in diverse fields because of its more reliable and accurate predictions than other existing
model averaging method&i & Tsai, 2009; Rojas et al.,, 2008, 2010; Singh et al., 2010;
Troldborg et al., 2010; Vrugt, 2016a; Ye et al., 2004, 2010)

An important challengé implementingBayesian Model Averaging evaluating Bayesian
model evidencéBME). There are differentechniques towaluate BME, such as analytical
techniqus, mathematical approximatisnand numerical evaluation. The analytical solution

is strongly depended on the assumptions. That is why exact and computationally efficient
analytical solutios are rarely available (Schoniger et at., 20I4)ereare different methasl

of mathematical approximatipnsuch as Laplace approximation, Kashyap Information
criterion, Bayesian Information Criterion and Akaike Information Criterion. Those different
mathenatical information criterio@may provide contradictory results in model ranking and
posterior model weights (Poeter and Anderson, 2005; Singh et al., '281€ al., 2010;
Schoniger et al. 2014However, awareness about tbentradictory resultérom different
methods is very limited (Hoge et al., 2018)though numerical methods are as prone to be
biased than mathematical approximatiddshonigeret al. (2014) have concluded that bias

free numerical evaluation methods are better than mathematical approxgvationodel
selection.Among the numerical evaluation methods, thelti-chain Markov Chain Monte
Carlo (MCMC) basedDiffeRential Evolution Adaptive Metropolis (DREAM)algorithm
became very popular because of its statistical robustness and numerical efficiency (Leta et al.,
2015; Vrugt et al., 20082016 Laloy et al., 2013;.)However, applicatiomof this algorithm

for quantifying conceptuadtructural uncertainty of a realorld groundwater flow modedlso

consideringuncertainties from the model input and paramedegsery limited.

Maximum Likelihood BayesiaModel Averaging (MLBMA), which is an approximation of
BMA, has been applied recently in hydrogeology to analyse the predictive distribution of
several conceptual mode(®euman, 2003; Ye et al., 2004MLBMA depends a the
calibration of alternative conceptual model parameters. Howdyewnsing this method
estimated biased parameters will compensate conceptual nstrdeture errors during

calibration to obtain the best model (Higjberg & Refsgaard, 2005; Refsgaard et al., 2006;
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Troldborg et al., 2007)Refsgaard et a(2006) hae reported that the model becomes biased
when calibrated models are used feimulating variables that were not included in

calibration.

However,the existing Bayesian averaging approach does not quantify the uncertainty arising
from the different componestof the individual conceptual model and how they affect the
model prediction (Tsai, 2010; Gupta et al., 2012; Tsai and Elshall, 2013). Tsai and Elshall
(2013) and Chitsazan and Tsai (2015) address this issue by introducing the Hierarchical
BMA (HBMA) method. In this HBMA method, the uncertainty arising from the different
components of the individual conceptual model is considered using a BMA tree.

Alternative approaas to account forconceptual modestructureuncertaintyalong with
uncertainty from other sourcemre integrated uncertainty assessment appreschvhich
combine estimation of individual sources of uncertainty into an integrated modeling
framework.In surface water hydrologywo distinct approachelsave been developeddn
applied Bayesian total error analysis (BATEAKavetski et al., 2006a, 2006b; Kuczera et
al., 2006)and the integrated Bayesian uncertaiesgimator (IBUNE)(Ajami et al., 2007)

Both methods consider model parameter, input and conceptual structural uncertainties to
guantify model prediction uncertainties. However, model ranking or -matel
combinations are not considered in the BATEA frameworlend¢, diagnostic model
comparison is not possible in this framework. On the other hand, the IBUNE framework
allows to combine mukimodel predictions based on model weights obtained from a non
Bayesian optimization algorithms a consequenca robust Bagsian derivation of posterior
probabilities is missing. To quantify input uncertaintiese IBUNE frameworkuses a
multiplier thatis assumed to bmdependent andormally distributedwith fixed mean and
variance. Vrugt and Robinsof2007) have criticized this assumption as it is not a very
appropriate way to quantify model input and conceptual structural uncertatidsermore,
identification of spatial and temporalnation of the input multipliers is not possible in this
framework as it consides only a single multiplier. Té latter might result in a biased
estimation of input uncertainties and thereby result in biased predictive uncerfssnty.
groundwater modehput datasuch as recharge and abstractions;aee usually estimated
using indirect methods @pecificmodels which are not accurate and can present errors both

in space and timehe IBUNE approach isftennot suitable for groundwater modeling.
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In the field of groundwater hydrology, however, no systematic integrated framework has
been proposed to dat®ojas et al. (2008) have applied BMA combimation with the
generalized likelihood uncertainty estimation (GLUE) meth{@&ven, 1993; Beven &
Binley, 1992) to quantify conceptual modedtructure uncertainty. A thregimensional
hypothetical setup with three alternative conceptualizations has been considered to
demonstrate the method. However, some researcheeschicizedGLUE because it is not a
formal Bayesian method and may result in statistically incoherent and unreliable parameters
and predictive distributionfMantovan & Todini, 2006; Montanari, 2005; Stedinger et al.,
2008) Therefore the likelihood and thresid used for model selection and weightinghe
approach of Rojas et al. (2008ps a lack of statistical basand, as a consequence,
conceptual model structure and parameters are not optimized in this method, which could
result in overestimation of paective uncertaintfNettasana et al., 2012)

Recently, Xue & Zhang (2014) have applied multimodel ensemble Kalman filter jEnKF
combination with the Bayesian model averaging framework to explicitly consider the model
structural uncertainty. They advocated that the EnKF is computationally more efficient
compared to other existing Bayesian methods. However, uncertainty atismgniodel

input and measurement heteroscedasticity has not been explicitly considered in this
framework. The performance of this multimodel EnKF framework has been tested using
synthetic 2D conceptual groundwater model in idealized conditions withoutleoaison of
observational uncertainty or model bias, whereas thefweddl models are often three
dimensional and more complex, and observations are not bias free (Hoge et al. 2019). Ridler
et al. (2018) have also criticized this multimodel EnKF framework because of its limitation in
application with bias observation. Hendricks Franssen et al. (2011) reported that the EnKF
significantly outperformed with synthetic experimental data comparesial data.

Mustafa et al. (2018) presented a Bayesian approach to simultaneously quantify parameter
and input uncertainty of a groundwater flow model. The performance of this approach has
been evaluated using a single conceptuatweald groundwaterldéw model. Groundwater
recharge and groundwater abstraction multipliers with a spatial and temporal character have
been introduced in this study to quantify the uncertainty of the spatially distributed input data
of the groundwater model along with paraeretincertainty. Nevertheless, the conceptual
model structural uncertainty has not been considered in this study. As a result, the latter study
is unable to account for the errors in the model output resulting from the structural

deficiencies. Recently, Mtefa et al. (2019) presented a muttodel approach to quantify
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groundwatetlevel prediction uncertainty considering alternative conceptual models. In the
second study, the combined effect of conceptual model structure, the climate change and
groundwater lbstraction scenarios on future groundwdgésel prediction uncertainty has

been evaluated. However, alternative conceptual models of this study have been calibrated
using a local optimization method and considering only model parameter. As a result, this
approach is unable to account for the uncertainty arising from the model input and
parameters. Estimated biased parameters will compensate conceptual model structural errors
during calibration to obtain the best model fit, as it relies on a single optpatemeter set.
Moreover, the approach is missing the statistical robustness because of its deterministic

modelling approach.

Very recently, Hoge et al. (2019) highlight the difference between BMA and Bayesian
combined model averaging (BCMA) following Wia (2002) and Monteith et al. (2011).
According to Hoge et al. (2019), BCMA means the application of equations for BMA
(section 2.3) to forecast combinations of individual conceptual models instead of the
application of equations for BMA to the individuadnceptual model alternatives. Hoge et al.
(2019) concluded that the objective of the modelling should be the main driver in selecting
model averaging approaches. They also suggested to use BCMA instead of BMA if the
objective of the modelling is to inase the reliability of the model prediction. The Integrated
Bayesian Uncertainty Estimator (IBUNE) that has been applied in surface water hydrology
by Ajami et al. (2007) has been considered as a practical application of applying BMA in
similar fashion ofBCMA (Hoge et al. 2019). However, as mentioned earlier, Ajami et al.
(2007) allows to combine multhodel predictions based on model weights obtained from a
nonBayesian optimization algorithm. As a consequence, a robust Bayesian derivation of

posterior pobabilities is missing.

Hence, more research on a systematic integrated fully Bayesian framework is needed to
guantify the uncertainty arising from the conceptual model structure, inputs and parameters
of groundwater flow models with consideration of theteroscedasticity of the groundwater
level error. Additionally, the application of such an integrated multimodel framework on
realworld cases is necessary to better understand the impacts of different sources of

uncertainty on realvorld model calibrabn and prediction problems.

The general objective of this study tisereforethe development and application of an
I ntegratedBayesianM ulti-modelUncertaintyEstimationFramework (IBMUEF) to quantify
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input, parameter, measurement and conceptual msilatture uncertainty of a fully
distributed physicalhbased groundwater flow modéd provide reliable predictions of
groundwater system. In the proposed integrated fully Bayesian-maodtel framework, the
DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm with specificlikelihood
function is combined with the Bayesian Model Averaging (BMA) framewbrkthis new
DREAM-BMA methodology, a likelihood function has been included based on the novel
heteroscedastierror model for groundwater levels proposed by Mustafa et al. (2018). Like
IBUNE of Ajami et al. (2007), the current study uses equations for BMA in a similar fashion
as BCMA. However, unlike Ajami et al. (2007), our study allows to combine ‘mualtiel
predictions based on model weights obtained from a Bayesian optimization algdtitisns

the first attempt to apply a fully Bayesian mutiodel framework irreatworld groundwater
modeling to quantify conceptual modstructure uncertainty along with wertainties
originating from model input, parameters and measurement dirdhis methodology, the

fully Bayesian approach proposed by Mustafa et al. (2018) has been combined with the
Bayesian Combined Model Averaging (BCMA) to simultaneously quantiyuthcertainty
arising from the conceptual model structural, input and parameter of a fully distributed
groundwater flow modelAdditionally, the proposed approads applicable forall types of
residual errors i. eboth for homoscedastic and heteroscedastic eribng. IBMUEF is a
flexible framework as (i) there is no limitation for the number or complexity of alternative
conceptual models, (i) users can choose the number and dimensions (spatial and temporal) of
input multidiers, (iii) both quantitative and qualitative information of the system can be used
in the alternative conceptual models, and (iv) it is applicable for both homoscedastic and
heteroscedastic residuals errors. Moreover, the proposed approach is ableidto avo
compensation for conceptual model structural uncertainty arising from biased parameter

estimates obtained from a model fit, as it does not rely on a single optimum parameter set.

Finally, the framework (IBMUEF)is applied in an overexploited aquifer inthe north
western Bangladestas it is necessary to understand the impacts of conceptual model
structural uncertainties on model prediction in realistic conditibhs.specific objectives of

this paper are:(i) to quantify model uncertainty originating from errors in model
conceptuatation, (i) to quantify individual uncertainty contributions arising from model
input, parameter, and measurement and conceptual model uncertainties, (iii) to understand

conceptual model structure uncertaimypacts on calibration and model predictid) to
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evaluate the applicabilitgpf our approach for groundwater modéts realistic conditions

using alternative conceptual groundwater flow models.
2. Methodology

2.1 Study area

The study areaovers the sbnorthwesterndistricts of Bangladesh (Figure 1ayhe aquifer
consists mainly ofmedium sand, coarse sand and coarse sand with grawéh minor
fractions ofclay, loamy clayandfine sand(Figure ). The thickness of each stratigraphic
unit moreover varies spatially. Tla@erage thickness of thep layeris 18 m and iconsists

of clay, clayey loam and fine sardl 20 m thick medium sand layer presentelow thetop
layer. The bottom part of thaquifer consists ai 35 m thick layer of coarse sand and coarse
sand with gravelAverage rainfall is between 1400 mm and 1550 pen year However,
rainfall distribution is not uniform over the year. There is almost no rainfall during the dry
season (Noember to April), which is the major cropping season in this study(Mastafa

et al., 2017h)The area is mainly covered by irrigated agricultoirgzhich more than 80 % is
rice. Irrigated agriculture usesoaind 97 % of total groundwater abstraction @tid, 2009;
Mustafa et al. 2013). Groundwater level in this study area is continuously decreasing due to
overexploitation of groundwater for irrigation (Mustafa et al., 2017
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Figure 1: Description of the studgrea: (a) Location of the study area in the naréstern

part of Bangladesh(b) study area with precipitation measurement stations (triangles) and
groundwater observation wells (circles); (c) stratigraphy of the study area; (dsechemal

(A-A 6 ) w of difeerenthydrogeologicalmodels: {) onelayered model (L1),ii() two-layered
model (L2), {ii) threelayered model (L3)Taken fromMustafaet al. (20B).
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2.2 Bayesian approacho quantify input and parameter uncertainty

Mustafa et al. (2018presentedh Bayesian approach to simultaneouglyantify parameter

and input uncertainty of dully distributed groundwater flow modelFor the detailof the

approach weeferthe reader to Mustafa et al. (2018). A short summarthefpproachs

preseneédhere.A hydrogeological model can be defined as follows:
o0 0 &k
Where'@and O represent the input and output matrix of modefM a n d

and boundary conditianof the corresponding model. To quantify input uncertainty along
with parameter uncertaintyfpllowing Kavetski et al. (2002, 2006a, 2006&) modified
concept of multipliers fom fully distributed groundwater model has been introduced by

Mustafa et al. (2018)The uncertainty of thdanput data groundwater abstraction and

recharggis quantified using the following input error model:

0§24

d

(1)

ar e

(2)

Where'd [ h[h[; B B MBE representghe initial input for the ' month andj™

location,& is the respective input multiplier aff@represents the corresponding corrected

input.a  representthe groundwaterechargemultiplierswhile & represents groundwater

abstraction multipliergTable 1) The multipliersare considered as an additional individual

latent parameter arateestimated along witthe model parameters.

Traditionally, residual errorsn groundwatemodellingare considead to behomogedastic

t

However, Mustafa et al. (2018) yeashownthat the standard deviation of the groundwater

level residual is not always constdmitt may increaswith thedeviation of groundwater level

from the normal. In this studythe longterm averageis consideed as the normal

groundwater levelA novel heteroscedastierror model for groundwater level has been

proposed inthis fully Bayesian approacho considerthe heteroscedasticity of the

groundwater levelesidual The proposedeteroscedastic error modgdefinedas follows:

, 02$Y0 6@ &

Where 0 i s st and arisl a pamwatea tepresenting the groundwater level
uncertainty slope, B ia parameterepresenting the groundwater level uncertainty intercept,

"Y"Orepresents the simulated groundwater level for each time step &é@presents the

observed longerm (30 years for this study@verage groundwater level.

3)

11

he

P
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The loglikelihood function proposed by Vrugt et al. (26)2013) has been adopted and
modifiedby Mustafa et al. (2018) for spatially distributed groundwater nsodiéke proposed
novel heteroscedastic error moder groundwater level has been incorporated in this
modifiedlog-likelihood function The newlog-likelihood functionis asfollows:

(4)

e®h & ae o L
S S

Where0  £[TE[TE[TB F8 8 FE[  representghe output series of observed groundwater

levels in observation wellsg € Fé [ I8 F8#B . represents theutput series of

simulated groundwater levs for the sameobservation well, 6 plghof8 B B RY

represents time step, T represents the totmhber oftime steps& phfot8 B B8

represents the location of the observatigalls and L represents the total number of

observation wells.

This log-likelihood functionhas been used in this study because)afsinumerical stability,

(ii) algebraic simplicity and (iii) its applicabilitfor both homoscedastic and heteroscedastic
residual erras. To sample the posterior distribution based on likelihood function
(Equation 4) the DREAMZS sampler has beersed.The Differential Evolution Adaptive
Metropolis algorithm (DREAM) is a multhain Markov Chain Monte Carlo (MCMC)
simulation algorithm introduced by Vrugt et al. (2008; 2009a; 2008bg DREAM-ZS
algorithm (Vrugt, 2016) has been used in this studgxplicitly quantify the uncertainty
arising from model inpuand parametes of a groundwater flow model. More details about
the DREAM algorithm are explained in Vrugt et al. (2008; 2009a; 2009b) and Vrugt (2016).

In this study, we extend this approachrntdudeconceptual model structutmcertainties and

we improve the methodology by combining it with Bayesian Model Averaging (BMA).

2.3 Bayesian Model Averaging (BMA)

Bayesianvlodel Averaging is a probabilistic scheme for combining predictions from multiple
conceptual models to provide a more realistic and reliable description of total prediction
uncertainty. It is a techniquihat can be used to accouont model structural uncertagnt
(Madigan et al., 1996)It is a statistical procedure that derives average predictions by
weighing predictions from different models in such a way that the weighted predicaon is
better representation of the observed systenabias compared to any individual model of

the ensemble. The BMA prediction gives higher weights to better performing models, as the

12
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agreement between the model predictions and the observations is assumed to be a measure of
the model likelihood. The vamge of BMA is a measure of the uncertainty of BMA
prediction. The variance of BMA predictions is representing both the wrtloislel variance

and the betweemodel variance.

BayesianModel Averaging (BMA) has beerused to deduce more reliable predictions of
groundwater levels than the predictions produced by the different individual groundwater
models.Draper (1994) and Hoeting et al.(1999) presentan extensive overview of BMA.

Here, only a short summary of BMA given

Consider M= [M1, M2, Mg, é Mk] the set of alternative conceptual models,
who B dw is al x n obsenationvector of aquantity of interestFix is the point forecast
of eachalternative conceptual modér 'Q plgh8 ¢ observations and  plghs ho
modebk. Now by combining the differertonceptual modelfrecass in a matrixF having
dimensiors of n x K, the weighted average forecast of the quantity of interest is

W 'O Q (5)

Wheref 1 R B d& represents the weight vector of eaxnceptual modeand'Q is

noise.

As we know, model predicti@nare associated with uncertaintythe uncertainty can be
described using probability density function (forecast distribution) p(Mhen gplying
BMA, assuming uniform prior distributicihe posterior predictive distributiaf the quantity
of interests given by

N w0 nw oM nod O
(6)

Where, 1} &3 = conditional probability density function (PDR), @ 'O = posterior
predictive distribution ofwo on "O under the considered model Mandn 0 O =

posterior probability of the respective modek Mhis is also known ashe likelihood
(weight) of the corrected modelM

The BMA predictive mean and variance of y are conditional to the discrete ensemble of the

proposed alternative conceptual modelg,IvMaper, 1994)
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=B oow™Om /0 O +B 0Ok OM

-
(7)

Ow™O no O (8)

WhereOw 'O andwd 'O  represent , respectively, ttexpected value and

variance of ® on "O under the considered conceptual model, M. Considering

0w O ©,00m oM , andjd O

I ,the BMA predictive mean

and variance ahequantity of interestcan be developed as follows

Ow O Wl

www O w1 I w

wT

(9)

(10

The first term of tke variance is representing thathin-modelvariance while the second

term represents the betweetdelvariance

The BMA met hod cons

i der s

the uncertainty

predictive distribution rather than only a weightegtrage. So, the BMA method provides an

of

average forecast along with an associated forecast distribution. The forecast distribution can

be used for constructingonfidenceintervals. This BMA forecast density enforces one

significant constraint for the wglits, i.e. bk

0 andB

[ =1 to avoidthe development of

unrealistic forecast distributions (e.g., densities can even become negative without this

restriction). For successful application of the BMA method, proper estimates of the weights,

and standard deviation, of the normal conditional pdthefensemble members are needed.

To estimate the weights and standard deviation, thdikelihood function is used for

algebraic simplicity and numerical stability,
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c“ ”

wheré is maximum likelihood Bayesian weight.

Equation {1) can only be solved iterativelyn this study, Markov Chain Monte Carlo
(MCMC) simulations based on the Differential Evolution Adaptive Metropolis (DREAM)
algorithm are used to calculate the-ldgelihood function. The value of was used as a
criterion to select better perfornggnmodels that have a significant contribution in model

averaging.
2 4 Integrated BayesianM ulti-model Uncertainty Estimation Framework (IBMUEF)

In this framework, théully Bayesian approach using input uncertainty multiplbersed on a
specific heteroscedastic erronodel as explained irsection 2.2is combined with the
Bayesian Model Averaging (BMA) framework explained in sectib®. The IBMUEF

frameworkis implemented as follows:

1. A number of alternative conceptual hydrogeological models are proposed based on

the existing geological and hydrogeological information about the study area.
2. Along with parameter uncertaintghe input uncertainty of the spatiglldistributed
input dataare quantified by usingrgundwater recharge and groundwater abstraction

multipliers(Section 2.2 anMMustafa et al., 208).

3. A heteroscedastic error model is defined to quantify the heteroscedasticity of the

groundwater levalesidual(Section 2.2

4. Hydrologically reasonable prior ranges are defined for the model parameters, input

multipliers andheteroscedastic error modahrameters of each modedsSuminga
uniform prior distribution).

5. A likelihood function is defined. The likelihood function is explainedséttion 2.2
andMustafa et al. (2018)

6. The posterior distributions of model parameters, input multipliers #rel
heteroscedastic error moderameters are obtained for each model after convergence
using DREAM.

7. A prespecified number of outputs (e.g., groundwater Bvale generated for each

model, using the parameter valwdgained from steps B.

15



395
396
397
398
399
400

401

402
403
404
405
406
407
408

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

8. The modelweights and varianceof each ensemble member are calculated using the
DREAM algorithm as explained in secti@rB.

9. The model weights are computed by summing the weights for all selected ensemble
members of each conceptual model.

10.Finally, multrmodel preditions are obtained by assessing predictive mean and

variance using equatiofsand8.

2.5 Alternative conceptual models

Hoge et al. (2019) concluded in their review paper that selection of alternative conceptual
models is the most important aspect of Bayesian Model Averaging. Enemark et al. (2019)
present a review of the conceptual hydrogeological model development. $tudyr four
alternative conceptual groundwater flow models have been selected from 15 possible
alternative conceptual groundwater flow models. These initial 15 conceptual groundwater
flow models were constructed using different geological interpretateors boundary

conditions.

All alternative conceptual models were calibrated using observed groundwater level data for
the same period. The performance of each model was evaluated based on different
performance evaluation coefficients and information datestatistics Details about model
development, calibration, evaluation and selection are provided in Mustafa et &). (201
Obviously, the best option would be to use all 15 conceptual models. However, it would be
computationally very expensive. Nevelt®s, our main objective is not to predict the
groundwater level of this study area. Rather our objectives are (i) to develop an integrated
uncertainty quantification methodology that can quantify different sources of uncertainty of a
groundwater flow modeand thereby increase the reliability of the model prediction and (ii)
the demonstration of the applicability of the proposed approach witlwoell mode using
simple personal computelherefore, the four best performing conceptual models where
selected to reduce the computational effort in the Bayesian methodology. However, spatial
heterogeneity of the aquifer properties is not considered as a part of conceptual model
uncertainty. Peete and Turnadge (2019) recommended based on their hypothetical setup
that, for an aquifer with high recharge and high conductivity, spatial heterogeneity of the
aquifer properties should be considered in developing a groundwater flow model. Hence,
further studies could be conducted considering other alternative conceptualizations including

spatial heterogeneity of the aquifer properties.
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Later, the IBMUEF methodology has been implemented using the better performing four
alternative conceptual models. Tfaur selected alternative groundwater models area (i)
onelayer model with boundary condities (L1B5), (ii) a two-layer model with boundary
condition5 (L2B5), (iii) a two-layer models with boundary conditigh(L2B4) and (iv)a
threelayer models wittboundary conditiosd (L3B5). Details about the selected conceptual

models and model setup are explainedeaation 25.1 and %5.2.

25.1 Alternative conceptual models development

A cross sectional (") view of thesimplified hydrogeologicamodels is shown in Figure

1d. First, three simplified alternative conceptual groundwater models were defined based on
the geological stratification. The three modelsaomelayered (L1),atwo-layered (L2) and
athreelayered(L3) modelsetupas shown in figurdd. The bottom elevation of thequifer

in modelwas taken 50 m below sea level.the onelayered model (L1), thevhole model
domain was considered as omgdro-stratigraphicunit and it was assumed that hydraulic
properties are homogeneous and isotropic. Theltwered model (L2fonsists otwo layers
where the average thickness of thp layer was 10 m (clay and loamy clay soil) and rest of
the thickness was considered as lbotomlayer. The model domain was dildd into three
differenthydro-stratigraphiaunits to develop #reelayeredmodel (L3). The top layer of the
threelayeredmodel was the same as for tin-layeredmodel butjust below the top layer,
afine sand layer with an average thickness of 8 m was added ihrthedayeredmodel. The
bottom layer ofthreelayeredmodel consists of medium sand, coarse sand and coarse sand
with gravel. Four or more layered models were not considerdtlis studybecase the
information of theexactpositions of the groundwater abstraction wells filter was unknown.
Therefore,a further increase in layer numbensuld increase the complexities of placing

groundwater abstraction wells in the model domain.

One of the majo factors that influences conceptual model uncertaistyelated tothe
boundaryconditiors of the mode(Wu & Zeng, 2013) Boundary conditions of groundwater
models are often very uncertaaithoughthe model results largetyependon theseboundary
conditions.A previousstudy in the Bengal basin observed that groundwater flows from north
to south(Michael & Voss, 2009a, 2009bPn the other hand, there is a large wetland at the
southeasterrcorner of the study argas well as a large river (known as Ganges/Padma)
within a few kilometers from thesouthboundary. Since exact bousrg conditions were not
known, five differentpotential sets oboundary conditions were conceptualized based on the
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above information. In this stugdywo sets ofboundary conditions are used aftar initial
evaluation (Figure 2). Detadl description of the other boundary conditions athe
evaluation procedurare explained in Mustafa et #2019). In boundary conditiod (B4), a
constant head boundary was considered on the north side ofothe where most of the
river branches originateassuming that groundwater flow direction is parallel to the river
flow, and the southeastern part of the modéiere a large wetland is locatesk the south
part of themodeldomain aconstant head is assigned because the great Ganges/Padma river
is vay near to the south boundary. In boundary condifofB5), at the north and north
western boundarglso at the soutkeastern corneof the model domaina constant head
boundary was consideredbased on the information that groundwater is flowing frantm

and northwestern to south in the study gM&hael & Voss, 2009a, 2009 constant head

is assignedat the soutkeastern corner of the model domamrepresent the Chalan Beel
wetland The south and nortbastern boundaries are parallel to groundwater flow direction
(Michael & Voss, 2009a, 2009)ence neflow boundaries arassgned at the south and

north-eastern boundaries

B4 B5

Figure 2: Alternative boundary conditions used to develop alternative conceptual model (blue
line indicates constant head boundary): B4: constant head at north, south and southeast

boundary; B5constant head at north, northwestern and southeastern boundary.

2.5.2 Model setupand data

PMWIN: Processing MODFLOWChiang & Kinzelbach, 1998) is a grid basddlly-
distributed physicallybased, integrated simulation system for miadglgroundwater flow

andsolute transport processasd was used for groundwater flow simulatiofise study area
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havinganarea of 7112 kiwasdiscretized into smaller cejlsesulting in117 rowsand 118
columnsof grid cells, with adimensionof 900 m x 900 mAll the alterative conceptual
models are transient with a monthly time s#&mo-flow boundary is considered at the model
domain bottom as vertical groundwater flow is restricted by the relatively impermeable hard
rock below the aquifer in the study area. On the model top surface, a spatially distributed
recharge boundary is codsred. Spatially distributed monthly groundwater rechavge
simulated using the WetSpalgs model with the same grid cellsize as the MODFLOW
model(Abdollahi et al., 2017; Bal@an & De Smedt, 2007The study arewasdivided into

34 abstraction zone considering each upazila as one(upagilais the second lowest tier of
regional administration in Bangladesf®roundwater abstraction in each zomascalculated

using an empirical relation based onthe irrigated area androp irrigation requirements
Details about the estimation of the grountkvaabstraction and simulation of groundwater

recharge can be found Mustafa et al. (2013).

The initial groundwater heads correspond to a{@mg average groundwater table obtained
by running the models in steady state conditions.

Weekly groundwaterelvel and daily rainfall data were collected from the Water Resources
Planning Organization (WARPO), Bangladesfhe groundwater level and rainfall were
collectedrespectivelyfor 140 and 30 sites. Available river discharge data of the BWDB for
the existing small rivers within the study area were also collected from WARPO. Daily
maximum and minimuntemperature, wind speed and other climatic data were collected from
the Bangladesh Mieorological Department (BD). Reference evapotranspiration ggwas
calculated using the FAO Penmitonteith equation (Allen et al., 1998; Mustafa et al.,
2017a,b. In this study, eference evapotranspiration @Tis also considered as potential

evapotanspiration.

The monthly observed groundwaterel dataof 50 observation wells have beased for

model calibration and validatidifrigure 1b)

Topography and borehole data were collected from Bangladesh Multipurpose Development
Authority (BMDA). The geological and lithological log data from twetityee boreholes

within the study area were collected from BMDA.

2.6 Parameterization
Groundwater recharge multipliers and groundwater abstraction multipliers have been

introduced to quantify noertainty of the estimatespatially distributedyroundwater recharge
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and abstractiordata. The input multipliers are considered as additional individual latent
parametes during model calibration and uncertainty analysisl have been estimated along
with model parametersihe hydrologically acceptable ranges of the multipliers have been
defined based on the available knowledge of the possible level of bias in the initial estimation
of groundwater recharge and abstracti@able 1). In addition tohe input multipliers, the
following influential MODFLOW parameters have been consideredddijzontal hydraulic
conductivity, (if) Specific yield (iii) Hydraulic conductance of Riverbeahd (iv) Specific
storage.The frst three MODFLOW parameters have been consideredhimpnelayered
model. For thetwo- and thredayered modebk, specific storage has also been added.
Considering specific parameters for each layesults in respectively,seven and ten
MODFLOW parameterso beconsidered fothe two- and thredayeredmodek (Table 1).

The selected parameters and their prior uncertainty ranges are presented in Table 1.

A uniform prior probability distribution within the hydrologicalfccetableranges has been
considered as a prior range for each parameter (Talle i have no information about the
distribution of the prior. Moreover, this is the most widely used prior in case of limited
information availability about the distributiorf the parameter value (Enemark et al. 2019).
The range of hydrogeological parameter values was selected based on typical values for
aquifer materials (Domenico & Mifflin, 1965; Domenico & Schwartz, 1998; Johnson, 1967)
and previous research findings in the study area (Michael & Voss, 2009a, 2ABbjigh

the number of MODFLOW parametdassdifferentfor different conceptual model structsre

the input multipliers and heteroscedastic error model parameters remain the same for all

conceptual models (Table 1).

Table 1. Parameters of the alternative conceptual modémput multipliers and
heteroscedastic error modmrameters used in the uncertainty analysis using IBMUEF with

their prior ranges

Descriptions Unit Ranges

Input parameters for all models

a Groundwater recharge multipliers - 0.0101 10
Groundwater abstraction multipliers for temporal
a - 0.0101 10
changes

The parameters of the heteroscedastic error modébd

consider heteroscedasticity of the groundwater level error
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A Groundwater level uncertainty slope - 0.010i1 1.0

B Groundwater level uncertainty intercept m 0.010i1 3.0

Model parameters ofone-layer models (L1B5)

HK Horizontal hydraulicconductivity m/s 0.000000T 0.0095
RIVC Hydraulic conductance of Riverbed m?/s 0.0017 1.6

SY Specific yield - 0.1071 0.35

Model parameters oftwo-layer models (L2B5, L2B4)

HK-1 Horizontal hydraulic conductivity of layer m/s 0.000000T 0.0095
HK-2 Horizontal hydraulic conductivity of layet m/s 0.0000001 0.0095
RIVC Hydraulic conductance of Riverbed m?s  0.001i 1.6

SY-1 Specific yield of layefl - 0.1071 0.35

SY-2 Specific yield of laye2 - 0.1071 0.35

SS1 Specific storage multipliers of layér - 0.015i 15

SS2  Specific storage multipliers of lay&r - 0.015i 15

Model parameters ofthree-layer models (L3B5)

HK-1 Horizontal hydraulic conductivity of layer m/s 0.000000T 0.0095
HK-2 Horizontal hydraulic conductivity of layet m/s 0.000000T 0.0095
HK-3 Horizontal hydraulic conductivity of layes m/s 0.000000% 0.0095
RIVC Hydraulic conductance ®iverbed m?/s 0.0017 1.6

SY-1 Specific yield of layefl - 0.1071 0.35

SY-2 Specific yield of layei2 - 0.107 0.35

SY-3  Specific yield of layes3 - 0.107 0.35

SS1 Specific storagenultipliers of layerl - 0.015i 15

SS2 Specific storagenultipliers of layef2 - 0.015i 15

SS3  Specific storagenultipliers of layef3 - 0.015i 15

539

540 2.7 Computational experiments

541 Three different scenarios have been use@erformuncertainty analysis along withadel
542  calibration The model parametersaand heteroscedasticity of groundwater level erhave
543 been considered in the first scenario. In this scenarianthe data are considered perfectly
544  known and accurat&his scenariawill serve as benchmark. In the second scenanmdel

545 paameters heteroscedasticity of the groundwater level emod temporal groundwater
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abstraction and recharge multipliers are considered. In this scenario, we indrddlice
groundwater recharge multiplierst () to describe uncertainties igroundwater recharge
assigninga single multiplier corresponding to each time stdpch is one month in this

study. Similarly, we introduced6 groundwater abstraction multiplie(st ) to describe
uncertainties irgroundwaterabstractionassigning a single multiplier corresponding to each
time stepAbstraction multipliers have been considered onltlierdry season (November to
April), because this is the major abstraction period for irrigation in the studyDatedls on
estimation and uncertainty analysis of groundwater recharge and abstraction can be found in
Mustafa et al. (2018)

Abstraction multipliers associated with the spatial estimation have been excluded in this
study because of computational time aitgh they might have considerable effect on the
model prediction. In this study, four alternative conceptual groundwater models have been
used with different levels of complexity. The computational time increases with increased
complexity of the alternatev conceptual groundwater models. For example, for the-three
layer model with a total of 64 parameters (including both spatial and temporal abstraction
multipliers), the algorithm has not reached convergence even after 200000 model evaluations.
On a 2.70 GH processor, 200000 model evaluations take around 21 days with an average of
9 seconds per simulation. Similarly, for the tHlagered model with a total of 61 parameters
(including both spatial and temporal abstraction multipliers), the algorithm hasewfudly
converged after 200000 model evaluations. This corresponds with around 19 days with an
average of 8 seconds per simulation for the same processor. Of course, the evolution chain
was converging towards the convergence both for the two andldygezed models. On the

other hand, for the oHAayered model with 57 parameters (including both spatial and
temporal abstraction multipliers), the algorithm started to converge after 110000 model
evaluations. Because of time limitations, abstraction mudtiplassociated with the spatial
estimation have been excluded for all the alternative models in this study to have successful
convergence results for all the models. However, we believe that this will not restrict the

applicability of the approach becausfehe continuous advances in computational power.

Finally, in the third scenariayhich we will refer to as IBMUEF in this study, conceptual
model uncertainties are considered along with uncertainties from the model input, parameters
and heteroscedastigitof groundwater level error. The IBMUEF framework is used to

guantify all the mentioned sources of uncertainty in this scenario.
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578 All the conceptual models have been calibrated and validated respectively for 1990 and 2000
579 for 12 monthly periods using 50 observation wells data for each périvaks been observed

580 that models are able to accurately predict observation data which have not been used during
581 the calibrationHowever, to ensure clear visualization, the result980arepresented in the

582 manuscript.

583 The dfactor, the % of observations within the 95 % confidence intervals (95% CI) and the
584 Root Mean Square Error (RMSEave been used to evaluate thedel prediction

585 uncertainty The dfactor represents the average width of the @€3%nd is calculated as

586 (Yang et al.2008)

A Qido — (12)
587 Where Hyand H, representespectivelythe upper and lower bounds of the 968&ffidence
588 intervalsn=t he number of o=k standaadtdevatios of the abserred
589 groundwater leveld-factors closer to 1 indicate better model prediction (Yang et al., 2008).
590 The higher observation coverage within the 95 % confidence intervals and decreasing d
591 factor value are indicating the imgvement in model predictions and accuracy of the

592 uncertainty bounds.
593 3. Results and discussion

594 In the results and discussisaction the results obtained from the thidiferentscenariosas

595 explained in the previousection §ection2.7) are presented, interpreted and discussed.
596 Section3.1 presents the parameter and prediction uncertainty of different conceptual models
597 due to uncertainty of model parametemtong with the heteroscedastic error model
598 parameters. SectioB.2 elaborateon the parameter and prediction uncertainty of different
599 conceptual models due tdhe uncertain input, model parameteong with the

600 heteroscedastic error modgarameters.Finally, section 3.3 presents the prediction

601 uncertainty due to uncertainty of thenceptual model structure, input, model parameters and

602 parameters of the heteroscedastic error model.

603 3.1Parameter and prediction uncertainty of different conceptual modelsfor scenario 1

604 Figure 3 showshe posterior probability distributions of thelB5 model parameterfor
605 scenarial. All parametersexceptriverbed hydraulic conductance (RIVG) L1B5 modelare

606 well identified within their prior distribution The posterior distribution of RIVC is still
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almostuniform while theposterior distributiorof all other parameteiis normally distributed
indicating thatRIVC is a noninfluential parameterHowever, this could be improveid

future studiesoy including more streamflow data during model calibratdfe have also
examined the correlation between model parametederror model parameter$he resuk

show a wek correlation amonghe MODFLOW parameterand between model parameters
and error model parametersThe posterior distribution of SY is located at the lower
boundaries of the prior rangé@th a mean value of around 0.1Alternatively, tie posterior
distribution of horizontal hydraulic conductivity (HK) is almost normally distributeth ai

high mean value of around 2.5 x iGns'. However, different conceptual modelith
different parameterization might draw different conclusioilence, consideration of
conceptual model structural uncertaintiegy beimportant butthis is not considered in this
scenario.Although the posteriomprobability distributionsof the well identified parameters
coveronly a small range of their prior stributions the parameter uncertainty band covers
only 8.5% of the observations (Figure 5a). This can be argued asoblem of
overconfidence irthe estimation of the model parameters. Though the total uncertainty band
covers almost all observations (94%), the width of the total uncertainty band is very wide
compared to the width of the parameter uncertainty band. This is indicating that both the
consdered conceptual model structure aheé input data used for this scenaontaina

considerable amount of uncertainty.

Figure 4 showshie posteriopdfsof the L3B5 model parameters for scendridAs expected,

the posterior parameter distributions loé tL3B5 model are very different from the posterior
parameter distributions of the L1B5 model. In this scenario, 12 parameters are considered
including two parameters of the heteroscedastic error mddein( B). Out of these 12
parameters, the posteridistributions of six parameters (HK HK-2, HK-3, SY-1, a, and b)

are approximately normally distributed. The posterior distribution of riverbed hydraulic
conductance (RIVC) is stitAimostuniform like its prior distribution, again indicating that
RIVC is a nonrinfluential parameter. The posterior distributions of specific storage 1, 2 and 3
(SS1, SS2 and SS3) are not included in the figure as the posterior distributions of those
parameters aralso still almost uniform as were their prior distributienSimilarly, the
posterior distributios of specific storage for the two layered models also remain uniform,
indicating that this is also a nanfluential parameter (supplementary materials:
Supplementary Figure )l The posterior distributions of HK and S¥2 are located

respectively at the lower and upper boundaries of the prior range. Moreover, the posterior
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distribution of S¥3 is not well identified. This could béue toinput uncertainties and/or
conceptual rmadel structural uncertainties which are not considered in this scenaaiso It
showsthat the posterioprobability distributionf the well identified parameters covemly

a small range of their prior distributions except for-BKThe parameter uncamty band
covers only 13 % of the observations (Figure 5d). Similar results are observed for the L2B4
and L2B5 models. For the L2B4 and L2B5 models, the parameter uncertainty band covers
respectively 12 % and 13.8 % of the observations (Figure 5b, S8updementary Table) 1

In general, the parameter uncertainty band is increasing with the level of complexity of the
conceptual models. The observation coverage of the parameter uncertainty band for the
different conceptual model structures is differdrtis suggestthe importance of the use of
multiple conceptual models for reliable predictidtoge et al. (2019) also suggested that
consideration ofuncertainty arising fronconceptual physical interpretation isportant

during BMA implementationjf the objective ofthe study is to increase the reliability and

accuracy of the model prediction
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Figure 3: The posterior probability distribution of the L1B5 model parameters (top row) and
the parameters of the heteroscedastic enadel (bottom row) both for scenario 1 and 2,
using 2500 samples generated after convergence. HK: Horizontal hydrandactivity,
RIVC: Hydraulic conductance of riverbed, SY: Specific yieddandB: The parameters of

the heteroscedastic error madel
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664 parameters of thbeteroscedastic erronodel @A andB) both for scenario 1 and 2, using

665 2500 samples generated after convergence.
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Scenario 1

(a) L1B5

mmm 95 % parameter uncertainty: associated with model parameters and measurement error model parameters
= 95 % total uncertainty
+ Observed

Groundwater level (m)

D 1 1 1 1 1 1 1 1

{c) L2BS
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(d) L3BS

Groundwater level (m)

Figure 5: The prediction uncertainty of monthly groundwater level at each observation well
with 95% parameter uncertainty considering emmrdel parameter along with model

parameter (black interval), 95 % total uncertainty (dark gray) and observations (black dot) for
(a) L1B5 model, (b) L2B4 model, (c) L2B5 model and (d) L3B5 model.
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3.2Parameter and prediction uncertainty of different conceptual modeldor scenario 2

In this scenario, uncertaintf theinput datais quantifiedsimultaneouslhalongwith model

parameters anlketeroscedastic erronodelparameters

Figure 3 showshe poserior pdfs of the L1B5 model parameters for scena®ioAs in
scenario 1, all parameters are well identified within their prior raegespt RIVC The
posteriorpdfs of the well identified parametecsver only aimited part of the prior range.

The posterior distribution othe hydraulic conductance of riverbed (RIVC) is still almost
uniform. Additionally, the posterior distribution of SY showves slight multimodality. The
correlation among model parameters and the adioel between model parameters, error
model parameters and input multipliers have been examined. The results show a weak
correlation among the MODFLOW parameters and between model parameters, error model

parameters and input multipliers (recharge and attsdn multipliers).

Out of the 12 parameter$or model L3B5 the posterior distributions of eight parameters
(HK-1, HK-2, HK-3, SY-1, SY-2, SY-3, a, and b) are approximately normal while it was six
for scenario 1 (Figurél). The posterior distribution of RIVC, S§ SS2, SS3 are still

almost uniform.

By comparimg the posterior distributiabetween scenario 1 and 2 for different conceptual

models (Figure8 and4), the following observations are made:

1. The posterior pdfs asomeparameters are different in different conceptual models as
well as in different scenans. This is indicating that parameter values are overly
adjusted to compensdiar existing conceptual model structural deficiencies and input
uncertainty when input and/or conceptual model uncertainties are not considered.

2. For model L3B5, the posterigpdfs of the parameters S and S¥3 are also
identified within their prior ranges and their posterior distribution became
approximately normal when we consider input uncertaimtgddition to uncertainty
arising frommodel parameters argtteroscedastic error mogerameters. However,
their posterior distributions are located at the boundaries of the prior range. This could
be because of model structural uncertainties.

3. The heteroscedastic error mogerameter{A and B) are well identifed in both

scenarios for all different conceptual models, but their values are different between
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702 scenarios and between models. In general, the values of the error heteroscedasticity

703 (A and B) parameters decrease when we consider input unceriairagdition to

704 uncertainty ofmodel parameter arfieteroscedastic error modgsrameters. Another

705 important observation is that the value of thest error heteroscedasticityAf

706 parameter increases with the level of complexity of the conceptual models. This
707 indicates that existing conceptual model structural deficiencies are somehow
708 compensated bihe value of the error heteroscedasticity (a) parameter.

709 We conclude that an explicit consideration of input uncertamiddition to uncertainty of
710 the model parametes and heteroscedastierror model parameters very important to have
711 unbiased and better defined parameter sets. Consideration of altecoatveptual models is
712 also important for obtaining confident parameter sgthoniger et al. (2015) also reported
713 that consideration of uncertainty arising frahe model input is necessary to increase the

714  robustness of Bayesian modeleraging and rankin

715 The posterior probability distributions of the recharge multipliers vary strongly between
716  months but are in generdligher tharone The recharge multipliers are well identified during
717 the rainy season (May to Octobeshile thesemultipliers are not well identifiable during the
718 dry season (November to April). The details of the recharge multipliers for a specific
719 conceptual model are explained in Mustafa et(2018). The distributions of thewell

720 identified multipliers show diffieent shape for different conceptual models (Figu®.

721 However, the range of the multipliers and magnitude of their probability distrilsw#rerthe

722 same for different conceptual models (Fig@yeThe groundwater abstraction multipliers are
723  also well icentified within ther prior rangeandare higher than one in all months excpt

724  November and January for all four conceptual models. Aglagnyell identified multiplies

725 show almostthe samerange of valuedor different conceptual models (Figui®. This

726 indicakes that the input uncertainty multipliers are independent from model structural
727 uncertainty and are not overly adjusted to compensate conceptual model structural
728 deficiencies.
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Posterior probability distribution of recharge multipliers for the month of July
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730 Figure 6: Posteriorigtribution of groundwater recharge multipliers of July for all conceptual

731 models, using 2500 samples generated after convergence.

Postcrior probability distribution of groundwater abstraction multipliers for the month of December
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733  Figure 7: Posterior distribution of groundwater abstraction multipliers, using 2500 samples

734 generated aftezonvergence.
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The prediction uncertainty of the monthly groundwater level associated initht
uncertainty, model parameter uncertainty andertainty related tthe heteroscedastic error
model is presented in figu& The observation coverage of thergmeter uncertainty band
has increased by more than 100% for all modsigpplementary Table) lwhen uncertainty
arising from model input is incorporated along with uncertainty arising from model
parameters and parameters of beteroscedastic error model he increase fothe L1B5

model is even more than 200%his result reveals that consideration of input uncertainty has
significantly improved the confidence of model predictions and ignoring input uncertainty
could lead to lmsed model simulations and incorrect uncertainty bandse parameter
uncertainty band of L1B5 covers the highest number of observations when input uncertainty
is included Supplementary Table)1When we explicitly consider input uncertaintye

width of the parameter uncertainty band has increbsethe width of the total uncertainty

has decreased (figure 5 aBf This indicates that total uncertainty has decreased. This is
confirmed by the reduction of thefdctor for all the modelsSupplenentary Table L This

result reveals that uncertainty bounds of scenario 2 are more accurate complaee@Itof
scenario land the residual variance is smakiéreach pointThe Root Mean Square Error
(RMSE) was also used to compare the resufltscenario 1 and 2. It is observed that the
values ofthe RMSE are decreasing when input uncertainty is included along with model
parameter uncertainty and the parameters of the heteroscedastic error modell@igitre
decreasing magnitude the RMSE valueof L1B5 model is more significant than for any of
the other models, indicating comparatively higher uncertainties in the L1B5 model. This is
another indication that consideration of uncertainties through input multipliers is increasing
the accuracy of thenodel prediction and decreasing the prediction uncertainty. Even after
consideration of input uncertaintiethe observation coverage of the parameter uncertainty
band for the different conceptual model structures is differ8nopglementary Table,1
Figure 8). Hence, consideration of conceptual model structural and input unceriginty

important to have moraccuratenodelprediction andinbiasedincertainty bounds.
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Figure 8: Prediction uncertainty of monthly groundwater level at each observation well with
95% parameter uncertainty considering input uncertainty along with model parameter
uncertainty and error heteroscedasticity (black interval), 95 % total uncel@ankygray)

and observation (black dot) for (a) L1B5 model, (b) L2B4 model, (c) L2B5 model and (d)
L3B5 model.
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