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Robust event-driven particle tracking in complex geometries
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bSchool of Engineering, University of Aberdeen, Fraser Noble Building, AB24 3UE, UK

Abstract

Particle tracking, that is, the repeated localization of particles within a grid by means of tracking the particles’ trajecto-
ries, is routinely applied in particle-based schemes where the domain is described by an unstructured polyhedral grid.
A range of tracking algorithms are available in the literature, which are inherently similar to algorithmic approaches
common both in event-driven particle dynamics (EDPD) and ray-tracing methods. We propose a reformulation of
existing particle tracking algorithms in the context of EDPD. On the one hand, this resolves inconsistencies in the
mapping between particle positions and grid cells triggered, e.g., by imperfect grids. More importantly, it allows the
specification of solid objects via constructive solid geometry (CSG), a standard technique for the modeling of solids in
computer-aided design. While usually considered contrary approaches, our description of the computational domain
as the combination of a bounding volume defined by an unstructured grid and solids modeled via CSG embedded
into this volume can be highly advantageous. The two different approaches of modeling the computational domain
complement each other perfectly, as the CSG representation is not only efficient in terms of memory and computing
time, but also avoids the challenges of generating finely resolved unstructured grids in the presence of complicated
boundaries. These benefits, as well as the positive impact of several algorithmic optimizations of the extended tracking
algorithm, are exemplified via a particle-based simulation of a gas flow through a highly porous medium.

Keywords: particle tracking, particle sorting, event-driven dynamics, constructive solid geometry, complex
geometries

1. Introduction

Particle models are one of the earliest applications of computer simulation, first appearing in 1957 [1]. Initially,
the technique could only be applied to relatively simple problems due to limitations in the available computational
resources; however, modern applications of particle-based methods include both complex applied engineering prob-
lems [2–4] and fundamental research into coupled fluid–particle problems [5–7]. These simulations typically require
accurate descriptions of fluid–particle and fluid–boundary interactions at both the macroscopic scale, such as in the
optimization of fluidized bed reactors [8–11], and on the microscopic scale, such as in colloidal suspensions [12–15].

A common motif of these simulations is the requirement to handle boundary conditions of complicated shape. The
usage of unstructured polyhedral grids/meshes, as they are most prominent in the context of finite element analysis,
allows for a convenient definition of the computational domain also in the case of particle simulations. In general,
the mesh here serves merely as a geometric description of the domain, the dynamics of the system are tied to the
particles. The specific role of the mesh in the context of the simulation scheme depends on the exact method. Particles
typically interact in some way or another with the boundaries of the system, linked to the surface elements of the
grid. Additionally, neighbor-lists [16] are commonly employed, which logically group particles based on their spatial
proximity. These neighbor-list are used to optimize the calculation of physical interactions between particles by
accelerating the search for nearby particles. The concept of neighbor-lists is independent of the shape of the grid cells,
as long as a mapping between the particles’ position and the corresponding grid cells can be obtained at any time.
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This mapping is also essential if a particle-based method such as the discrete element method (DEM) is coupled with
an Eulerian method, e.g., for the simulation of a fluidized bed reactor [17].

Independent of the exact use of the mesh, it is necessary to derive a mapping from the current particle position
to the enclosing mesh element and vice versa. There are two general approaches to this: (1) particles are repeatedly
sorted into the elements of the mesh at regular intervals or (2) particles are tracked as they move through the mesh
(after an initial sorting step). For structured grids, the sorting operation can usually be implemented efficiently by
evaluating a closed-form expression; for unstructured grids, however, the naive attempt of checking the position
against all elements in the mesh is too computationally expensive to perform. Assuming, however, the mapping of
the initial position is available for each particle, e.g., by resorting to optimized search data structures such as quad-
/octrees [18, 19] or k–d trees [20], the tracking of particles provides an efficient method to maintain the mapping,
independent of the structure of the grid. Tracking the trajectory of particles avoids the potentially high computational
cost of regular sorting but requires the overhead of determining the transition times when particles cross the boundaries
of their enclosing mesh element (or cell). Even for complex meshes, this overhead is usually relatively small and thus a
wide variety of algorithms implementing this approach have become available [21–26]. While the basic algorithms are
well studied and variations supporting specialized configurations are available, we here want to address two remaining
issues with existing approaches.

First, particle tracking algorithms are susceptible to failures triggered by imperfect meshes as well as floating-
point imprecision itself. This can result in inconsistencies between a particle’s position and the derived mapping to a
cell, up to the point where particles are “lost” in-between cells. Several other publications [21–27] address this issue,
yet the resulting algorithms are constructed without an underlying general formalism. The equivalent challenges for
event detection algorithms in event-driven particle dynamics (EDPD) [28, 29] as well as algorithmic solutions are
presented by the authors in previous contributions [30, 31]. Based on the equivalence of particle tracking and EDPD
which is established in Section 2, the framework for event-driven tracking algorithms is introduced and an inherently
robust yet computationally efficient tracking algorithm for unstructured meshes is derived in Section 3.

Second, while particle-based simulations using particle tracking in unstructured meshes allow for simulation do-
mains of complex shape, this does come at a cost. The process of generating the volumetric mesh can be tedious, time
consuming, and often require manual steps. This becomes especially problematic in the presence of larger numbers of
(not necessarily stationary) obstacles embedded into the domain. Additionally, the computational cost of the particle
tracking is a function of the ratio between the distance particles travel during one tracking step and the spatial extent
of the mesh elements. For some simulation models where the computational cost of the interaction model capturing
the physics of the system is limited, the particle tracking can then dominate the execution time of the simulation. In
Section 4 we thus propose an extension to the tracking algorithm that relies on the description of parts of the domain
using constructive solid geometry (CSG). To limit the impact of this extension towards CSG on the computational
performance, in Section 5 several optimization strategies are presented. While still an underlying grid has to be gen-
erated using the typical procedures, this grid does not have to capture the surface features of the obstacles embedded
into the domain. Especially for simulations where the obstacles are placed dynamically during the initialization or
even follow their own dynamics this is a significant advantage. As an example, a single mesh can be reused to study
a large number of different packings, simply by adjusting the parameters of the obstacles. The capabilities of this
hybrid approach of using a mesh and additional obstacles defined using CSG are illustrated in Section 6. An open-cell
foam is modeled using analytical geometric shapes for the simulation of a gas flow using a particle-based method. By
changing the radii of the pores packings of different porosity can be automatically generated without any re-meshing.

2. Event-driven particle tracking

Consider a bounded and connected domain, Ω ⊂ Rd, of dimensionality d which is then decomposed into a mesh,
M = {Ei}

NE
i=1, of NE closed non-empty convex polyhedral elements/cells, {Ei}, satisfying,

Ω =

NE⋃
i=1

Ei . (1)

It is also required that the interiors of the elements are exclusive of each other, i.e.,

∀ i , j, int(Ei) ∩ int(E j) = ∅ where i, j ∈ {1, . . . ,NE}. (2)
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Although the interiors of elements are distinct, neighboring elements must share (depending on the dimensionality)
vertices, edges, and facets as they are closed sets. This guarantees that there is a complete and unique mapping of
positions to elements, except at the boundaries of each element which are within both neighboring elements to allow
the smooth transition of particles.

Let us assume that at an initial time, t0, a particle i has already been located within an element of index ci(t0) ∈
{1, . . . ,NE}, such that ri(t0) ∈ Eci(t0), where ri(t) : R → Ω is the center-of-mass position of the particle. The objective
is then to obtain at a later point in time, t1 > t0, the mapping between the position, ri(t1), and the element E ∈ M,
such that ri(t1) ∈ E. Let us further assume, that the trajectory of the particle connecting the points ri(t0) and ri(t1) is
known. By tracing this trajectory starting at ri(t0) to the boundary of the element Eci(t0), the intersection point between
the trajectory and the boundary of Eci(t0) can be obtained. By identifying the corresponding facet and resorting to
the connectivity information provided as part of the mesh description, the neighboring mesh element the trajectory
crosses over into can then be obtained. Repeating this procedure iteratively until the final position ri(t1) is reached,
the mesh element corresponding to ri(t1) can be found (see Fig. 1). In certain cases, complex trajectories obtained via
numerical integration, such as r2(t) in Fig. 1, can be approximated by a linear trajectory, here r′2(t), simplifying the
search for the intersection points significantly.

Figure 1: The principle of particle tracking illustrated for two particles i ∈ {1, 2}moving in an unstructured two-dimensional grid, with Ω =
⋃4

j=1 E j.
Starting from the initial position ri(t0), with knowledge of the initial element, c0(t0) = 4, and c1(t0) = 2, respectively, the aim is to determine the
element index ci(t1) corresponding to the final position ri(t1). The transition points from one element to the next are highlighted by the red
hexagons, where the actual curved trajectory of the second particle is approximated by a linear trajectory r′2(t) for the purpose of tracking.

The particle tracking algorithm as outlined above forms the basis for a range of algorithms proposed in the liter-
ature [21–26], yet the different algorithms vary in their complexity with respect to the supported mesh elements as
well as their numerical robustness. An often found extension is the assignment of physical boundary conditions to
the surface facets of the mesh. In this case, an interaction based on some physical model between the particle and
the boundary at this intersection point is performed whenever a particle trajectory intersects with a boundary facet
F ⊂ ∂Ω. Such discrete interactions are routinely employed for direct simulation Monte Carlo [32] (DSMC) or multi-
particle collision dynamics [33] (MPCD). Especially for the case of DSMC, the integration of boundary interactions
into a particle tracking algorithm is a commonly employed technique [21, 23, 24, 34]. Likewise, in case the simulation
framework relies on a decomposition of the computational domain as part of a parallelization scheme, the transition of
a individual particle from one subdomain to another can be triggered by transitions between mesh elements assigned
to different subdomains [26].

Albeit the long history of these algorithms and possibly due the alleged simplicity of the problem, there seems
to be no general framework how to derive numerically robust tracking algorithms. At least parts of a number of
publications [21–27] can be attributed to various efforts to increase the efficiency and robustness of the scheme. In
this work, “robustness” refers to the resilience of the algorithms with respect to common numerical issues such as
the limited precision of floating-point calculations, imperfect meshes with non-planar faces, leading to small “gaps”
between adjacent mesh elements [24, 25]. These issues can result in errors in detecting the correct transition points
between neighboring elements, which in turn may prevent the tracking algorithm from obtaining a valid mapping
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between particle positions and mesh elements. While this may happen only in very few specific constellations during
the run of a simulation for each individual particle, with simulations routinely employing 106 or even 109 particles,
these issues are encountered in practice and can lead to issues which are hard to debug, especially in simulations on
large parallel systems. Also, when combined with the handling of physical boundary conditions as introduced above,
erroneous repeated interactions caused by numerical errors can occur. While this is not as critical for some boundary
conditions such as walls resulting in a diffuse reflection, for other boundary conditions the correct number of boundary
interactions is crucial. An example are surfaces tied to some chemical reaction model where repeated interactions can
have a significant impact on the simulation result.

Conceptionally, the problem of formulating a robust tracking algorithm is analogous to the construction of a robust
event detection for event-driven particle dynamics (EDPD): The challenge lies in the reliable and computationally ef-
ficient calculation of the next event. In the absence of dissipative forces, EDPD particles follow a ballistic trajectory
in between discrete interactions or events. As the motion of each individual particle is obtainable analytically between
these events, the scheme becomes event-driven, where each algorithmic step is a search for the next event. Reformu-
lating the general tracking algorithm as a search for the next event has two benefits: First, recent improvements in the
robustness of the event detection [30, 31] can now be integrated directly into the particle tracking routine, which is
discussed in the next section. Second, it allows the consistent extension of the algorithm to handle complex composite
objects, which we explore further in Section 4.

3. Robust event detection for particle tracking

In order to formulate a robust EDPD methodology, the authors systemized the approach for obtaining stable event
detection algorithms in a previous work [30]. There, several fundamental concepts are introduced: (1) the definition
of valid states, (2) suitable overlap functions, and (3) stabilizing interactions. For EDPD, a valid state can be defined
as a physically meaningful configuration of particles, e.g., for a hard-sphere system a configuration where no particles
are overlapping. Whether a given pair of particles is in valid state or not at the time t is indicated by the overlap
function, f (t). This function is specific to the implemented interaction model, but generally the evaluation of the
time-dependent overlap function returns a positive value for a valid and a negative value for an invalid state. It is then
the task of the event detection algorithm to generate stabilizing interaction events between particles entering invalid
states in order to prevent the further deterioration of the configuration.

Before applying the EDPD methodology, the significance of maintaining a valid state also for particle tracking
should be emphasized. As the tracking algorithm is typically not concerned with the interactions between particles
due to some (pair-wise) interaction model, the individual particles can be considered independently. A valid state for
a single particle i is then a valid mapping between the physical position of the particle, ri(t), and the logical position in
the mesh, described by the index ci(t). Consequently, in this context an invalid state does not correspond to a violation
of some physical law, but rather a state where the mapping between the logical position in the mesh and a particle’s
(center-of-mass) position is violated.

For particle tracking, the choice of the overlap function is dependent both on the type of mesh elements and the
complexity of the particle trajectories. There is some freedom in the choice of f (t), but ideally the overlap function
should be simple enough that its roots can be found efficiently using an analytical scheme. In this work we focus
on linear trajectories, but depending on the application, higher order trajectories can be considered analogously. For
convex mesh elements bounded by line segments (2D) or planar polygons (3D), only one type of overlap function is
required, as each boundary segment divides space into two half-spaces (indicated by the dashed red lines in Fig. 2
for the three-dimensional case). Let F j denote the set of facets forming the boundary of an element E j ∈ M and k
the index of a facet, such that Fk ∈ F j. Then, assuming a unit normal n̂k pointing inwards into E j and a point on the
planar facet, e.g., the centroid of the facet, ck ∈ F, an overlap function for a particle i can be defined as

fP(t + ∆t) = n̂k · [ri (t + ∆t) − ck] , (3)

where ∆t is the relative time of the event. This somewhat unconventional choice of the normal direction is required by
the definition of the overlap function to evaluate to positive values for valid states. It should be noted that in order to
determine the first intersection point between the trajectory and the facets, it is not necessary to test explicitly whether
this point on the surface of a half-space is indeed contained within a certain facet (compare Fk2 in the example of
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Figure 2: The exterior of a convex element E j ∈ M can be described using planar half-spaces determined by the set of facets F j bounding the
element. Each half-space is defined by a point ck contained in the facet Fk ∈ F j and the inward pointing unit normal vector n̂k . The points marked
by the hexagons correspond to the intersection points of the trajectory of particle i and the facets k2 and k1, respectively.

Fig. 2). This is ensured by the geometric properties of the element and greatly reduces the computational cost, but
requires convex mesh elements. While the overlap function of Eq. (3) is restricted to convex mesh elements, this
does not limit the general applicability as concave meshes can be composed of convex elements. Additionally, if
concave elements have to be employed, these can be decomposed into convex sub-elements. The restriction to planar
boundary facets significantly reduces the complexity of the overlap function. It is possible, in principle, to employ an
overlap function of higher complexity, but the additional cost in finding the roots of this overlap function will limit
the practical relevance to simple cases, for example, bilinear patches [35].

In the stable formulation of the EDPD algorithm [30], an event is scheduled for the smallest non-negative time
interval, ∆t, that satisfies the condition (

f (t + ∆t) ≤ 0
)

and
(

ḟ (t + ∆t) < 0
)
. (4)

The sign of the derivative of f (t) with respect to time is used as an indicator whether an invalid state ( f (t) < 0)
deteriorates with time ( ḟ (t) < 0) or not. So in addition to Eq. (3), it is also necessary to consider the time derivative of
fP(t), which for the linear trajectory of particle i is given by

ḟP(t + ∆t) = n̂k · ṙi . (5)

The condition ḟP(t) < 0 limits the viable set of facets for an event to the ones the particle approaches along its trajec-
tory. It is noteworthy, that this condition is commonly found in other particle tracking algorithms as an optimization
technique [21, 24], but here it additionally stabilizes the algorithm and prevents, e.g., spurious recollisions with faces
the particle has already passed through. Solving for the root of the overlap function, that is, fP = 0, under consideration
of the sign of ḟP yields

∆t =

 max
(
0, n̂k · [ck−ri]

n̂k · ṙi

)
if n̂k · ṙi < 0

∞ if n̂k · ṙi ≥ 0
, (6)

where the case of no intersection between the particle trajectory and the facet with index k is treated explicitly as an
infinite event time. For a precise simulation without any numerical errors, clamping the result to zero in the first case
of Eq. (6) is not required, as no negative values can appear. In real implementations, however, the limited machine
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precision of floating-point calculations will allow particles to enter invalid states. Such invalid states can be entered,
for example, when the final tracking position of particles numerically coincides with a facet (see Fig. 3 of [30] for a
similar example). Another typical source of invalid states are faces which are not precisely planar, resulting in small
gaps between mesh elements [24, 25]. Independent of the source of the invalid state, a robust event-driven particle
tracking algorithm must be able to recover and stabilize the system, and, if possible, return it to a valid state. This
becomes feasible by the generation of stabilizing events, that is, events with ∆t = 0, as according to Eq. (6), instead
of ignoring these cases and/or allowing negative values for ∆t.

4. Constructive solid geometry

While particle tracking in combination with unstructured meshes allows for particle-based simulations in complex
geometries, there is a serious downside: The computational cost is a function of the distance particles travel in between
tracking steps and the resolution of the mesh. In order to capture boundary features that are small compared to the
overall size of the computational domain, a finely resolved mesh is required, at least locally. This is feasible for many
technical devices such as fluidized bed reactors, where only some parts of the domain might necessitate a refined mesh.
For studies of flows through porous media or studies of microfluidic devices, however, the boundaries dominate the
behavior of the system. Here, the required high spatial resolution of the mesh would severely limit the applicability
of the tracking scheme when the mobility of the computational particles is high as it is the case for particle-based
simulations of flows.

4.1. Combining CSG with particle tracking

There are other means of representing domain boundaries in particle methods compatible with the idea of particle
tracking, such as the embedding of obstacles represented via triangulated surfaces [36, 37]. Nevertheless, when finely
resolved boundaries are required, for particles near these boundaries large numbers of triangles would have to be
taken into account during the tracking step. Considering the similarity between tracking algorithms on the one hand
and EDPD and ray-tracing algorithms on the other hand, we propose an alternative method of modeling complex
geometries. Instead of relying solely on a unstructured grid, a second logical layer can be added, representing addi-
tional domain boundaries. This layer consists of objects modeled via constructive solid geometry (CSG), a standard
technique both in computer graphics and computer-aided design [38], as well as simulations of radiation transport
problems [39].

In CSG, simple solid objects termed primitives, regularized Boolean operations, and affine transformations are
combined to represent a more complicated solid object. For a d-dimensional Euclidean space the primitives are
formed by algebraic half-spaces

H = {x ∈ Rd | g(x) ≤ 0} , (7)

with g(x) : Rd → R being an irreducible polynomial. The regularized Boolean operations union, intersection, and
difference are defined such that the result is the closure of the interior of applying the Boolean operation to the two
operands. This ensures that the object generated by a regularized Boolean operator is again a solid object without
any “dangling” lower-dimensional features, e.g., a plane in three dimensions [38]. A CSG solid is usually represented
with the help of a (binary) tree, where the leaf nodes are primitives and the internal nodes convey regularized Boolean
operations. Affine geometric transformations can then be applied at arbitrary nodes in order to transform primitives
and, via sub-trees, parts of the model. The overlap function f (t) as it was introduced in Section 3 shares a core
characteristic with the function g(x) defining a CSG half-space: Both functions serve as indicators to distinguish two
sets of points or sub-spaces. For constructive solid geometry, g(x) divides space into two sub-spaces, namely the
closure of the interior of the solid (g(x) ≤ 0) and the exterior (g(x) > 0). Similarly, the overlap function partitions the
configurational space into invalid ( f (t) ≤ 0) and valid ( f (t) > 0) configurations or states.

In the interest of clarity, in the following we will only consider the case of point particles which are to be tracked
in complex geometries defined by CSG. Further, we will limit the discussion to the three-dimensional case and the
two primitives given by an infinite planar half-space and a spherical half-space or closed ball, respectively. The
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corresponding algebraic half-spaces HP and HB are defined using a point, c ∈ R3, and a unit normal vector, n̂ ∈ R3,
for the direction, or the scalar radius, r ∈ R>0, respectively, according to:

HP(c, n̂) = {x ∈ R3 | (x − c) · n̂ ≤ 0} , and (8)

HB(c, r) = {x ∈ R3 | (x − c)2 ≤ r2} . (9)

The result of applying the regularized Boolean operator union denoted by ∪∗ to two half-spaces A and B, with
A, B ⊂ R3 is defined as

A ∪∗ B = cl (int ({x | x ∈ A ∨ x ∈ B})) , (10)

while the regularized intersection of the two half-spaces denoted by ∩∗ is given as

A ∩∗ B = cl (int ({x | x ∈ A ∧ x ∈ B})) , (11)

with cl (·) denoting the closure and int (·) denoting the interior of the argument.
Again, the union of planar half-spaces is already used implicitly in Section 3, when selecting the next event for a

particle located in a convex mesh element. For the event-driven tracking algorithm, a CSG tree containing only unions
can be used directly to detect the next event a particle encounters. To this end, the tree is traversed recursively starting
from the root and each primitive is tested using the corresponding overlap function. The resulting events are then
sorted in ascending order according to their respective event times and the earliest event is selected, corresponding to
finding the minimum event time for all leaf nodes.

4.2. Logical states for particle tracking
The event detection for intersecting half-spaces is significantly more complex. As an example for the intersection

of half-spaces, the case of three intersecting closed balls with equal radii shall be considered. A two-dimensional pro-
jection of the configuration into the plane containing the center points of the balls is shown in Fig. 3. The trajectories
of the two particles illustrate different cases, where in the first case the composite CSG object, i.e., the intersection
of the three balls is missed, while in the second case the trajectory actually intersects the solid object. The intersec-
tion points of the trajectories and the surface of the individual primitives are marked by red hexagons and crosses,
indicating the points where the trajectories enter and leave the half-spaces defined by the primitives.

Figure 3: The projection of three intersecting balls Hb1 , Hb2 , and Hb3 onto the plane defined by their center points. The trajectory of two tracked
particles with starting points r1(t0) and r2(t0), respectively, intersects the individual primitives at the highlighted points, where red hexagons and
crosses mark the points where the trajectory enters/leaves a primitive half-space and the filled hexagon indicates the point of interaction with the
CSG solid for the second particle.

In classic ray-tracing algorithms, all points in time when the trajectory intersects the surfaces of the primitives
in an intersection are taken into account and the maximum time the trajectory enters an object (red circles in Fig. 3)
bounded by the minimum time the trajectory exits one of the objects intersecting (red crosses) is picked. If one of
the objects in an intersection is missed, as it is the case for the second particle in Fig. 3, the particle does not hit the
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composite object and the ray tracer does not schedule an interaction in any way. While this approach has the benefit of
being straightforward to implement, it is inadequate for formulating a numerically robust tracking algorithm. Unlike
for ray tracing, when applying tracking algorithms, particles can be located close to/on surfaces or inside tiny gaps
in-between objects at the end of a tracking step. When resuming the tracking in the next step, this can result in cases
where is not always possible to correctly predict the next event for certain configurations like (locally) very thin CSG
objects resulting in numerically coinciding roots of the respective overlap functions. Here, in some cases, it is possible
to miss an interaction due to the numerical imprecision of floating-point calculations.

Due to these difficulties, an alternative approach for handling intersections is taken. The concept of the logical
state is introduced by the authors in a previous work [31] to distinguish captured and uncaptured square-well particles
in EDPD. It is here applied to CSG modeling in order to determine whether a tracked particle is located within a given
CSG primitive or not without relying on the relative position on the particle. Accordingly, the state of a particle is
augmented byPi, the set of primitives within the CSG tree that the particle is currently contained in logically. Ignoring
the limitations of floating-point precision and assuming a CSG tree consisting of NH primitive half-spaces forming
the set of leaf nodes P = {H j}

NH
j=1, for a particle i this results in

Pi = {H ∈ P | gH(ri(t)) ≤ 0} , (12)

where gH denotes the indicator function for the half-space H. As it is not possible to robustly recover Pi from a
particle’s current position ri(t) due to the peculiarities of floating-point calculations, the set must be manipulated
exclusively via the execution of events. This is done via virtual events analogous to the events for the tracking in
meshes. Reconsidering the configuration sketched in Fig. 3, virtual events are scheduled at the points highlighted
with red rings as well as any point where the trajectory exits a primitive half-space marked by red crosses; these
events only add or remove primitives to/from Pi. By examining this set and the number of primitive sub-nodes of an
intersection in a CSG tree it is then possible to accurately decide that an interaction event has to be scheduled at the
point of the trajectory in Fig. 3 marked with the full circle. This scheme can directly be combined with the handling
of unions to allow for compound CSG objects.

As an additional benefit, this explicit tracking of the particle state allows the modeling of permeable objects.
Such an CSG object does not have to correspond to a solid obstacle in combination with an appropriate boundary
condition any more. Instead, it is possible to define complex-shaped regions within the computational domain where
for example certain interactions are activated locally. One example could be the surrounding volume of an actual solid
where additional forces act on the particles.

4.3. Transformation of Boolean operators
The regularized difference or relative complement of the half-spaces A and B, given by

A \∗ B = cl (int ({x ∈ A | x < B})) , (13)

is not easily translatable into a robust event-driven particle tracking scheme. Instead, the absolute complement AC =

U \∗ A of a half-space A and the universe U ≡ R3 is used. With
(
AC

)C
≡ A and recursively applying De Morgan’s

laws,

(A ∪ B)C ≡ AC ∩ BC and (A ∩ B)C ≡ AC ∪ BC , (14)

any occurrence of A \∗ B in a CSG tree can be replaced by A ∩∗ BC . For the internal nodes of the tree only these laws
have to be applied, whereas for a primitive half-space H with the corresponding indicator function gH at a leaf node
of the tree a different transformation is required according to

HC = R3 \∗ H

= R3 \∗ {x ∈ R3 | gH(x) ≤ 0}

= cl
(
int

(
{x ∈ R3 | gH(x) > 0}

))
= {x ∈ R3 | −gH(x) ≤ 0} ,

(15)
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leading to an inversion of the indicator function. This inversion can be performed analogous for the overlap function
f (t) used in the event detection for the particle tracking. In the case of planar half-spaces, as an optimization, the
normal vector n̂ can be inverted directly, obviating the need to treat the complement explicitly. For the complement
of a spherical half-space, the overlap function provided in Appendix 2 of [31] can be employed.

4.4. Event detection for CSG objects

A numerically robust method for the detection of tracking events between a particle i and a CSG tree including
the manipulation of the logical state Pi can be implemented according to Algorithm 1. In addition to the particle
trajectory and state, the routine requires a non-empty set of nodesN as input, which initially is set to the root node of
the CSG tree. The tree is then processed recursively, examining the type of each node and either descending further
down the tree, or, if a leaf node is encountered, detecting the next event for the corresponding primitive using the
subroutine nextPrimitiveEvent. The handling of CSG objects requires three distinct event types, indicating a particle

Algorithm 1 Implementation of the event detection for CSG objects employing the logical state Pi of a tracked
particle i and a set of nodes N , initialized with the root node of the CSG tree T .

1: procedure nextEvent(ri, ṙi, Pi, N)
Require: CSG tree T with the set of primitives P = {H j}

NH
j=1 as leaf nodes

Require: Pi ⊆ P ∧N ⊆ nodes(T )
2: ∆t ← ∞, e← nil, ς ← 0
3: for n ∈ N do
4: if n < P then . n is an internal node, i.e., a Boolean operation
5: ∆tn, en, ςn ← nextEvent(ri, ṙi, Pi, children(n))
6: if type(n) = intersection then
7: if type(en) = csgBoundary ∧ (ςn + 1) < | children(n) | then
8: setType(en, csgEnter)
9: else if ςn = | children(n) | then

10: ς ← ς + boolean(ςn)
11: end if
12: else if type(n) = union then
13: ς ← ς + boolean(ςn)
14: end if
15: else . n is a leaf node, i.e., a CSG primitive
16: if n < Pi then
17: ∆tn, en ← nextPrimitiveEvent(ri, ṙi, n, Pi)
18: setType(en, csgBoundary)
19: else
20: ∆tn, en ← nextPrimitiveEvent(ri, ṙi, complement(n), Pi)
21: ς ← ς + 1
22: setType(en, csgLeave)
23: end if
24: end if
25: if ∆tn < ∆t then
26: ∆t ← ∆tn, e← en

27: end if
28: end for
29: return ∆t, e, ς
30: end procedure

entering (line 8, event type csgEnter) or leaving (line 22, event type csgLeave) a half-space, as well as actually
hitting the surface or boundary of a CSG object (line 18, event type csgBoundary). The first two are virtual events,
leading only to an adjustment of Pi, while the latter indicates an interaction with a boundary, as detailed in Section 2.
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The recursive calculation of the number of intersected primitives ς and the modification of the event type on line 8
are only required to correctly handle intersections. Hence, if the CSG tree is known to consist solely of unions, the
algorithm can be simplified accordingly.

5. Optimization of particle tracking using CSG

For simulations using more elaborate CSG models than the examples depicted in Fig. 3 consisting only of a few
primitives, the event prediction using the full CSG tree can become a bottleneck. It is therefore vital to integrate
standard optimization techniques from the field of CSG modeling into the tracking scheme.

5.1. Bounding volumes for particle tracking
One such technique to reduce the number of required intersection tests is the usage of bounding volumes, which

can be integrated directly into the CSG tree at the internal nodes [40]. The idea is to determine bounding volumes
for the primitives at the leaf nodes and iteratively combine these bounding volumes at the internal nodes based on the
respective Boolean operation. By applying this procedure not only upward but also downward, it can also be used to
prune effectively empty sub-trees from a CSG model, based, e.g., on an intersection higher up in the tree. A commonly
used bounding volume is the axis-aligned bounding box (AABB), that is, the minimum d-dimensional cube bounding
an object under the constraint that its edges are parallel to the coordinate axes. Such bounding boxes are trivial to
determine for typical primitives and the Boolean operations required for CSG modeling are efficiently computable for
any two given AABBs. Combining the bounding volumes with additional data structures such as octrees [19] or k–d
trees [20] leads to further improvements in the computational efficiency.

In principle, the integration of such AABBs into the particle tracking scheme is straightforward, yet here we shall
explore an alternative. Instead of using the AABBs directly during the event generation phase, they are combined with
the underlying mesh. This results in a two-level approach, where for each CSG object first the corresponding AABB is
calculated and then the AABBs of the grid cells intersecting the first AABB are determined. An example for applying
this procedure to the CSG object of Fig. 3 is sketched in Fig. 4, where the cells intersecting the AABB of the solid
object are shaded in red. Each CSG obstacle is then registered only with these selected cells, as no csgBoundary

Figure 4: Two-level approach to determine an bounding volume via an underlying grid using intersection tests for the axis-aligned bounding box
(AABB) of the CSG object introduced in Fig. 3 and the AABBs of the individual grid cells. The cells whose AABBs intersect the AABB of the
CSG object directly are shaded in red. The cells sharing facets with the marked cells are shaded in orange, leading to an expanded, numerically
robust bounding volume.

events (see Algorithm 1) can be generated involving the obstacle and particles contained in other cells.
The motivation for using the mesh elements as bounding volumes is twofold: First, the mapping between particle

positions and grid cells is already maintained by the tracking algorithm, eliminating the need for additionally testing
against the bounding volumes of the CSG objects. This significantly reduces the computational cost of the event
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generation. Second, instead of storing a reference to the full CSG tree, a locally pruned version of the tree containing
only the relevant parts of the tree for each cell can be used. While seemingly a technical detail, reusing the mesh ele-
ments instead of additional bounding volumes represents a major difference in the extended particle tracking method
as compared to traditional ray-tracing algorithms.

There is, however, an issue with respect to the handling of the logical state, as introduced in Section 4.2: As the
event detection for CSG objects is only performed for the cells marked according to the bounding volume, particles can
enter CSG primitives ”unnoticed” (compare Fig. 4). When then applying Algorithm 1, based on the test on line 16, the
algorithm would fail to generate the correct event. In order to overcome this shortcoming, it is necessary to evaluate
Eq. (12) for each primitive in the (local) CSG tree whenever a particle enters a cell referencing a CSG object and
adjust the state Pi accordingly. Due to the inherent imprecision of floating-point calculations, however, this would
violate the robustness of the event-driven tracking algorithm, as close to the surface of CSG primitives the indicator
function become unreliable. The bounding volume implemented via the underlying mesh has hence be extended to
the elements sharing facets with the originally marked elements, as indicated by the cells shaded in orange for the
example in Fig. 4. As the indicator function for the individual primitives is only evaluated at the interface between
two cells, this modification guarantees, that the indicator functions are only evaluated in a safe distance to the surface
of the CSG object. From this, Pi can be safely adjusted based on the CSG objects registered with the two cells on
either side of a facet. For CSG obstacles present in both cells, it is crucial that the logical state is transferred without
modifications.

5.2. Bounding volumes using surface extraction

Even though the locally pruned CSG trees greatly improve the efficiency of the tracking algorithm in many cases,
the selection of the nodes in the trees to keep based on the intersection of the AABBs is not always sufficient. While
the approach works well for smaller convex objects, for infinite objects, such as, non-intersecting planar half-spaces
or the complement of spherical half-spaces, AABBs cannot provide an efficient bounding volume as they also become
infinite. A solution to this issue can be found by exploiting the property of Algorithm 1 that CSG events are only
generated at the surface of primitives. Instead of pruning the CSG tree based on the AABBs, a more aggressive
reduction can be performed by pruning all primitives whose surface does not intersect a certain bounding volume.
Here, we again use the polyhedral cells of the grid analogous to the case of AABBs. For a numerically robust
intersection detection, the surface of the primitives is transformed into a solid object by taking the Minkowski sum of
the respective surface and a spherical half-space with a certain radius. This radius can, for example, be determined as
a fixed fraction of the diagonal of the AABB of the polyhedral cell being tested.

Special care has again to be taken to maintain the validity of the logical state Pi by adjusting it when a particle
enters/leaves a mesh element. Additionally, as primitives can be pruned for cells contained entirely within a CSG
primitive, a record has to be kept in this case in order to ensure the correct working of the event detection routine. To
this end, line 5 of Algorithm 1 has to be adapted to account for this number of implicit intersections.

5.3. Memory-optimized storage of particle state

The introduction of Pi as a per-particle property required by Algorithm 1 comes at the cost of storing and main-
taining this dynamic set. One possibility to store Pi is the usage of associative containers provided, e.g., by the C++

standard library. While the asymptotic complexity per particle can be reduced to O(1) by employing hash tables in-
stead of binary search trees, the storage overhead for the container data structure itself as well as the cost of dynamic
memory allocations can become prohibitive. As an alternative, we use a fixed-size bit array or bitset Bi for each parti-
cle. The individual bits are assigned to the primitives in the CSG tree, so the manipulation of the state Pi is performed
via bit operations on Bi. This approach has the benefit of low memory requirements as well as profiting from the fact
that bit operations are highly optimized for modern CPUs (POPCNT or an emulation using other SSE instructions). A
potential drawback of this method is that the number of primitives that can be handled is limited by the number of bits
in Bi. While even for moderate storage requirements of 4 or 8 bytes per Bi the number of allowed primitives is already
32 or 64, respectively, for large systems this may still become an unacceptable constraint. But when combined with
the previously introduced concept of locally pruned CSG models and hence reduced number of primitives, the limited
number of possible primitives within one cell is sufficient, even for complex geometric models.
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5.4. Performance evaluation

In order to evaluate the efficiency of the optimization strategies described above, we examine the performance of
the event detection algorithm for a CSG object consisting of the union of 790 spherical half-spaces. Here, we refer
only to the computational aspect of our work, the discussion of the physical problem is subject of ongoing work and
shall be published elsewhere, including a detailed description of the system. The CSG object forming a cluster of
spherical obstacles is embedded into a cuboidal domain described by a mesh consisting of 643 uniform hexahedra
(see Fig. 5). The cluster is positioned in the center of the domain, covering approximately 1.77 % of the simulation
volume. The ratio between the average diameter of the slightly polydisperse balls forming the cluster and the width

0:9998 0:9999 1:0000 1:0001 1:0002
pressure [P0]

0:0 0:2 0:4 0:6 0:8 1:0
velocity magnitude [vmax]

Figure 5: Particle-based simulation of a plane Poiseuille flow around a cluster of 790 spherical obstacles embedded into a domain defined by
643 hexahedra. The fluid phase is modeled using a variant of the direct simulation Monte Carlo method optimized for flows with low Mach
numbers [41]. The pressure profile and streamlines are obtained by averaging over the particles contained in the individual grid cells.

of the channel is 3.5 %. The number of randomly placed tracked particles inside of the domain is approximately
25.2 × 106, so that on average 100 particles are located within each cell of the grid. Each particle is assigned random
velocity components and the time scale is set such that, again on average, each particle travels about 3

4 of a cell width
within one tracking step. When the particle tracking is performed taking into account both the unstructured grid
and the CSG obstacle, the number of events generated for the CSG object is recorded. Additionally, the number of
actually executed events is obtained which is a significantly smaller number, as not every detected event is executed
(compare Figs. 1 to 3). Both numbers are averaged over 1000 time steps, in between which the tracked particles are
assigned updated velocities.

To determine the efficiency of the bounding volumes as described in Section 5.1, as a base line, the performance
of the event detection is examined without any bounding volumes (first line in Table 1). Next, a series of runs
is performed where for each instance a progressively finer mesh covering the entire domain is used to provide the
bounding volumes for the CSG object. Starting from a uniform mesh with 23 hexahedral elements, the resolution
is increased stepwise up to 643 elements, identical to the main mesh used for the particle tracking. As the finer
meshes are derived from the coarser ones by uniform refinement, there is a trivial mapping between the cells of the
tracking mesh and the cells of the additional mesh serving as the bounding volumes for the CSG object. During the
initialization of each run, the full tree consisting of 790 primitives is pruned based on the bounding volumes and an
optimized CSG tree with local validity is created. This unsurprisingly leads to a decreasing number of primitives
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Primitives per cell Number of events Relative efficiency

Grid cells Min. Max. Avg. Generated Executed Event generation Computational

– – – – 3.79 × 1010 7.93 × 104 1.00 1.00
23 173 294 228 1.09 × 1010 7.93 × 104 3.46 3.21
43 0 236 29.1 1.20 × 109 7.93 × 104 31.5 17.4
83 0 86 4.80 1.74 × 108 7.93 × 104 217 35.8

163 0 27 1.02 3.14 × 107 7.93 × 104 1.2 × 103 42.2
323 0 12 0.291 7.54 × 106 7.93 × 104 5.02 × 103 43.6
643 0 8 0.122 2.70 × 106 7.93 × 104 1.4 × 104 44.5

Table 1: Impact of the resolution of the grid used to determine the bounding volumes of the CSG primitives forming the cluster depicted in Fig. 5
when embedded as a solid obstacle into a fluid flow simulated using a particle-based method. The primitives are filtered via the intersection of their
individual AABBs and the AABBs of the grid cells.

per cell with increasing resolution of the grid. As shown in Table 1, this in turn results in a dramatic decrease in
the number of generated events and hence a corresponding increase in the efficiency of the event detection. The
number of actually executed events remains constant, which serves as a sanity check for the correct working of the
event detection in combination with the bounding volumes. The computational efficiency is determined based on the
average runtime of applying the tracking algorithm to all particles in the system. This thus includes the generation
and processing of the events related to tracking the movement of the particles in the mesh.

These results clearly show the effect of the optimization via the bounding volumes, leading to an increase in the
computational efficiency of up to a factor of 44.5. The increase of the computational efficiency levels out for finer
grids, as the event-driven tracking scheme also has to generate and process the events related to the tracked particles
moving in the grid defining the cells. The number of events due to particles crossing facets in-between mesh elements
is independent of the resolution of the grid defining the bounding volumes and with about 2.26 × 107 events per
tracking step progressively dominates the computational performance in this test case.

Depending on the CSG models employed in a specific simulation configuration, several of the strategies introduced
in this section can be combined. While the last two concepts, that is, the extraction of the surface of CSG models and
the usage of a fixed-size bitset to store the particle state, are of lesser relevance for the simulation of the flow around
the cluster, in the next section a more advanced CSG model is constructed, where especially these two optimizations
are crucial.

6. Application example: Open-cell foams

The advantages of using the hybrid representation of a computational domain via a mesh and CSG objects embed-
ded into it for a particle-based simulation can be illustrated using the example of fluid flows through open-cell foams.
These foams feature a high porosity which makes them attractive for reactive gas flows due to the combination of a
large surface area with a low pressure drop. It is this high porosity, however, which poses a challenge for numerical
simulations as the struts between the pores of the foam require a finely resolved mesh [42]. Instead of generating
a conforming mesh which can be challenging both in terms of mesh quality and computing time, we borrow an ap-
proach used in analytical studies of open-cell foams [43]. Here, an unit cell for an open-cell foam is constructed as
the inversion of five overlapping spheres arranged in a hexagonal packing. The model is able to reproduce the charac-
teristics of metal foams with a porosity of up to 96 %. An example unit cell is depicted in Fig. 6(a), revealing that this
inversion of a sphere packing can be modeled using the CSG approach as the difference of a polyhedron and several
spherical half-spaces. When several of these unit cells are combined periodically, a highly porous material resembling
an open-cell foam is formed as shown in Fig. 6(b).

The simulation domain is constructed as a mesh consisting of about 1.4 × 106 cuboidal hexahedra and a single
CSG object embedded into it. The CSG model consists of the difference of a planar half-space and the union of 266
spherical half-spaces. The planar half-space is positioned such, that the full mesh is contained in it, while the spherical
half-spaces form the open cells of the foam structure. With the extensions to the particle tracking algorithm introduced
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(a) (b)

Figure 6: The unit cell of an open-cell foam constructed from an inverted sphere packing [43] is shown in sub-figure (a). This unit cell can be
modeled using CSG as the relative complement of a polyhedron and five spherical half-spaces. In sub-figure (b), multiple unit cells are combined,
resulting in a fully analytical description of a highly porous material consisting of 267 CSG primitives.

in Section 4, this model can be used directly in a particle-based fluid simulation, without any discretization of the
surface. This eliminates the need to generate a volume mesh covering the free volume, i.e., the part of the domain not
obstructed by the solid foam. More importantly, the surface description used in the simulation is independent of the
underlying mesh. This mesh can thus be generated solely based on the requirements of the particle method.

The fluid phase is modeled using a variant of the direct simulation Monte Carlo method optimized for flows
featuring low Mach numbers [41], where the cells of the underlying mesh form the interaction volume for the fluid
particles. The boundary conditions applied are no-slip boundaries on the surface of the foam and periodic boundaries
in the two directions perpendicular to the pressure gradient.

During the initialization of the simulation, the approach discussed in Section 5 to extract for each bounding volume
only the primitives featuring a surface intersection with this bounding volume is employed. The logical state Pi for
each particle implemented as a fixed-size bitset with 32 entries, resulting in a storage requirement of 4 bytes per
particle. Employing these optimizations is crucial, as the example simulation uses approximately 115 × 106 particles
to resemble the fluid phase, so a minimal memory footprint for each particle is desirable. A total of 320 processor
cores across 16 physical nodes each containing two Intel Xeon E5-2660 v2 CPUs are used in the example run. During
each tracking step, approximately 1.1 × 108 events are executed, with the fraction of CSG events encountered by
particles impinging the surface of the foam structure being about 8 %.

In Fig. 7, the pressure profile and streamlines obtained for the steady state solution of a pressure-driven laminar
flow through the foam structure is shown. The surface-triangulation of the foam used in this snapshot is generated
purely for the purpose of visualization, for the actual simulation the whole geometry is described analytically and no
discretization of the foam surface is required.

7. Conclusions

The tracking of particles in unstructured grids can be considered a special case of event-driven particle dynamics
and as such can benefit from recent improvements in the numerical robustness of the method. With this, it is possible
to construct an inherently stable event-driven particle tracking scheme. This event-driven tracking scheme can be
extended to allow the integration of complex-shaped boundaries modeled using the technique of constructive solid
geometry (CSG). Using this mathematically exact representation of boundaries, efficient particle-based simulations in
domains of challenging shape are achievable. The benefit of this approach lies in the independence of the boundary
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Figure 7: Pressure profile and streamlines obtained from the steady-state solution of a gas flow through a foam-like structure driven by a pressure
gradient along the longitudinal axes. The simulation employs a variant of the direct simulation Monte Carlo method optimized for flows with low
Mach numbers [41]. The streamlines a colored according to the velocity magnitude at the respective position.

description from any surface discretization. This is a clear advantage over previously published particle-tracking algo-
rithms, where the simulation domain is discretized and represented solely via unstructured grids and the resolution of
the boundaries is hence tied directly to the resolution of the mesh. With the method proposed in this work, depending
on the specifics of the problem, a combination of unstructured grids and analytically described boundaries can be
used. Several optimization strategies to improve the efficiency of the event-driven tracking scheme in the presence of
complex CSG objects are suggested. Along with the integration of discrete boundary interactions, the abilities of the
event-driven tracking algorithm are illustrated by the particle-based simulation of a gas flowing through an open-cell
foam structure.
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