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We would like to thank the Editor and both reviewers for their constructive feedback and 

comments. We feel that our manuscript has benefited greatly from your reviews. Below is a 

point-by-point response to each of the Editors and Reviewers’ comments. 

Editor and Reviewer Comments:

-Reviewer 1-

Comment 1:

The current version of the manuscript addressed most of the previous issues. One major issue 

that was not addressed is that you should give the results of the secondary task within the dual 

task itself. Reporting the secondary task’s performance data as the data of a pilot study cannot 

replace this. Since the whole idea is that the secondary task influences the performance of the 

participants as they engage in the hazard search task, its effect should be confirmed within the 

experimental design.
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We agree with Reviewer 1, that the best way to assess whether our subjects were actively 

engaging in the secondary task while performing the hazard perception task is to assess 
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containing each subject’s word list recall rates as well as their performance on the easy 

questions. We have now analysed the differences between high and low load task performance 
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-Reviewer 2-
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1) Effect of cognitive load was assessed on behavioral, eye movement and EEG metrics
2) Elements of the saccadic eye movement system can be used as markers of distraction
3) Eye fixation related potentials are sensitive to changes in cognitive workload
4) Markers of distraction were present prior to reduction in primary task performance
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Abstract

Previous research has demonstrated that the distraction caused by holding a mobile 

telephone conversation is not limited to the period of the actual conversation (Haigney, 

1995, Redelmeier & Tibshirani, 1997, Savage, Potter & Tatler, 2013). In a prior study 

we identified potential eye movement and EEG markers of cognitive distraction during 

driving hazard perception. However the extent to which these markers are affected by 

the demands of the hazard perception task are unclear. Therefore in the current study 

we assessed the effects of secondary cognitive task demand on eye movement and EEG 

metrics separately for periods prior to, during and after the hazard was visible. We 

found that when no hazard was present (prior and post hazard windows), distraction 

resulted in changes to various elements of saccadic eye movements. However, when 

the target was present, distraction did not affect eye movements. 

We have previously found evidence that distraction resulted in an overall decrease in 

theta band output at occipital sites of the brain. This was interpreted as evidence that 

distraction results in a reduction in visual processing. The current study confirmed this 

by examining the effects of distraction on the lambda response component of subjects 

eye fixation related potentials (EFRPs). Furthermore, we demonstrated that although 

detections of hazards were not affected by distraction, both eye movement and EEG 

metrics prior to the onset of the hazard were sensitive to changes in cognitive 

workload. This suggests that changes to specific aspects of the saccadic eye movement 

system could act as unobtrusive markers of distraction even prior to a breakdown in 

driving performance.

Keywords: Hazard Perception, Distraction, Eye Movements, Eye Fixation Related 

Potentials
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1 1. Introduction

2 Conversing on the telephone has been shown to impair performance on a wide variety of 

3 different driving related tasks (DE Haigney, Taylor, & Westerman, 2000; Strayer, Drews, & 

4 Johnston, 2003; Törnros & Bolling, 2005). Obviously, physically interacting with a hand held 

5 device diverts motor and visual resources away from the task of driving. However, it is the 

6 cognitive demands of conversing on the phone that appear to play a central role in the 

7 impairments that ensue from telephone use in vehicles. Indeed, previous work has 

8 demonstrated that hands free and hand held devices produce similar levels of distraction 

9 (Lamble, Kauranen, Laakso, & Summala, 1999; Patten, Kircher, Östlund, & Nilsson, 2004; 

10 Strayer & Johnston, 2001). On top of this, it seems that the distraction caused by telephoning 

11 may not be limited to the period of the conversation itself (D Haigney & Taylor, 1998; 

12 Redelmeier & Tibshirani, 1997), likely arising from cognitive preoccupation with the content 

13 of the preceding conversation. Distraction from cognitive preoccupation such as this poses a 

14 particular challenge for efforts to improve driver safety and reducing the risk of vehicular 

15 accidents: while it is possible to legislate against the use of telephones (hand held or hands 

16 free), cognitive preoccupation can come from a variety of sources from contemplating a prior 

17 conversation, listening to a quiz on the radio, to constructing a shopping list on the way to the 

18 supermarket. Such sources of distraction – similarly to driver fatigue – cannot be legislated 

19 against; however, if it is possible to objectively detect when a driver is distracted, then 

20 assistive devices can be developed to intervene in such safety critical scenarios. It is therefore 

21 unsurprising that research effort has been devoted to identifying objective markers of 

22 distraction  and fatigue (such as fixation durations, blink rates, blink numbers and head dips – 

23 while driving (Philip et al., 2005; Savage, Potter, & Tatler, 2013).

24 Previous work has demonstrated that variations in cognitive load can affect eye 

25 movement measures in a wide variety of different ways during driving tasks. For instance, 
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26 the introduction of cognitive load resulted in a reduction of the spread of fixations leading to 

27 more time being spent fixating on the center of the road (Harbluk, Noy, & Eizenman, 2002; 

28 Recarte & Nunes, 2000; Reimer, 2009; Victor, Harbluk, & Engström, 2005). (Harbluk et al., 

29 2002) manipulated the complexity of a mobile telephone conversation, which, along with an 

30 increase in the percentage of time spent fixating on the center of the road, resulted in a 

31 concurrent decrease in the number of saccades, indicating less extensive scanning of the 

32 scene. Fixation durations are often considered to reflect processing time, especially in reading 

33 where words that are more difficult to process are fixated upon for longer (Rayner, 1998). 

34 Previous work by (Velichkovsky, Rothert, Kopf, Dornhöfer, & Joos, 2002) has shown that 

35 the first fixation upon a hazard was typically much longer in duration than those preceding 

36 the hazard.

37 Different characteristics of blinks have been thought to be indicators of both fatigue 

38 and mental workload respectively and have both been shown to increase as a function of time 

39 on task. Some studies have shown that higher blink rates may be a reliable indicator of 

40 mental fatigue and cognitive workload (Fukuda, Stern, Brown, & Russo, 2005; Stern, Boyer, 

41 & Schroeder, 1994), whereas other studies have demonstrated that blink durations decreased 

42 as a function of primary visual task demand (Ahlstrom & Friedman-Berg, 2006; Benedetto et 

43 al., 2011). The different pattern of effects on blink rates and blink durations suggests that 

44 cognitive and visual load have qualitatively different effects on blink rates and blink 

45 durations: increased blink rates being associated with increases to cognitive load and 

46 decreases in blink durations being symptomatic of increases in visual load. 

47 In a hazard perception task, high secondary cognitive task demand resulted in a 

48 significant increase in saccade peak velocities (Savage et al., 2013). Saccade peak velocities 

49 have also been shown to be affected by mental activation (App & Debus, 1998), alertness 

50 (Thomas & Russo, 2007), and mental workload (Di Stasi, Marchitto, Antolí, Baccino, & 



5

51 Cañas, 2010) as well as drug-induced sedation, sleep deprivation and fatigue (Grace, 

52 Stanford, Gentgall, & Rolan, 2010; Schmidt, Abel, DellOsso, & Daroff, 1979; Zils, Sprenger, 

53 Heide, Born, & Gais, 2005). Work by Di Stasi and colleagues (2012) specifically has 

54 demonstrated that saccade peak velocities decrease as a function of time on task and with 

55 increasing mental fatigue. As such we were interested in assessing the effects of cognitive 

56 load as well as time on task on the decrease in saccadic peak velocities over time. We predict 

57 that increased cognitive workload results in faster mental fatiguing, which will be evidenced 

58 by a faster decrease in peak velocities over time. We did not analyse fixation durations, 

59 saccade amplitudes, saccade durations; the spread of fixations, blink rates or durations over 

60 time as we didn’t have a strong theoretical motivation to do so.

61 From the literature discussed to far it becomes clear that cognitive load has been 

62 found to influence a wide variety of oculomotor measures, and these offer attractive, 

63 objective measures of the cognitive state of a driver, which, if reliable might provide the 

64 underpinnings of in-car monitoring for driver distraction. 

65 Distraction may be revealed not only by changes in oculomotor behaviour, but also by 

66 changes in brain activity. Previous driving simulator research has demonstrated that EEG 

67 metrics such as theta and alpha frequency power around the time of hazard perception may be 

68 good indicators of driver distraction and inattention (Lin, Chen, Chiu, Lin, & Ko, 2011). This 

69 is consistent with the finding that changes in cognitive demand results in variations in alpha 

70 and theta frequency output (Klimesch, 1999; Klimesch, Doppelmayr, Schwaiger, Auinger, & 

71 Winkler, 1999; Tulving, Kapur, Craik, Moscovitch, & Houle, 1994). (Savage et al., 2013) 

72 found an increase in frontal theta when participants were preoccupied with simultaneously 

73 solving puzzles and performing a driving hazard perception task.

74 While previous research considering how preoccupation influences changes to eye 

75 movement behaviour and brain activity throughout the period in which participants conduct a 
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76 hazard perception task (or other driving-related tasks) provides an overall account of changes 

77 that arise from cognitive distraction (e.g., (Klimesch, 1999; Nijboer, Borst, van Rijn, & 

78 Taatgen, 2016; Savage et al., 2013; Strayer & Drew, 2004; Strayer & Johnston, 2001), it 

79 neglects the fact that the task demands for the driver varies throughout such tasks. 

80 Specifically, once a hazardous event appears, the task changes from being vigilant of possible 

81 hazards to monitoring the developing hazard. It remains unclear whether the effect of 

82 distraction on eye movement behaviour varies as the visual demands of the driver vary. In 

83 self-paced settings, previous research has indicated that when the primary driving task 

84 becomes difficult, the intrusion of secondary cognitive task demand becomes attenuated 

85 (Alm & Nilsson, 1994). Thus drivers modify their driving behaviour to compensate for the 

86 demands of the secondary cognitive task. 

87 However, if we are to fully understand and isolate the impact of secondary cognitive 

88 load on driver behaviour, it is useful to control the visual and cognitive demands of the 

89 driving task and deny drivers the possibility of themselves varying the demands of the 

90 primary driving tasks. Driving simulators have been used for a number of years as an 

91 ecologically valid alternative to on road driving experiments (Davenne et al., 2012; 

92 Underwood, Crundall, & Chapman, 2011). The benefit of driving simulators is that the 

93 provide a safe, repeatable and controlled environment in which to examine peoples driving 

94 behaviour in response to distracting and even dangerous situations. It is important to 

95 acknowledge driving in a driving simulator resembles driving in the real world more closely 

96 than watching videos of hazards. Nevertheless, for the purpose of our current study assessing 

97 the effects of distraction during a video based hazard perception paradigm has several 

98 advantages. For instance, one advantage of the video hazard perception task is that it is not a 

99 self-paced activity, which means that, unlike real world or simulated driving, participants are 

100 unable to reduce the speed of their vehicle in response to a secondary cognitive task. 
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101 Reducing driving speed also reduces the speed at which visual information becomes 

102 available. This in turn is thought to free up cognitive resources, which allows for the 

103 processing of both cognitive and driving tasks. Thus, the video based hazard perception task 

104 offers a method for considering whether secondary cognitive load influences visual 

105 exploration behaviour. Specifically, it is possible to compare the period prior to the onset of a 

106 hazardous event (when the participant is monitoring for hazards) to the period during which 

107 the hazardous event is unfolding and must be monitored; and during the ensuing period after 

108 the hazardous event has finished. Producing an account of whether and how secondary 

109 cognitive load impacts driver’s saccadic eye movement behaviour differently depending on 

110 the current demands of the hazard perception task will not only provide new insights into the 

111 effects of distraction on driving, but also offer the potential for more effective, context-

112 dependent monitoring of driver distraction for in-vehicle devices. 

113 The main aim of the present study was to consider whether previously-identified 

114 markers of cognitive preoccupation vary depending on the demands of the hazard perception 

115 task. Models of executive control (e.g., (Corbetta, Patel, & Shulman, 2008; Norman & 

116 Shallice, 1986) predict that the intrusion of secondary tasks can become attenuated depending 

117 on the content of the primary task. Any identified differences in the susceptibility of 

118 oculomotor metrics to increases in cognitive task demand may therefore indicate which 

119 portion of the hazard perception task was most demanding for participants (before, during or 

120 after the hazard onset). 

121 A second key aim of the present work was to consider in more detail the claim made 

122 by (Savage et al., 2013) that the overall decrease in occipital theta found during the hazard 

123 perception task when cognitively preoccupied was indicative of a reduction in visual 

124 processing efficiency. To test this hypothesis, the current study examined differences in Eye 

125 Fixation Related Potentials (EFRP) between high and low cognitive task demand conditions. 
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126 The major advantage of event related potentials (ERPs) is that the time course of cognitive 

127 processing can be measured with a high temporal resolution (Kutas & Hillyard, 1983). 

128 EFRPs were first described by Yagi and colleagues (Yagi, Imanishi, Konishi, Akashi, & 

129 Kanaya, 1998; Yagi & Ogata, 1995) and are defined as the measurement of electrical brain 

130 activity in response to an eye fixation. The difference between the EFRP methodology and 

131 the more conventional ERPs is that the average waveforms are time-locked to the onset of a 

132 fixation and not to the onset of a stimulus event. As a technique they have been found to be 

133 very effective for establishing a timeline of early cognitive processes (Baccino & Manunta, 

134 2005). In the past EFRPs have been used to disentangle cognitive/perceptual and attentional 

135 factors that affect lexical processing. More recently Hutzler and colleagues (Hutzler et al., 

136 2007) have validated the use of EFRPs in real world, ecologically valid settings. One of the 

137 most prominent components of EFRPs is the lambda response. This is a positive deflection 

138 occurring around 80 ms from the onset of a fixation (Kazai & Yagi, 2003)and has been 

139 shown to vary depending on the properties of the visual stimuli and attention (Kazai & Yagi, 

140 1999). As such we were particularly interested in determining any differences in EFRPs 

141 between our high and low cognitive load conditions for the period 50-150 ms after the onset 

142 of fixations.

143 2. Methods

144 2.1. Design

145 In this within-subjects experimental design the independent variable was secondary cognitive 

146 task demand, which was either high or low. Cognitive load was manipulated by the type of 

147 audio clip presented to participants prior to the beginning of the trial. Cognitive load was 

148 considered to be high following a wordlist that the participant was required to rehearse during 

149 each hazard perception clip and recall at the end of it. The cognitive load task was always 
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150 presented prior to the start of the hazard perception clip. We included a 1.5 second blank 

151 period after the end of the auditory clip and the onset of the video clip for both the high and 

152 the low load conditions. This was done in order to assess the effects of cognitive load in 

153 isolation from processes involved in language comprehension and production. Participants’ 

154 performance was compared to control trials following an easy question (e.g., “What is the 

155 capital city of England”), which participants were required to answer at the end of each trial 

156 (low cognitive load). The dependent variables were grouped into three major categories: (1) 

157 behavioural, (2) oculomotor, and (3) electrophysiological. Behavioural independent variables 

158 consisted of participants’ RTs to hazardous events, False Responses (FRs) to non-hazardous 

159 events and Missing Responses (MRs) to hazardous events. Dependent variables relating to 

160 oculomotor metrics consisted of first saccade latency, fixation durations, saccade amplitudes, 

161 saccade durations, average saccade peak velocities, the horizontal spread of fixation 

162 positions, blink rates, blink durations and changes in saccadic peak velocities over time. 

163 Dependent variables relating to electrophysiological metrics consisted of 1) overall mid-theta 

164 (4 - 7 Hz Band) across the full duration of each 30 second hazard perception clip; and 2) the 

165 average activity in the 50-150 ms window after the onset of each fixation (eye fixation related 

166 potentials – EFRPs). 

167 2.2. Participants

168 17 Participants (7 males) were recruited in and around the University of Dundee by means of 

169 the Universities Research Participation System ‘‘SONA’’. All testing was carried out in the 

170 Research Wing of the School of Psychology at the University of Dundee. Participation 

171 typically lasted no longer than 2 hours (around 30 minutes for the experimental trials with the 

172 rest of the time spent setting up and ensuring good quality data collection for the EEG 

173 recordings, gathering informed consent and debriefing participants) and participants were 

174 compensated with either course-credit or chocolate. Participants’ ages ranged between 18 and 
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175 28 (mean age 23). To ensure all participants were familiar with the hazard perception portion 

176 of the test, all subjects were required to be in possession of a DVLA approved driver’s 

177 license and must have been driving for a minimum of 1 year1. The University of Dundee’s 

178 Ethics review board approved this study. The study was conducted in accordance with the 

179 tenets of the Declaration of Helsinki.

180 2.3. Materials

181 Participants sat at a table with their heads supported by a chinrest 62.5 cm away from a 20” 

182 CRT-Monitor on which the visual stimuli were displayed. Subjects were instructed to 

183 indicate their responses using SR-Research button boxes. Experiment Builder software by 

184 SR-Research was used to program the presentation of the audio and visual stimuli.

185 Participants’ eye movements were recorded using an EyeLink1000 eye-tracker 

186 sampling at 1000 Hz and cortical activity was recorded using a 40 channel, BioSemi active 

187 electrode system sampling at 2048 Hz, which was connected to a dedicated recording 

188 computer utilising BioSemi - Activision software.

189 For this study we used a total of 32 DVLA approved hazard perception clips, which 

190 were provided courtesy of Focus Multimedia Ltd. and Imagitech Ltd. The onset of the hazard 

191 in each clip was predefined by Focus Multimedia Ltd. and Imagitech Ltd in the form of 

192 screenshots which can be seen in the Appendix. Each video was clipped from 60 to 30 

193 seconds and each clip contained only one clearly identifiable hazard. When truncating the 

194 hazard perception clips we made sure that hazards were not within 5 seconds of the start or 

195 the end of the clip so that we always had a clearly identifiable prior, during and after window. 

1 We did not gather data on driving experience beyond this check that participants had held a full license for at 
least a year. This is because we wanted to ensure familiarity with the hazard perception test, but were not 
concerned with driving experience more generally. 
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196 Within these 30-second clips, hazard onset times varied considerably with a mean of 

197 13.8 s (SD = 5.5 s), ranging from 5.0 s to 22.2 s. The hazardous events lasted for an average 

198 of 5.8 s(SD = 2.3 s, range = 2.9 – 10.9 s). 

199 We made use of sixteen 10-item wordlists and sixteen easy to solve questions to 

200 manipulate cognitive load (See Appendix 7.1 & 7.2). These wordlists and questions were 

201 presented via a set of Logitech loudspeakers at a comfortable but constant volume.

202 2.4. Procedure

203 Participants were instructed to fixate on a central fixation point prior to beginning of each 

204 trial. Depending on the condition, participants were presented with an easy question (low 

205 cognitive load condition – e.g. ‘‘What is the capital city of Scotland?’’) or a 10-item wordlist 

206 directly before the start of the hazard perception clip. Words within the wordlist were 

207 presented at a frequency of 1 every 1.5 seconds resulting in a total audio duration of 15 

208 seconds and each hazard perception clip was of a fixed length of 30 seconds. In both 

209 conditions participants were instructed to indicate the onset of hazards in the clip by pressing 

210 a button on a response-box. At the end of each trial, depending on the condition, participants 

211 were asked to verbally state out loud the answer to the previously presented question (low 

212 load) or recall as many words as possible from the previously presented wordlist (high load). 

213 Participants completed one practice trial from each condition prior to the start of 

214 testing to familiarize them with the procedure. Participants then completed 15 trials in each 

215 condition. The presentation order of conditions was randomly interleaved across trials and the 

216 pairing of hazard perception clip and type of audio clip was counterbalanced across 

217 participants. EEG and eye movement data were recorded for the full duration of each trial.

218 2.5. EEG recording

219 Stimuli were presented using SR-Research Experiment-Builder software with event codes 
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220 simultaneously sent to the EEG recording system via the TTL parallel output port. Event 

221 codes were used to define each clip as well as its appropriate condition in order to guide later 

222 analysis. In order to be able to analyse eye fixation related potentials the timings of fixations 

223 and saccades were extracted from the raw data and merged with the stimulus events by means 

224 of custom-made MatLab routines. Recordings were carried out using a BioSemi CHA-01 

225 active electrode system with a digital sampling rate of 2048 Hz. We used 32 electrodes fitted 

226 to an elastic cap. Electrodes were placed according to the 10–20 system at scalp sites of Fp1, 

227 Fp2, AF3, AF4, F7, F8, F3, F4, Fz, FC1, FC2, FC5, FC6, T7, T8, C3, C4, Cz, CP1, CP2, 

228 CP5, CP6, P3, P4, Pz, P7, P8, PO3, PO4, O1, O2, Oz. Additionally, electrodes were 

229 positioned above and below the right eye to monitor the timings of vertical eye movements 

230 (VEOGs), at the outer canthi of both eyes for horizontal eye movements for later artifact 

231 removal, and on the left and right mastoids and nose  to provide alternative reference sites. 

232 Electrode sites were prepared with alcohol to reduce scalp impedances. Sigma conductivity 

233 gel was applied to each cap electrode fitting point. After pre-processing using PolyRex 

234 software (J Kayser, 2003), the data were ultimately analysed using BrainVision Analyser 

235 software.

236 2.6. EEG data processing

237 In the data pre-processing stage the EEG recordings were down-sampled to the same rate as 

238 the Eye Tracker (1000 Hz) using BDF Decimator82. Recordings were then re-referenced to 

239 the linked nose reference site using PolyRex version 1.2 (Jürgen Kayser & Tenke, 2003). 

240 Stimulus event codes were used to first segment out all valid trials from the continuous EEG 

241 data and baseline corrected. The data were then processed for further analyses with a 

242 Butterworth Zero Phase Filter with low cut-off frequency of 45 Hz and a high cut-off 

243 frequency of 0.53 Hz and a 48dB/oct slope. An Ocular Correction Independent Component 

244 Analysis (OC ICA) was then performed on the whole data using a bipolar electrode pair 
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245 above and below the right eye to identify blink activity and a bipolar electrode pair positioned 

246 at the outer canthi of the left and right eyes to identify horizontal eye movement activity. 

247 Stimulus event codes were then used to segment the data into high and low load conditions 

248 for further analyses. In order to analyse EFRPs, EEG and oculomotor measures were 

249 recorded separately and then merged by means of a series of custom developed MatLab 

250 routines. 

251 2.7. EEG analysis

252 2.7.1. Overall Frequency differences between conditions

253 Fast Fourier Transformation was performed on the entire 30 second epoch of each hazard 

254 perception trial using a periodic 10% Hamming Window and a resolution of 0.03125 Hz. We 

255 then averaged the results for each condition and compared overall power in mid-theta (4 - 7 

256 Hz Band) frequency output. Overall power for this frequency range was calculated for each 

257 electrode by measuring the area under the curve of on-going fluctuations in theta band power 

258 for both high and low cognitive load conditions

259 2.7.2. Differences in eye fixation related potentials (EFRPs) 

260 Fixation event codes were used to segment windows 150 ms prior and 600 ms after the onset 

261 of each fixation. These segments were averaged and then baseline corrected (BC) on the 

262 epoch 150 ms prior to fixation onset to determine differences in overall activity between high 

263 and low cognitive load conditions. 

264 2.8. Eye movement recording

265 Eye movements were recorded using an SR Research EyeLink1000 eye-tracker, sampling at 

266 1000 Hz. Each participant completed three brief eye dominance tests prior to the start of 

267 testing so that the experimenter was able to track the subject’s dominant eye. A 9-point 
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268 calibration procedure was used to calibrate the tracker and repeated to validate tracker 

269 accuracy. If the validation procedure showed an average error in excess of 0.5° or a 

270 maximum error in excess of 1°, the calibration procedure was repeated. Saccades were 

271 identified using the standard SR Research algorithm, which detects saccades when eye 

272 position deviates by more than 0.1°, with a minimum velocity of 30 deg s-1 and a minimum 

273 acceleration of 8000 deg s-1, maintained for at least 4 ms. Data were exported to custom-

274 made MatLab routines for subsequent analysis of saccade, fixation and blink events.

275 2.9. Neurophysiological Measures

276 Participants’ grand averages (GAs) for the theta frequency band was calculated by measuring 

277 the area under the curve for each pre-defined frequency range within a specified time 

278 window. Similarly, GAs for EFRPs were generated by calculating the area under the curve of 

279 on-going fluctuation within the specified time windows. We analyzed differences in subjects’ 

280 EEG measures between high and low cognitive load conditions. However as the length of pre 

281 during and post hazard appearance windows were all of different for each clip, we did not 

282 attempt to analyze differences in EEG measures across these different time windows. A text 

283 file containing participants GAs at each of the 32 electrode sites for high and low cognitive 

284 load conditions was exported from BrainVision. In order to explore at which electrode sites 

285 significant differences between high and low load could be identified, GAs were analysed in 

286 SPSS using paired-samples t-tests. 

287 2.10. Statistical analysis

288 The hazard perception clips were segmented into three time windows. These time windows 

289 were defined as being 1) before the onset of the hazard 2) during the period in which the 

290 hazard was on screen; and 3) after the hazard had disappeared from the screen. The analyses 

291 were aimed at examining the susceptibility of our dependent variables to increases in 
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292 cognitive load across these three time windows. Data were analysed using Linear Mixed 

293 Models (LMMs) using the lme4 package (version, 1.1-7; (Bates, Mächler, Bolker, & Walker, 

294 2014) in the R statistical programming environment (R Core Team, 2018) LMMs are 

295 particularly well suited to datasets such as those collected in this study for several reasons: 1) 

296 they are able to deal with uneven distributions of data between conditions in the design; 2) 

297 they can combine continuous and categorical factors within the same model; and 3) they can 

298 measure variance across subjects and items simultaneously (Kliegl, Dambacher, Dimigen, 

299 Jacobs, & Sommer, 2012). In constructing models, time window (before, during and after 

300 hazard onset) and cognitive load (high vs. low) were entered as fixed effects in all models. 

301 For models of saccade duration and saccade peak velocity, saccade amplitude was also 

302 entered into the models as a fixed effect because of the known relationship between saccade 

303 amplitude and these measures (Bahill, Clark, & Stark, 1975). 

304 Subjects and items (hazard perception movie) were entered as random effects in all models. 

305 Given the variation in timings of hazard onset and duration reported above together with the 

306 nature of hazardous events seen in the screenshots in the Appendix, the inclusion of the by-

307 item random effect term is particularly important to ensure that any variations between clips 

308 that arise from the variation in hazards are accounted for in the results that we report. For the 

309 random effects structure we attempted to include random slopes and intercepts for all fixed 

310 effects and their interactions in order to produce a maximal random effects structure (Barr, 

311 Levy, Scheepers, & Tily, 2013). However, maximal structure models often fail to converge. 

312 When these models did not converge, we first removed the computation of correlation 

313 parameters within the random effects structures. If further simplifications were required for 

314 model convergence, we began by simplifying the item term, first, by removing the slopes for 

315 the interaction between time window and cognitive load. Following this, the random slope for 

316 time window was removed from the item term before removing the slope for cognitive load if 
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317 necessary (leaving an intercept-only item term in the random effects structure). Throughout 

318 simplification of the item term the full structure for the subject term was retained (minus 

319 correlation parameters). If models still did not converge once the item term was simplified, 

320 the same stepwise simplification procedure was followed for the subject term. In the sections 

321 that follow the results are reported for the most complex random effects structure for which 

322 the LMM converged.

323 For all models we report the predictors’ coefficient (β), its standard error (SE) and the 

324 t- (for linear models) or z- (for binomial models) values. For linear models, p-values are not 

325 directly supplied by lme4 package, but were generated using the lmerTest library 

326 (Kuznetsova, Brockhoff, & Christensen, 2017). For comparisons between time window, we 

327 used a categorical predictor with three levels (before, during and after the hazard), coded for 

328 simple contrasts to compare each of before and after the hazard to the time when the hazard 

329 was visible. 

330 3. Results

331 3.1. Behavioural Measures

332 Prior to analyzing our behavioural, oculomotor and electrophysiological data, we wanted to 

333 examine whether performance on the easy and difficult cognitive load tasks was different. 

334 We did this in order to confirm that our wordlist task was harder than answering a simple 

335 question. Only if performance on the high load task was different from the low load task 

336 would we be able to confirm that subjects were devoting attention resources to the secondary 

337 task. Therefore we first compared subject’s performance on the wordlist task (high cognitive 

338 load) to their performance on the simple questions task (low cognitive load). We found that 

339 subject’s performance on the high load task (52.78% correct) was significantly worse than 

340 their performance on the low cognitive load task (100% correct), t(16)= -16.1; p< .001. 
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341 To examine overall differences in behavioural responses to the hazard perception 

342 clips between conditions irrespective of time windows, the construction of LMMs was 

343 carried out as described above without including time window in the fixed effect term. 

344 Measured from the appearance of the hazard on screen we found no significant effect of 

345 cognitive load on response times (RTs), β = .01; SE= .03; t= -.32; p = .74, or erroneous 

346 responses to non-hazardous events in the movies (false responses; FRs), β = -.19; SE= .11; t= 

347 -1.82; p= .08. Analyses of trials in which the hazardous event was missed (missing responses; 

348 MRs) were not carried out, as there were no recorded cases. Average RTs and FRs for both 

349 high and low cognitive task demand conditions can be seen in Table 1.

350 Table 1. Average reaction times (RTs) in milliseconds and false responses (FRs) per clip 

351 between both high and low cognitive load conditions along with standard deviations 

352 (in parentheses)

Measure High Load Low Load

RTs [ms] 2703 (1913) 2668 (1636)

FRs [per clip] 1.32 (1.51) 1.40 (1.65)

353

354 3.2. Oculomotor Measures

355 Prior to considering differences across the three time windows in the clips, we modeled first 

356 saccade latency after the onset of each clip. This measure provides an indication of planning 

357 processes and is useful in understanding the effect of cognitive load. An LMM with a single 

358 categorical fixed effect of cognitive load showed that first saccade latencies were longer in 

359 the high load condition (M = 344 ms, SD = 215) than in the low load condition (M = 289 ms, 

360 SD = 152), β = .06, SE= .02, t= 2.63, p= .013.

361 We then modeled effects of cognitive load across the three time periods (before 

362 hazard onset, during hazard appearance and after hazard disappearance) in each hazard 

363 perception clip on fixation durations, saccade amplitudes, saccade durations, saccade peak 
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364 velocities, the horizontal spread of fixation positions, blink rates and blink durations, with 

365 separate LMMs for each oculomotor measure. Table 2 summarises these measures across the 

366 three time windows and across cognitive load conditions.  

367 Fixation durations were significantly longer during the period in which the hazard 

368 was on screen compared to both period before, β = 19.1, SE= 3.25, t= 5.87, p < .001, and 

369 after, β = 26.7, SE= 3.25, t= 7.98, p < .001, the hazard was present. Moreover, the effect of 

370 load differed between the periods before and during the hazard, β = 16.62, SE = 6.26, t = 

371 2.66, p = .008. A follow-up LMM was run to explore this interaction and showed that 

372 cognitive load had an effect while the hazard was present on the screen, β = 17.7, SE = 5.52, t 

373 = 3.20, p = .001, with shorter fixation durations in the high load condition; but there was no 

374 effect of cognitive load in the period before the hazard onset (t < 1). 

375 For the LMM to predict saccade amplitudes, saccade amplitudes were log-

376 transformed to satisfy model assumptions. Saccade amplitudes were significantly smaller in 

377 the period during which the hazard was onscreen as compared to the time windows before, β 

378 = .14, SE= .01, t= 20.74, p < .001, and after, β = .11, SE= .01, t= 16.67, p <.001, the hazard 

379 was visible. Cognitive load did not influence saccade amplitude either as a main effect or 

380 through interaction with time window.

381 Saccade durations (log-transformed in the LMM and with saccade amplitude included 

382 as a fixed effect) were overall longer in the high load condition, β = .01, SE = .005, t = 2.40, p 

383 = .029. Saccade durations were shorter in the period when the hazard was visible as 

384 compared to periods before the appearance, β = .02, SE = .002, t = 7.19, p < .001, and after 

385 the disappearance, β = .01, SE = .002, t = 4.91, p < .001. We found no interaction between 

386 time windows and cognitive load. Saccade durations increased with saccade amplitudes, β = 

387 .06, SE < .001, t = 176.02, p < .001.
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388 Saccade peak velocities (log-transformed in the LMM and with saccade amplitude 

389 included as a fixed effect) were significantly faster in the high compared to the low cognitive 

390 task demand condition, β = .02, SE = .004, t = 3.74, p = .002. Furthermore peak velocities 

391 were significantly slower when the hazard was present as compared to periods before, β = 

392 .03, SE = .003, t = 9.69, p < .001, and after, β = .01, SE = .003, t = 5.21, p < .001, the hazard 

393 was on screen. However we found no interaction between time windows and cognitive load. 

394 As expected peak velocities increased with increasing saccade amplitude, β = .09, SE < .001, 

395 t = 212.10, p < .001.

396 Analysis of fixation position variance along the x-axis indicated no significant main 

397 effect of cognitive load (t < 1) but did suggest a significant reduction of spread when the 

398 hazard was present as compared to the period before, β = 7197, SE = 397, t = 18.13, p < .001, 

399 and after, β = 4601, SE = 445, t = 10.34, p < .001, the hazard was onscreen. We found no 

400 interaction between time windows and cognitive load.

401 Blink rates were higher in the high compared to the low cognitive load condition, β = 

402 .10, SE = .03, t = 3.11, p = .007. Furthermore blink rates were significantly lower during the 

403 period where the hazard was visible on the screen than in either the period before the hazard 

404 appeared, β = .11, SE = .03, t = 4.12, p < .001, or after it disappeared, β = .16, SE = .03, t = 

405 6.17, p < .001. We found no interactions between time windows and cognitive load.

406 For blink duration, the only significant difference was between the period when the 

407 hazard was visible and the period after it disappeared, β = 19.0, SE = 9.3, t = 2.06, p = .040, 

408 with longer blinks after the hazard had disappeared. 

409 Table 2. Average Fixation Durations (Fix. Durs) in milliseconds, Saccade Amplitudes (Sacc. 
410 Amps) in degrees, Saccade Durations (Sacc. Durs) in milliseconds, Saccade Peak 
411 Velocities (Sacc. PVs) in degrees per second, horizontal spread of fixations (X/-
412 position variance; in pixels), Blink Rate (Blink Rate) per second and Blink 
413 Durations (Blink Durs) in milliseconds between high and low cognitive load 
414 conditions for the time windows before during and after the hazard was on screen 
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415 along with standard deviations (in parentheses). Please note that DVs are reported to 
416 an accuracy that reflects the measurement of the variable. 

Before During After
High Low High Low High Low

Fix. Durs2,3,4 332 (187) 332 (174) 342 (195) 357 (193) 321 (183) 333 (176)

Sacc. Amp 2,3 2.9 (2.2) 2.9 (2.2) 2.3 (1.9) 2.2 (1.8) 2.7 (2.1) 2.7 (2.2)

Sacc. Durs 

1,2,3

29 (13) 29 (12) 26 (12) 26 (11) 29 (13) 28 (13)

Sacc. PV 1,2,3 207 (116) 204 (113) 177 (109) 172 (111) 204 (118) 192 (113)

X-Spread 2,3 11729 

(8143)

12472 

(8493)

5232 

(5987)

5115 

(5588)

9611 

(667)

9853 

(7151)

Blink Rate 

1,2,3 

0.54 

(0.39)

0.41 

(0.36)

0.39

 (0.52)

0.28 

(0.45)

0.56 

(0.41)

0.49 

(0.41)

Blink Durs 3 192 

(208)

163 

(199)

199

(226)

179 

(201)

200 

(210)

205 

(202)

417 1 Denotes a significant main effect of cognitive load
418 2 Denotes a significant difference between periods before and during
419 3 Denotes a significant difference between periods during and after
420 4 Denotes a significant interaction between cognitive load and time window

421 3.2.1. Saccade peak velocities over time 

422 Saccade peak velocities were analysed as a function of time on task between both high and 

423 low cognitive load conditions. To this effect an LMM model was tested with cognitive load, 

424 trial number and saccade number as fixed effects as well as two random factors for hazard 

425 perception clip and participant. Peak velocities decreased as a function of saccade number, β 

426 = .007, SE = .001, t = 4.79, p < .001, and trial number, β = .003, SE = .001, t = 2.21, p < .027, 

427 with these two predictors interacting significantly, β = .004, SE = .001, t = 2.50, p < .012. As 

428 expected given our previous analyses, we found that peak velocities were faster when 

429 cognitive load was high (195°/sec) as compared to low (189°/sec) , β = .012, SE = .003, t = 
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430 4.16, p < .001. However, we found no interaction between either trial number or saccade 

431 number and cognitive load.

432 3.3. Electrophysiological Measures

433 3.3.1. Overall Frequency differences between conditions

434 Participants’ grand average (GA) of mid-theta (4 – 7 Hz) frequency output was calculated for 

435 each electrode individually for both high and low cognitive load conditions for each 30s 

436 hazard perception clip. We found significantly more theta activity at T8 (t(15) = -2.69; p = 

437 .017) and CP6 (t(15) = -2.54; p = .023) and a marginally significant increase at Pz (t(15) = -

438 2.1; p = .053) in the high compared to the low cognitive task demand condition. 

439 3.3.2. Differences in eye fixation related potentials (EFRPs) 

440 After fixation event codes were used to segment epochs 150 ms prior to and 600 ms 

441 following fixations, grand averages were calculated for the interval 50 ms – 150 ms after 

442 each fixation onset. We found that distraction resulted in a reduced amplitude of the lambda 

443 response at electrode O1 (t(16) = 2.14; p = .049) and  marginally at Oz (t(16) = 2.11; p = 

444 .051). Differences in EFRPs between high and low load conditions at O1 can be seen in 

445 Figure 1.
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Figure 1. Grand average EFRPs for both low and high cognitive load conditions at the 
electrode site O1. Differences between conditions were calculated in the 
highlighted area 50-150 ms after each fixation onset. Fixation onset is 
highlighted at 0 ms.

446 4. Discussion

447 We considered whether the effects of cognitive load might vary depending on the content of 

448 the hazard perception video, specifically we were interested in comparing the period during 

449 which the hazard was visible to periods before it appeared and after it disappeared from view. 

450 4.1. Behavioural consequences of distraction

451 Contrary to previous findings (e.g., Savage et al., 2013) reaction times and false responses 

452 were not significantly increased when the cognitive load from the secondary task  used in the 

453 current paradigm was high. We reason that shortening the hazard perception clips reduced the 

454 variability of visual task across clips but also led to a reduction in primary task uncertainty. 

455 Hazard perception clips used in the DVLA’s hazard perception assessment may contain a 

456 number of potential hazards that ultimately do not turn out to be hazardous. However, 

457 reducing the original clip length in such a way as to only include one clearly identifiable 

458 hazard (and no potential hazards) may well have resulted in the primary task being easy 
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459 enough for participants to be able to simultaneously process both primary and secondary 

460 tasks without detriment. This was also supported by the fact that not a single participant 

461 missed a single hazard (no missing responses in either condition). Another reason why we 

462 may not have replicated findings from our previous study (Savage et al., 2013) is that in the 

463 past we compared a high level of cognitive load to no cognitive load whereas in the current 

464 experimental paradigm we are comparing low versus high cognitive load. This difference in 

465 secondary task may have resulted in a smaller effect on behavioral measures. 

466 However, despite there being no significant effect of load on reaction times and false 

467 responses, analyses of eye movements and electrophysiology indicated that previously 

468 identified signatures of distraction were affected by the increase in cognitive task demand. A 

469 major consideration for potential markers of distraction is their ability to identify increases in 

470 crash risk before the actual crash occurs (Liang, Lee, & Reyes, 2007). Therefore, the 

471 observation that oculomotor and electrophysiological metrics are susceptible to variations in 

472 cognitive task demand although no increases in reaction times, false responses and missing 

473 responses were found raises interesting possibilities in this domain, with the possibility that 

474 these measures might reveal impacts of cognitive load prior to them becoming sufficient to 

475 significantly impair hazard detection. 

476 4.2. The effect of distraction on oculomotor metrics

477 For all of the eye movement measures tested here, there were differences between the period 

478 when the hazard was visible and either the period before it appeared, or the period after it 

479 appeared, or, in some cases, both. This consistent pattern clearly indicates that viewing 

480 behaviour changed when the hazard was visible on the screen compared to when it was not. 

481 We found overall effects of cognitive load for saccade duration, saccade amplitude, 

482 and blink rate. Thus, throughout the entire 30-s clip high cognitive load resulted in longer 

483 duration saccades, faster saccadic peak velocity, and more frequent blinks, despite this 
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484 cognitive load not impacting behavioural responses. Therefore these measures may be 

485 indicative of increased cognitive load prior to any changes in behaviour that would ordinarily 

486 lead to an increase in crash risk. Higher saccade peak velocities and more frequent blinks 

487 under high cognitive load supports our previous work on the effects of cognitive load on 

488 hazard perception (Savage et al., 2013) together with several other previous studies (e.g., 

489 (Ahlstrom & Friedman-Berg, 2006; Di Stasi, Renner, et al., 2010). 

490 Beyond any overall effects of cognitive load, we found effects of cognitive load 

491 specific to certain periods of the hazard perception clips for fixation duration. Specifically, 

492 fixation duration generally increased when the hazard was visible compared to before it 

493 appeared, but more so in the low load condition, such that there was an effect of cognitive 

494 load while the hazard was visible that was not found prior to its appearance. In general longer 

495 fixation durations have been thought to reflect primary task difficulty, in reading for instance, 

496 more difficult words are fixated upon longer (Rayner, 1998). Longer fixation durations 

497 during the period where the hazard was visible may reflect more effortful processing 

498 involved in monitoring the potential hazard in order to be able to react to the hazard onset in 

499 an appropriate and timely manner. Interestingly the effect of cognitive load was the opposite 

500 to what we had expected, with shorter fixation durations when cognitive load was high as 

501 compared to low. 

502 It is somewhat surprising that we did not find any effects of cognitive load on the 

503 horizontal spread of fixations in the present study. One of the most consistent findings in 

504 simulated and real-world driving research is that the introduction of a secondary cognitive 

505 task results in the reduction of spread or a narrowing of fixations towards the center of the 

506 road (Reimer, 2009; Victor et al., 2005), and we have previously reported this under high 

507 cognitive load in the hazard perception task (Savage et al., 2013). It is possible that our 
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508 failure to find an effect here might arise from shortening the videos to 30 seconds and this 

509 reducing the difficulty of the task. 

510 In addition to saccade peak velocities being faster in the high than the low cognitive 

511 load condition, we also found that peak velocities decreased as a function of saccade number 

512 and trial number. Previous research has interpreted the decrease in peak velocities as a 

513 function of time on task as a measure of mental fatigue (Di Stasi et al., 2012; Galley, 1993). 

514 These findings demonstrate that saccade peak velocities are sensitive to changes in secondary 

515 cognitive task demand as well as time on task, but in a way that does not interact, and as such 

516 could provide a basis of monitoring changes in drivers’ mental processes in real time. As 

517 saccade peak velocity models in our analyses included saccade amplitude as a fixed effect, 

518 the overall change in peak velocities as well as the change in peak velocities over time cannot 

519 be accounted for on the basis of changes in saccade amplitude. 

520 First saccade latency is a measure typically recorded in pro and antisaccade tasks as 

521 well as visual search tasks and is thought to reflect the speed at which new incoming visual 

522 information is being processed and appropriate saccade programs are written. In the current 

523 experimental paradigm we included a gap of 1500 ms between the offset of the secondary 

524 wordlist and the onset of the primary hazard perception task. During this period, the visual 

525 scene was blank, thus alerting participants to and preparing them for the imminent onset of 

526 the primary task. Therefore we argue that first saccade latencies in this current experimental 

527 paradigm may reflect preparatory mechanisms occurring before the start of the primary 

528 hazard perception task. First saccade latencies were significantly longer in the high compared 

529 to the low cognitive load condition. This suggests that increased secondary task demand may 

530 be interfering with the preparatory mechanisms prior to the start of the primary task. 
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531 4.3. Electrophysiological consequences of distraction

532 Analyses of EEG data from this current experiment revealed that increased cognitive load 

533 was associated with 1) significantly higher tonic theta frequency power at temporal and 

534 central parietal sites; and 2) significantly smaller grand average EFRPs at occipital and 

535 temporal sites. Whilst for eye movement metrics we analyzed the effect of the three different 

536 time windows (pre hazard visibility; during hazard visibility and post hazard visibility), we 

537 did not make the same comparisons for our EEG measures. This was because the duration of 

538 pre, during and post epochs were different for each hazard perception clip. Furthermore the 

539 visual content of pre during and post epochs were very different. EEG metrics are extremely 

540 sensitive to variations in visual stimuli (Müller, Gruber, & Keil, 2000). Therefore having 

541 different sized windows with different visual content would greatly affect the frequency 

542 content of our subjects EEG data. 

543 Overall frequency differences calculated on the entire 30-second period of the hazard 

544 perception trials indicated that mid-theta was significantly higher at left temporal, left central 

545 parietal as well as central parietal sites in the high cognitive load condition. This is in line 

546 with previous research, which has indicated that increased theta band energy is evident 

547 during spatial working memory tasks (Gevins, Smith, McEvoy, & Yu, 1997; Klimesch, 1999; 

548 Tesche & Karhu, 2000). Increases in theta band power output have also been linked with 

549 organizing multi-item working memory in non-spatial tasks (Raghavachari et al., 2001). 

550 Therefore, results from this current experiment are in support of these previous studies, which 

551 have found increases in theta band energy at a large variety of different cortical sites. It 

552 should be noted that although the differences in frequency outputs in this current study were 

553 significant, these differences were in fact very small. Therefore, it is difficult to make any 

554 strong claims as to the causes of these frequency differences under these specific 

555 circumstances. Previous authors have argued that increased activity in the theta band most 
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556 likely reflected greater cortical engagement in response to processing two tasks (Jensen & 

557 Tesche, 2002). Furthermore, greater frontal theta band output was thought to demonstrate the 

558 activation of neural networks associated with the allocation of attention relative to the target 

559 stimulus. Therefore differences in this frequency metric are thought to be indicative of 

560 processes related to a specific component of mental calculation. The differences in theta band 

561 output found in the current paradigm seem to support the hypothesis that increased mental 

562 workload results in an increase (synchronization) of theta frequency band across a variety of 

563 cortical sites. 

564 In a previous piece of work we found reduced theta activity at occipital sites in high 

565 compared to low secondary cognitive load conditions whilst viewing hazard perception 

566 videos (Savage et al., 2013). We argued that the reduction in occipital theta may reflect a 

567 reduction in processing of the visual primary task and that the reduction in theta was most 

568 likely associated with a reduction in the depth of visual processing. In order to verify this and 

569 to gain a more nuanced insight into the depth of visual processing occurring during fixations 

570 in the current study, we analysed differences in EFRPs between high and low cognitive load 

571 conditions.

572 In the past the electrophysiological correlates of cognitive processing have been 

573 restricted to experimental paradigms in which the exploration of the visual information was 

574 highly controlled. Such low level tasks included visual pattern reversal (e.g., (Kazai & Yagi, 

575 2003) and word recognition (e.g., (Baccino & Manunta, 2005) paradigms. However, more 

576 recently it has been argued that monitoring electrophysiological activity during fixations 

577 provides insight into the self-paced acquisition of perceptual information within the visual 

578 scene. The most commonly analysed component of EFRPs is the lambda response, a positive 

579 deflection of cortical activity around 80 ms following the onset of a fixation. This component 

580 has been shown to vary both with attention and the properties of the visual stimuli. The 
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581 lambda response has been shown to reflect the afferent input of visual information from 

582 fixation to the visual cortex (Billings, 1989; Thickbroom, Knezevic, Carroll, & Mastaglia, 

583 1991; Yagi, 1979). Previous work has demonstrated that the size of the lambda response is 

584 significantly smaller under conditions of increased cognitive workload (Ries, Slayback, & 

585 Touryan, 2018; Ries, Touryan, Ahrens, & Connolly, 2016; Takeda, Yoshitsugu, Itoh, & 

586 Kanamori, 2012). In a driving simulator study Takeda and colleagues (Takeda et al., 2012) 

587 found that a secondary spatial working memory task resulted in a decrease in the magnitude 

588 of the lambda response whereas a verbal working memory task did not. The authors argued 

589 that drivers were able to divide their attention resources between the driving and a verbal 

590 working memory task but that the decline in visual processing accuracy was inescapable 

591 when attempting to share resources between the driving and a spatial working memory task. 

592 In the current study we increased our participants working verbal working memory load by 

593 presenting a list of words prior to the onset of the hazard perception clip. In contrast to 

594 (Takeda et al., 2012), we found that the lambda response following the onset of fixations was 

595 significantly less positive in the high as compared to the low cognitive load condition. This 

596 indicates that verbal working memory load was in fact sufficient to result in a decline in 

597 visual processing. The fact that Takeda et al. (2012) found no effect of verbal working 

598 memory may be that their secondary task did not occupy working memory resources to the 

599 same extent as our own verbal working memory manipulation. 

600 Reduced amplitudes of the lambda component of EFRPs at occipital sites are 

601 associated with a reduction of the depth of visual processing (Ries et al., 2018; Ries et al., 

602 2016; Takeda et al., 2012). As such, findings from the current study seem to support our 

603 previous interpretations that increased cognitive load results in a decrease in the processing of 

604 visual information. In line with previous research, results from this current study suggest that 

605 EFRPs are a useful tool in the assessment of cognitive processes (Baccino & Manunta, 
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606 2005). An important consideration is that the amplitude of the lambda response has been 

607 shown to be positively correlated with the size of saccades (Dandekar, Privitera, Carney, & 

608 Klein, 2011; Dimigen, Sommer, Hohlfeld, Jacobs, & Kliegl, 2011; Yagi, 1979). However the 

609 latency of the response is not affected by saccade amplitude when time-locked to the onset of 

610 fixations. This suggests that the lambda response reflects fixation-related visual processing as 

611 supposed to merely being an artifact of saccade sizes. In the current study we found that 

612 saccade amplitudes were affected by the presence of the hazard but not by cognitive load. 

613 The fact that we have demonstrated a reduction in the magnitude of the lambda response as a 

614 consequence of increased cognitive load supports the claim that it does in fact reflect fixation 

615 related visual processing. Therefore the reduction in the size of the lambda response may 

616 indicate a reduction in the processing of visual information. One aim of the current study was 

617 to examine the susceptibility of behavioural, oculomotor and electrophysiological measures 

618 to increases in secondary cognitive task demand. Although behavioural metrics were not 

619 affected by cognitive load, previously identified markers of distraction were still susceptible 

620 to changes in secondary cognitive task demand. 

621 Reducing the length of the primary hazard perception clips may have resulted in the 

622 primary task being less demanding than the original full one minute clips as evidenced by the 

623 lack of missing responses. Interestingly this current study suggested that increases in 

624 secondary cognitive task demand were associated with changes in oculomotor and 

625 electrophysiological measures despite no adverse effects on behaviour being found. 

626 Therefore it could be argued that the discussed changes in eye movements and EEG metrics 

627 may be more sensitive indicators of the compensatory control mechanisms designed to 

628 compute the secondary tasks whilst simultaneously maintaining primary task performance. 

629 Analyses of eye movements across different periods within the hazard perception clip 

630 demonstrated that the appearance of the hazard led to longer fixation durations as well as a 
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631 reduced horizontal spread of fixation positions. This difference may be characterised in terms 

632 of searching for and monitoring a potential hazard; specifically reduced spread and longer 

633 fixations when monitoring the ongoing hazard, while it was visible in the hazard perception 

634 clip. Models of executive function (e.g., (Corbetta et al., 2008; Norman & Shallice, 1986) 

635 postulate a flexible mediation of cognitive resources depending on current task demands, it 

636 could be reasoned that monitoring a potential hazard which is present is perceived as more 

637 demanding in comparison to scanning the visual scene when no potential hazards were 

638 present. 

639 One major consideration for meaningful markers of cognitive distraction within 

640 driving situations is the ability to detect an increase in crash risk before the crash actually 

641 occurs. As oculomotor and neurophysiological metrics were significantly affected by the 

642 introduction of a secondary cognitive task although no changes in behaviour were observed, 

643 results from this current study imply that specifically measures of saccadic peak velocities, 

644 blink rates, phasic and tonic theta as well as EFRPS may be indicative of variations in 

645 cognitive task demand. Most importantly these metrics were sensitive to increases in 

646 cognitive load in the absence of any changes in behaviour. 

647 While using a video based hazard perception task has many advantages, future 

648 research would benefit greatly from assessing the effects and interactions of visual and 

649 cognitive task demand on hazard perception performance in a driving simulator or in a closed 

650 course driving experiment. Driving is a complex and demanding task which, is almost 80% 

651 visual in nature (Hills, 1980). However driving in the real world requires the physical control 

652 of the vehicle, which in itself can be very demanding. Hazard perception videos do not 

653 require the driver to physically control a vehicle. Therefore by assessing the interaction of 

654 visual and cognitive load while incorporating the physical demands of controlling the vehicle, 
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655 will give researchers a much more nuanced insight into the allocation of attention resources 

656 when driving in the real world. 

657 5. Conclusions

658 The aims of the current study were to 1) compare the susceptibility of previously 

659 identified oculomotor markers of distraction across three different periods within each clip 

660 (before, during and after the hazard was on screen); and 2) consider whether cognitive 

661 distraction had an effect on eye fixation related potentials (EFRPs) within a video based 

662 search task. As the hazard perception task does not allow subjects to directly influence 

663 primary task difficulty (i.e. by slowing down driving speed), it was predicted that 

664 compensatory behaviour would be reflected in more subtle changes in viewing behaviour and 

665 electrophysiology. We found evidence that saccade peak velocities, blinks and the spread of 

666 fixations along the x-axis were affected by cognitive load, even before the onset of the hazard 

667 in the viewed hazard perception clips. 

668 As with our previous study (Savage et al., 2013) average theta frequency output for 

669 the full 30-second hazard perception clip was significantly greater at central, parietal and 

670 temporal sites when secondary cognitive task demand was high. Following on from this, the 

671 current study has provided evidence that increased cognitive load. Following on from this, we 

672 found that the lambda component of EFRPs was significantly smaller at occipital sites under 

673 when cognitive load was high as compared to when it was low. Reduced amplitudes of this 

674 component of EFRPs at occipital sites supports our previous interpretations (Savage et al., 

675 2013) that the incoming visual information was not being processed to the same extent as 

676 when full cognitive resources are available. Most importantly, these metrics were sensitive to 

677 increases in cognitive load in the absence of any changes in primary hazard perception task 

678 performance. This suggests that these markers may in future be used to detect distraction 

679 prior to an increase in crash risk. 
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866 7. Appendix

867 7.1. Wordlist 10 words @ 1.5 sec interval = 15 seconds per WL

868 WL 1:  soot, joker, captain, fly, story, stove, rock, corn, bread, sofa

869 WL 2:  star, peel, uncle, hospital, grow, desk, ranger, bird, shoe, fish

870 WL 3: stove, mountain, glasses, towel, cloud, lamb, boat, gun, pencil, church

871 WL 4: drum ,curtain, bell, coffee, school, parent, moon, garden, hat, farmer

872 WL 5: nose,turkey, colour, house, river, doll, mirror, nail, sailor, heart, 

873 WL 6: dessert, face, letter, bed, machine, milk, helmet, music, horse, road

874 WL 7: forest, water, ladder, girl, foot, shield, pie, insect, ball, car

875 WL 8: dish, jester, hill, coat, tool, violin, tree, scarf, ham, suitcase, 

876 WL 9: cousin, earth, knife, stair, dog, banana, radio hunter, bucket, field

877 WL 10: orange, armchair, toad, cork, bus, chin, beach, soap, hotel, donkey, 

878 WL 11: spider, bathroom, casserole, soldier, lock, book, flower, train, rug, meadow

879 WL 12: harp, salt, finger, apple, chimney, button, log, key, rattle, gold

880 WL 13: toffee, sand, pony, plate, heart, jail, envelope, silk, dart screw

881 WL 14: wood, stool bread, street, head, barn, window, hand, hole, balloon, 

882 WL 15: mouse, crayon, fountain, hot, stranger, stocking, teacher, nest, children, rose

883 7.2. Easy Control Questions

884 Q1: What is the capital city of Scotland?

885 Q2: What is the capital city of England?

886 Q3: What city are you in?

887 Q4: What is five multiplied by ten?

888 Q5: What is one hundred minus twenty five? 

889 Q6: What do people blow out on their birthdays?

890 Q7: How many sides does a square have?
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891 Q8: What is the capital city of France?

892 Q9: What is half of one hundred?

893 Q10: How many sides does a triangle have?

894 Q11: What is four multiplied by five

895 Q12 What is three times ten?

896 Q13: What is the capital city of Germany?

897 Q14: At what temperature does water begin to boil?

898 Q15: At what temperature does water begin to freeze?

899 7.3. Practice Materials

900 7.3.1. Practice wordlist

901 Bar, coach, cabin, pond, park, helicopter, ocean, cherry, laundry, swallow

902 7.3.2. Practice Question:

903 In the UK what number do you dial in an emergency?

904
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905 7.4 Screenshots of the hazard onset for hazard perception videos

906


