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Modeling the dynamics of neural masses is a common approach in the study of

neural populations. Various models have been proven useful to describe a plenitude of

empirical observations including self-sustained local oscillations and patterns of distant

synchronization. We discuss the extent to which mass models really resemble the mean

dynamics of a neural population. In particular, we question the validity of neural mass

models if the population under study comprises a mixture of excitatory and inhibitory

neurons that are densely (inter-)connected. Starting from a network of noisy leaky

integrate-and-fire neurons, we formulated two different population dynamics that both

fall into the category of seminal Freeman neural mass models. The derivations contained

several mean-field assumptions and time scale separation(s) between membrane and

synapse dynamics. Our comparison of these neural mass models with the averaged

dynamics of the population reveals bounds in the fraction of excitatory/inhibitory neuron

as well as overall network degree for a mass model to provide adequate estimates. For

substantial parameter ranges, our models fail to mimic the neural network’s dynamics

proper, be that in de-synchronized or in (high-frequency) synchronized states. Only

around the onset of low-frequency synchronization our models provide proper estimates

of the mean potential dynamics. While this shows their potential for, e.g., studying resting

state dynamics obtained by encephalography with focus on the transition region, we

must accept that predicting the more general dynamic outcome of a neural network via

its mass dynamics requires great care.

Keywords: neural mass model, leaky integrate and fire, random graph, mean field approximation, Freeman model

INTRODUCTION

Over the years, neural mass models have profoundly contributed to our understanding of the meso-
and macroscopic dynamics of populations of neurons. This is particularly true when it comes
to the oscillatory behavior of mean post-synaptic potentials and firing rates. Central there is the
notion of brain rhythms arguably resembling (episodic) local and distant synchronization of neural
oscillators. Corresponding theoretical studies date back as far as the mid of the last century (Beurle,
1956; Griffith, 1963, 1965) though it was Walter Freeman who coined the notion neural masses
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FIGURE 4 | χ2-statistic computed between the power spectra (χ2(·, ·)) in the {p, λ} space (105 values). (a) χ2 between the LIF network and the CFM, χ2(PLIF,PCFM).

(b) χ2 between the LIF network and the MFM, χ2(PLIF,PMFM). We add several contour lines in white to improve legibility. The dashed-red line indicates the boundaries

of significance region with α = 0.01 (conform the χ2 distribution): inside the small region encircle by the dashed-red line, the CFM/MFM spectra were not significantly

different from the LIF network spectrum.

FIGURE 5 | Time lags and correlation coefficients. (a,b) depict the optimal time lags τmax, (a) CFM and (b) MFM. We added contour lines (in white) to improve

legibility. In (b) there is a change in the time lags when p is sufficiently large for the LIF network to generate spikes. In (c,d) the corresponding correlation coefficients

ρk (τmax) between the LIF model and (c) CFM and (d) MFM are shown. The red-dashed lines in panels (c,d) indicate boundaries of significance; α = 0.01 obtained by

applying the Fisher transformation to the correlation values (Fisher, 1915). Inside the area defined by the red-dashed line in the synchronized region and the small area

in the asynchronous region where p → 0, the time series of the two neural mass models were not significantly different than the LIF mean field.

CONCLUSION

Neural masses are common tools to model neural population
dynamics. They are believed to mimic selected brain activity
patterns with great accuracy. We questioned the relation between

these models and the underlying spiking neural network. For
populations with both excitatory and inhibitory neurons and
random connectivity, we found that approximations via the
corresponding mean-field dynamics may deviate arbitrarily from
the network’s average potential. Deviations may be particularly
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large when the network is either de-synchronized or fully
synchronized and spikes at high rate, while mass models can fit
well around the onset of low-frequency synchronization. Neural
mass models covering several dynamical regimes require more
than mere mean-field approximations because they typically
average out the (synchrony-defining) spiking behavior.

METHODS

Wewill derive two neural mass models from a network of spiking
neurons and compare them against the mean outcome of that
network. The first model represents the CFM, and the second one
contains a (slight) modification by means of a weakly non-linear
response, i.e., the MFM. Then, our approach to test the model
is the following: We simulate the spiking network for different
values of two major topological parameters, i.e., the fraction of
excitatory/inhibitory units and mean degree of the (random)
network quantifying the general connectivity. We choose the
parameters such that the dynamics undergoes a phase transition
from the de-synchronized to a synchronized state (Yger et al.,
2011). Throughout the simulations, we “record” both the output
spiking activity and the mean membrane potential. While the
latter is considered as reference, i.e., the “real” mean network
activity, the first serves as input to the two neural mass models.
Finally, we compare the outcome of the neural mass models
with the real mean network activity in both the time and the
frequency domain.

Below, we will specify the microscopic neuron and synapse
dynamics and put them on a homogeneous network before
deriving the two versions of the macroscopic Freeman model.
Finally, we will provide all details about how we altered the
network structure when probing model validity.

Microscopic Dynamics
We consider a population or network of n = 1, . . . ,N neurons
where neuron n is described in terms of the dynamics of its
membrane potential vn = vn(t) and voltage- and time-dependent
conductances. If cn and gn denote the membrane’s capacitance
and leak conductance, respectively, then the dynamics can be cast
in the form

τndvn + fn(vn)dt = g−1
n jn(t)dt + dwn. (5)

The function fn(·) is—as of yet—generic and describes the
voltage-dependent decay, jn(t) is the total current applied to
neuron n. The membrane’s time constant τ (mem) can be given by
its capacitance and leak conductance in terms of τn : = cn/gn.
And, w denotes a stochastic force summarizing random voltage
fluctuations of the membrane; here, w will always reflect zero-
centered, δ-correlated (white) Gaussian noise with varianceQ. In
what follows, we will specify both fn(·) and jn(t) and estimate the
expectation values of the population average for finite N.

We first notice that the input current jn(t) can be a
combination of an internal current generated within the network
and an external one stemming from outside the network. We

denote them as j(net)n and j
(ext)
n , respectively, and assume that they

superimpose like jn = j
(net)
n + j

(ext)
n . Without loss of generality, the

internal current will be given as

j(net)n = −
∑

σ∈{E,I}

N
∑

m=1

g(σ )nm

(

vn − ṽ(σ )nm

)

(6a)

where ṽ(σ )nm is the reversal potential for a synapse between neurons
n and m. The synapse can be excitatory or inhibitory, which we
indicate by σ = E or σ = I, respectively. The synaptic activity

is further quantified by a time-dependent conductance g(σ )nm that
depends on incoming spikes. We consider the corresponding
response to be cast into a first-order, linear dynamics, i.e.,
we include so-called exponential synapses with conductance
dynamics which leads to the dynamics

τ (σ )nm dg(σ )nm = −
(

g(σ )nm − ĝ(σ )nmφ(σ )
nm

)

dt. (6b)

The parameter ĝ(σ )nm relates to the maximum conductance, τ (σ )nm is
the characteristic time of the type-σ synapse between neurons n

and m, and φ
(σ )
nm is the input that neuron n receives from neuron

m. If that input is composed of spikes, it can be cast into the form

φ(σ )
nm = Anm

∑

k

δ

(

t − t
(σ )
m,k

)

(6c)

where Anm denotes the elements of the network’s adjacency
matrix, i.e., Anm = 1 if neuron m targets neuron n and 0

otherwise, and
∑

k δ

(

t − t
(σ )
m,k

)

is a spike train emitted by neuron

m with spikes at times t(σ )
m,k. Similarly, the external current may be

expressed as

j(ext)n = −

M
∑

m=1

g(ext)nm

(

vn − ṽ(ext)nm

)

(7a)

givenM external units that project into the network with external
synaptic conductivity and external inputs of the form

τ (ext)nm dg(ext)nm = −
(

g(ext)nm − ĝ(ext)nm φ(ext)
nm

)

dt (7b)

and

φ(ext)
nm = Bnm

∑

k

δ

(

t − t
(ext)
m,k

)

(7c)

respectively. The parameter ĝ
(ext)
nm is again related to the

maximum conductance, τ
(ext)
nm denotes the characteristic time

of the corresponding synapse and φ
(ext)
nm is an external spike

train that enters according to the adjacency matrix between the
external and internal neurons (Bnm = 1 if the external neuronm
targets internal neuron n and 0 otherwise).

We would like to note that, thus far, we did not detail the
dynamics of the individual neuron n, i.e., the function f (·)
can still be arbitrary (except that it has to be integrable). Put
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differently, the system (5) and (6a-c) covers a very general case for
a conductance-based, stochastic spiking network model under
impact of an external drive (7a-c).

Next, in order to make this system tractable, we consider the
case in which all synapses of type σ are identical for every neuron.
This means that

∀m=1,...,M :











τ
(σ )
nm = : τ

(σ )
n

ĝ
(σ )
nm = : ĝ

(σ )
n

ṽ
(σ )
nm = : ṽ

(σ )
n











, (8)

i.e., all synapses have identical characteristic times, maximum
conductances, and reversal potentials. For the sake of legibility,
we further introduce two abbreviations, namely

g(σ )n : =

N
∑

m=1

g(σ )nm and φ(σ )
n : =

N
∑

m=1

φ(σ )
nm (9)

which represent the total conductivity of type-σ synapses in
neuron n and the total spike input via type-σ synapses received
by neuron n, respectively. Then, substituting (8) and computing
the sum overm in (6b) yields

τ (σ )n dg(σ )n = −
(

g(σ )n − ĝ(σ )n φ(σ )
n

)

dt. (10)

Network of LIF Neurons
The arguably simplest case of spiking neurons are LIF neurons.
To model them, we constrain fn(·) to be linear in vn. In more
detail, we define fn(vn) = (vn − ṽn), where ṽn denotes the
membrane reversal potential. We add a further homogeneity
assumptions by considering identical fn as well as identical
membrane characteristics for all neurons, i.e., cn = : c, gn =

: g ⇒ τn = : τ (mem), and ṽn = : ṽ. Likewise, we assume

homogeneity of the synapse by setting τ
(σ )
n = : 6τ (σ ), ṽ(σ )n =

: ṽ(σ ), and ĝ
(σ )
n = : ĝ(σ ), i.e., all synapses of the same type σ are

identical across the population2. Using (10) and the homogeneity,
we can simplify the system (5) and (6) as

τ (mem)dvn = −

[

(vn − ṽ)+

+ 1
g

∑

σ∈{E,I}

g(σ )n

(

vn − ṽ(σ )
)

]

dt + dwn

(11a)

and

τ (σ )dg(σ )n = −
(

g(σ )n − ĝ(σ )φ(σ )
n

)

dt (11b)

with

φ(σ )
n =

N
∑

m=1

Anm

∑

k

δ
(

t − t
(σ )
m,k

)

. (11c)

2This appears a reasonable assumption given that the variability between neurons
of the same type might be lost in the presence of noise.

Finally, the membrane dynamics is supplemented by the reset
rule that reads

if vn reaches v
(thres), then neuron n emits a spike

- its membrane potential vn resets to v
(reset)

- and stays there for a refractory period τ (ref).

(11d)

The set of equations (11a-d) defines our microscopic dynamics.
This dynamics can be readily completed by adding external input
as defined in (7a-c) much in line with the formulation of (11b)
and (11c).

Macroscopic Dynamics
In the following we will estimate the population mean
of the membrane potential’s expectation value—recall that
the dynamics (11a) contains noise that we “eliminate” by
determining first the dynamics’ first moment Vn : = 〈vn〉. Hence,
the task is to approximate

V : = 1
N

N
∑

n=1

Vn : =
1

N

N
∑

n=1

〈vn〉. (12)

Before doing so, however, we recast (11b) in the form

[

τ (σ )
d

dt
+ 1

]

〈

g(σ )n

〉

= ĝ(σ )8(σ )
n (13)

where we introduced the first moment of the spike trains, i.e.,

8(σ )
n : =

〈

φ(σ )
n

〉

. (14)

By construction, 〈wn〉 = 0 holds, with which we find

[

τ (mem) d

dt
+ 1

]

V =

ṽ− 1
g

∑

σ∈{E,I}

1
N

N
∑

n=1

(

〈

g(σ )n vn

〉

−
〈

g(σ )n

〉

ṽ(σ )
)

.
(15)

We can combine (13) and (15), in particular, when assuming
identical time constants across synapse types σ , i.e.,
∀ σ : τ (σ )=:τ (syn). Then, we find

[

τ (mem) d

dt
+ 1

][

τ (syn)
d

dt
+ 1

]

V =

ṽ+
∑

σ∈{E,I}

ĝ(σ )

g ṽ(σ )8(σ ) − 1
g

∑

σ∈{E,I}

1
N

N
∑

n=1

[

τ (syn)
d

dt
+ 1

]

〈

g(σ )n vn

〉

(16)

with 8(σ )
: = N−1 ∑N

n=1 8
(σ )
n . The last term on the right-

hand side of (16) needs to be approximated, and the way of
which discriminates our two models. We first adopt the line
of reasoning by Rodrigues et al. (2010) leading to the CFM
before presenting a slight adjustment culminating in the MFM
(cf. Tewarie, 2014, chap. 2).
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The Conventional Freeman Model (CFM)

Approximating the term 〈g
(σ )
n vn〉 in (15) can be difficult because

smallness arguments may not hold in view of the stochastic
nature of the dynamics. Rodrigues et al. (2010) introduced an
admittedly gross step by considering

〈

g(σ )n vn

〉

≈
〈

g(σ )n V̄
〉

=
〈

g(σ )n

〉

V̄ (17)

where V̄ denotes the constant mean membrane potential of
the population. This approximation implies that the individual
membrane potentials vn are arbitrarily close to the population
mean V̄ , averaged over time. Note that when applying this
approximation one selectively ignores all of their dynamic
characteristics on the right-hand side of (16); cf. Discussion
section (but not on the left-hand side). Presuming this is
acceptable, the last term on the right-hand side of (16) simplifies
drastically because of

[

τ (syn)
d

dt
+ 1

]

〈

g(σ )n vn

〉

≈

[

τ (syn)
d

dt
+ 1

]

〈

g(σ )n

〉

V̄
(13)
= ĝ(σ )V̂8(σ )

n

(18)

Substituting (18) into (16) yields

[

τ (mem) d

dt
+ 1

] [

τ (syn)
d

dt
+ 1

]

V =

ṽ−
∑

σ∈{E,I}

ĝ(σ )

g

(

V̄ − ṽ(σ )
)

8(σ ).
(19)

In the presence of external input, as given in (7a-c), the full
dynamics finally reads

[

τ (mem) d

dt
+ 1

] [

τ (syn)
d

dt
+ 1

]

V = ṽ−
∑

σ∈{E,I}

ĝ(σ )

g

(

V̄ − ṽ(σ )
)

8(σ )

−
ĝ(ext)

g

(

V̄ − ṽ(ext)
)

8(ext).

(20)

In our study, the function 8(ext) consists of Poisson spike trains
as specified in Equation (7c).

Both forms, (19) and (20), agree entirely with the Freeman
model (1) when identifying α = 1/τ (mem), β = 1/τ (syn), and
J = rhs(19) or J = rhs(20).

The Modified Freeman Model (MFM)

For an alternative approximation of the term 〈g
(σ )
n vn〉 in (16),

let us detail the time scales, at which the membrane potentials
and the synapses evolve. Synaptic time constants can be as small
as 1.7 ms (Häusser and Roth, 1997), much in the range of
typical time scales of the membrane dynamics. Yet, changes in
most chemical synapses are much slower than the changes the
membrane potential, in particular, the generation/emission of
action potentials. Then, one may assume that the membrane

potential instantly follows changes at the synapse, its dynamics
can be eliminated adiabatically, i.e., we can use

∣

∣

∣

∣

dvn

dt

/

vn

∣

∣

∣

∣

≪

∣

∣

∣

∣

∣

dg
(σ )
n

dt

/

g(σ )n

∣

∣

∣

∣

∣

(21)

to rewrite
[

τ (syn)
d

dt
+ 1

]

〈

g(σ )n vn

〉

≈

〈([

τ (syn)
d

dt
+ 1

]

g(σ )n

)

vn

〉

(13)
= ĝ(σ )8(σ )

n 〈vn〉.

(22)

While this approximation contains sufficient rigor under the
proviso of a proper time scale separation, we also require that

1
N

N
∑

n=1

ĝ(σ )8(σ )
n 〈vn〉 ≈ ĝ(σ )8(σ )V (23)

which is true for 8 being the external spike train but may be
arbitrarily inaccurate for the internal one8(σ )—again we refer to
the Discussion section for a critical review. If this approximation
turns out adequate, the MFM becomes

[

τ (mem) d

dt
+ 1

] [

τ (syn)
d

dt
+ 1

]

V =

ṽ−
∑

σ∈{E,I}

ĝ(σ )

g

(

V − ṽ(σ )
)

8(σ ) −
ĝ(ext)

g

(

V − ṽ(ext)
)

8(ext).

(24)

In contrast to (20), the dynamics (24) contains a parametric
forcing since on the right-hand side the constant V̄ is replaced
by the time-dependent mean potential V . Note, however, that
despite this difference our simulation results revealed that
given the chosen parameter values (õver-damped second-order
response) the outcome of bothmodels (20) and (24) largely agree.

Numerical Methods
Simulations
We simulated N = 10,000 LIF neurons with three types of
synapses, each. The network equations were integrated using an
Euler-Maruyama scheme with a time step of 1t = 0.1 ms and
noise variance Q = 5·10−4 for a total duration of T = 3·104 ms,
i.e., for 3·105 time steps. We discarded a transient regime of T0 =

3 · 103 ms. The network was stimulated by 10,000 independent
Poisson trains each of them connected to each neuron in the
network with probability p(ext). The population average of the
total spike input of each synaptic type σ received by each neuron
at each time step t, φ(σ ) was stored as it subsequently served
as input to the Freeman model. The temporal average of the

populationmean, 1/(T−T0)
∫ T
T0

Vdt served as proxy of V̄ . For the
neural masses, we employed a simple Euler forward scheme with
the same time parameters used for the network model. The time
constant τ (syn) was set to 5 ms, i.e., the average of the synaptic
time constants in the network; see Table 1.
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FIGURE 6 | Diagram of the network of LIF units (Left) together with the external de-correlated input (Right). Blue denotes excitatory, green inhibitory and black

excitatory external neurons. The units on the LIF network are connected to each other with probability p independently on their type. The external units are modeled

as independent Poisson trains and are connected with the same probability p(ext) only to excitatory LIF units and are not connected to inhibitory ones.

To generate external input as Poisson spike trains, we
drew random numbers from an exponential distribution. Since
we drew the numbers at every time step for all the M =

10,000 external units, we minimized the computational load by
following (Zenke and Gerstner, 2014) and used that the union of
distinct exponential distributions is again exponential. The mean
frequency ν(ext) of the external input was set to 5 Hz. The Erdős-
Rényi adjacency {Anm} was constructed using the Gilbert model
published in Batagelj and Brandes (2005), adjusted for directed
graphs. For the connection probability, we used a range of p =

0 . . . 1 implying a range of mean degrees of k = Np = 0 . . .N.
The distribution of excitatory vis-à-vis inhibitory neurons was
quantified by the ratio given by (3), i.e.,

λ : =
#excitatory

#inhibitory+ #excitatory

with #inhibitory + #excitatory = N = 10,000. This network
structure is similar to that in Brunel and Wang (2003) and
Mazzoni et al. (2015) and has been considered as a good estimator
of cortical activity (Mazzoni et al., 2015). Note, however, that it
differs from other LIF networks such as the ones used in Brunel
(2000) and Wong and Wang (2006) in their external drive: in
the current work only excitatory neurons receive external input.
The internal network connectivity is given by directed Erdős-
Rényi network without discriminating excitatory and inhibitory
units. The connectivity between the external Poisson trains and
the network of LIF neurons was also given by a directed Erdős-
Rényi network with mean out degree (Mp(ext)); cf. Figure 6.

Parameter Values
The major parameters are summarized in Table 1. They largely
agree with the settings in Yger et al. (2011) and resemble bio-
physically plausible values.

Data Analysis
Per point {p, λ} in the parameter space, the network was
simulated. We first verified that the chosen parameter range
in fact covered the regime at which phase transitions from
the de-synchronized to a synchronized state may occur by

using a recently introduced, time-scale independent spike train
synchrony measure coined Spike-contrast (Ciba et al., 2018).
This measure yields results that are comparable to those of
the well-established Spike-distance (Kreuz et al., 2013) but had
our preference for its computational efficiency, which was
necessary for our fairly large number of neurons. Subsequently,
the regenerated internal and external spike trains served as
input to the Freeman model. From the time series of the
network’s mean membrane potential and of the Freeman
model’s outcome we estimate power spectra via a discrete
Fourier transform after boundary correction using a Hamming
window. This procedure was repeated 10 times yielding average
discrete power spectra Pω as sample mean approximation
of the power spectral densities. The corresponding median
frequency ̟ served as first, albeit very gross outcome measure
to compare the spectra of the original network (i.e., its
average potential) vis-á-vis the spectra of our models, CFM
and MFM.

To quantify the agreement between spectra, we used a χ2-
statistics: Given two discrete spectra P = (P1, P2, . . . , PL) and
Q = (Q1,Q2, . . . ,QL), their χ2-statistic can be given as

χ2(P,Q) =
L

∑

l=1

(Pl − Ql)
2

Pl + Ql
(25)

where the sum covers all L frequency components of the
spectra (Press et al., 1989). Prior to using (25), the spectra were
normalized to resemble histograms rather than probabilities.
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Başar, E. (2012). Brain Function and Oscillations: Volume I: Brain Oscillations.

Principles and Approaches. Berlin; Heidelberg: Springer Science & Business
Media.

Bassett, D. S., and Bullmore, E. T. (2017). Small-world brain networks revisited.
Neuroscientist 23, 499–516. doi: 10.1177/1073858416667720

Batagelj, V., and Brandes, U. (2005). Efficient generation of large randomnetworks.
Phys. Rev. E 71:036113. doi: 10.1103/PhysRevE.71.036113

Beim Graben, P., Jimenez-Marin, A., Diez, I., Cortes, J. M., Desroches, M., and
Rodrigues, S. (2019). Metastable resting state brain dynamics. Front. Comput.

Neurosci. 13:62. doi: 10.3389/fncom.2019.00062
Bettencourt, L. M. A., Stephens, G. J., Ham, M. I., and Gross, G. W. (2007).

Functional structure of cortical neuronal networks grown in vitro. Phys. Rev.
E 75:021915. doi: 10.1103/PhysRevE.75.021915

Beurle, R. L. (1956). Properties of a mass of cells capable of regenerating pulses.
Philos. Trans. R. Soc. Lond. B 240, 55–94. doi: 10.1098/rstb.1956.0012

Boustani, S. E., and Destexhe, A. (2009). A master equation formalism for
macroscopic modeling of asynchronous irregular activity states. Neural

Comput. 21, 46–100. doi: 10.1162/neco.2009.02-08-710
Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory

and inhibitory spiking neurons. J.Comput. Neurosci. 8, 183–208.
doi: 10.1023/a:1008925309027

Brunel, N., and Hakim, V. (1999). Fast global oscillations in networks of
integrate-and-fire neurons with low firing rates.Neural Comput. 11, 1621–1671.
doi: 10.1162/089976699300016179

Brunel, N., and Wang, X.-J. (2003). What determines the frequency of
fast network oscillations with irregular neural discharges? I. Synaptic
dynamics and excitation-inhibition balance. J. Neurophysiol. 90, 415–430.
doi: 10.1152/jn.01095.2002

Buzsaki, G. (2006). Rhythms of the Brain. New York, NY: Oxford University Press.
Byrne, A., Brookes, M. J., and Coombes, S. (2017). A mean field model for

movement induced changes in the beta rhythm. J. Comput. Neurosci. 43,
143–158. doi: 10.1007/s10827-017-0655-7

Carlu, M., Chehab, O., Dalla Porta, L., Depannemaecker, D., Héricé, C., Jedynak,
M., et al. (2020). A mean-field approach to the dynamics of networks of
complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley
models. J. Neurophysiol. 123, 1042–1051. doi: 10.1152/jn.00399.2019

Ciba, M., Isomura, T., Jimbo, Y., Bahmer, A., and Thielemann, C. (2018).
Spike-contrast: a novel time scale independent and multivariate
measure of spike train synchrony. J. Neurosci. Methods 293, 136–143.
doi: 10.1016/j.jneumeth.2017.09.008

David, O., and Friston, K. J. (2003). A neural mass model for MEG/EEG:
coupling and neuronal dynamics. Neuroimage 20, 1743–1755.
doi: 10.1016/j.neuroimage.2003.07.015

Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M., and Friston, K. (2008). The
dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS
Comput. Biol. 4:e1000092. doi: 10.1371/journal.pcbi.1000092

Deco, G., Kringelbach, M. L., Jirsa, V. K., and Ritter, P. (2017). The
dynamics of resting fluctuations in the brain: metastability and its

dynamical cortical core. Sci. Rep. 7, 1–14. doi: 10.1038/s41598-017-03
073-5

Fisher, R. A. (1915). Frequency distribution of the values of the correlation
coefficient in samples from an indefinitely large population. Biometrika 10,
507–521. doi: 10.1093/biomet/10.4.507

Freeman, W. J. (1975). Mass Action in the Nervous System: Examination of the

Neurophysiological Basis of Adaptive Behavior Through the EEG. New York, NY:
Academic Press.

Freeman, W. J. (1987). Simulation of chaotic EEG patterns with a dynamic model
of the olfactory system. Biol. Cybern. 56, 139–150.

Griffith, J. S. (1963). A field theory of neural nets: I: derivation of field equations.
Bull. Math. Biophys. 25, 111–120.

Griffith, J. S. (1965). A field theory of neural nets: II. properties of the field
equations. Bull. Math. Biophys. 27:187.

Häusser, M., and Roth, A. (1997). Estimating the time course of the excitatory
synaptic conductance in neocortical pyramidal cells using a novel voltage jump
method. J. Neurosci. 17, 7606–7625.

Ito, J., Nikolaev, A. R., and van Leeuwen, C. (2005). Spatial and temporal structure
of phase synchronization of spontaneous alpha EEG activity. Biol. Cybern. 92,
54–60. doi: 10.1007/s00422-004-0533-z

Ito, J., Nikolaev, A. R., and van Leeuwen, C. (2007). Dynamics of spontaneous
transitions between global brain states. Hum. Brain Mapp. 28, 904–913.
doi: 10.1002/hbm.20316

Jansen, B. H., and Rit, V. G. (1995). Electroencephalogram and visual evoked
potential generation in amathematical model of coupled cortical columns. Biol.
Cybern. 73, 357–366.

Jinno, S., Klausberger, T., Marton, L. F., Dalezios, Y., Roberts, J. D. B.,
Fuentealba, P., et al. (2007). Neuronal diversity in gabaergic long-
range projections from the hippocampus. J. Neurosci. 27, 8790–8804.
doi: 10.1523/JNEUROSCI.1847-07.2007

Kozma, R., and Freeman, W. J. (2016). Cognitive Phase Transitions in the Cerebral

Cortex-Enhancing the Neuron Doctrine by Modeling Neural Fields. Switzerland:
Springer International Publishing.

Kreuz, T., Chicharro, D., Houghton, C., Andrzejak, R. G., and Mormann, F.
(2013). Monitoring spike train synchrony. J. Neurophysiol. 109, 1457–1472.
doi: 10.1152/jn.00873.2012

Lopes da Silva, F. H., Hoeks, A., Smits, H., and Zetterberg, L. H. (1974). Model of
brain rhythmic activity. Kybernetik 15, 27–37.

Marreiros, A. C., Daunizeau, J., Kiebel, S. J., and Friston, K. J. (2008). Population
dynamics: variance and the sigmoid activation function. Neuroimage 42, 147–
157. doi: 10.1016/j.neuroimage.2008.04.239

Mazzoni, A., Lindn, H., Cuntz, H., Lansner, A., Panzeri, S., and
Einevoll, G. T. (2015). Computing the local field potential (lfp) from
integrate-and-fire network models. PLoS Comput. Biol. 11:e1004584.
doi: 10.1371/journal.pcbi.1004584

Mejias, J. F., and Longtin, A. (2012). Optimal heterogeneity for
coding in spiking neural networks. Phys. Rev. Lett. 108:228102.
doi: 10.1103/PhysRevLett.108.228102

Mejias, J. F., and Longtin, A. (2014). Differential effects of excitatory and inhibitory
heterogeneity on the gain and asynchronous state of sparse cortical networks.
Front. Comput. Neurosci. 8:107. doi: 10.3389/fncom.2014.00107

Ponten, S. C., Daffertshofer, A., Hillebrand, A., and Stam, C. J. (2010).
The relationship between structural and functional connectivity: graph

Frontiers in Computational Neuroscience | www.frontiersin.org 11 January 2021 | Volume 14 | Article 581040

cosmos-itn.eu
https://www.frontiersin.org/articles/10.3389/fncom.2020.581040/full#supplementary-material
https://doi.org/10.1016/j.neuroscience.2010.03.012
https://doi.org/10.1177/1073858416667720
https://doi.org/10.1103/PhysRevE.71.036113
https://doi.org/10.3389/fncom.2019.00062
https://doi.org/10.1103/PhysRevE.75.021915
https://doi.org/10.1098/rstb.1956.0012
https://doi.org/10.1162/neco.2009.02-08-710
https://doi.org/10.1023/a:1008925309027
https://doi.org/10.1162/089976699300016179
https://doi.org/10.1152/jn.01095.2002
https://doi.org/10.1007/s10827-017-0655-7
https://doi.org/10.1152/jn.00399.2019
https://doi.org/10.1016/j.jneumeth.2017.09.008
https://doi.org/10.1016/j.neuroimage.2003.07.015
https://doi.org/10.1371/journal.pcbi.1000092
https://doi.org/10.1038/s41598-017-03073-5
https://doi.org/10.1093/biomet/10.4.507
https://doi.org/10.1007/s00422-004-0533-z
https://doi.org/10.1002/hbm.20316
https://doi.org/10.1523/JNEUROSCI.1847-07.2007
https://doi.org/10.1152/jn.00873.2012
https://doi.org/10.1016/j.neuroimage.2008.04.239
https://doi.org/10.1371/journal.pcbi.1004584
https://doi.org/10.1103/PhysRevLett.108.228102
https://doi.org/10.3389/fncom.2014.00107
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Deschle et al. Validity of Neural Mass Models

theoretical analysis of an EEG neural mass model. Neuroimage 52, 985–994.
doi: 10.1016/j.neuroimage.2009.10.049

Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., et al. (1989).
Numerical Recipes, Vol. 3. Cambridge: Cambridge University Press.

Reyes, A., Lujan, R., Rozov, A., Burnashev, N., Somogyi, P., and Sakmann, B.
(1998). Target-cell-specific facilitation and depression in neocortical circuits.
Nat. Neurosci. 1, 279–285. doi: 10.1038/1092

Rodrigues, S., Chizhov, A. V., Marten, F., and Terry, J. R. (2010). Mappings
between a macroscopic neural-mass model and a reduced conductance-based
model. Biol. Cybern. 102, 361–371. doi: 10.1007/s00422-010-0372-z

Stefanescu, R. A., and Jirsa, V. K. (2008a). A low dimensional description
of globally coupled heterogeneous neural networks of excitatory and
inhibitory neurons. PLoS Comput. Biol. 4:e1000219. doi: 10.1371/journal.pcbi.
1000219

Stefanescu, R. A., and Jirsa, V. K. (2008b). A low dimensional description of
globally coupled heterogeneous neural networks of excitatory and inhibitory
neurons. PLoS Comput. Biol. 4:e1000219.

Tewarie, P. K. B. (2014). Functional brain networks in multiple sclerosis: linking

structural pathology to clinical disability (Ph.D. thesis). Vrije Universiteit
Amsterdam, Amsterdam, Netherlands.

Tognoli, E., and Kelso, J. (2014). The metastable brain. Neuron 81, 35–48.
doi: 10.1016/j.neuron.2013.12.022

van den Heuvel, M. P., Bullmore, E. T., and Sporns, O. (2016). Comparative
connectomics. Trends Cogn. Sci. 20, 345–361. doi: 10.1016/j.tics.2016.
03.001

Wendling, F., Bellanger, J.-J., Bartolomei, F., and Chauvel, P. (2000). Relevance
of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic
signals. Biol. Cybern. 83, 367–378. doi: 10.1007/s004220000160

Wong, K.-F., and Wang, X.-J. (2006). A recurrent network mechanism
of time integration in perceptual decisions. J. Neurosci. 26, 1314–1328.
doi: 10.1523/JNEUROSCI.3733-05.2006

Yger, P., El Boustani, S., Destexhe, A., and Frégnac, Y. (2011). Topologically
invariant macroscopic statistics in balanced networks of conductance-
based integrate-and-fire neurons. J. Comput. Neurosci. 31, 229–245.
doi: 10.1007/s10827-010-0310-z

Zenke, F., and Gerstner, W. (2014). Limits to high-speed simulations of spiking
neural networks using general-purpose computers. Front. Neuroinformatics

8:76. doi: 10.3389/fninf.2014.00076

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Deschle, Ignacio Gossn, Tewarie, Schelter and Daffertshofer. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 January 2021 | Volume 14 | Article 581040

https://doi.org/10.1016/j.neuroimage.2009.10.049
https://doi.org/10.1038/1092
https://doi.org/10.1007/s00422-010-0372-z
https://doi.org/10.1371/journal.pcbi.1000219
https://doi.org/10.1016/j.neuron.2013.12.022
https://doi.org/10.1016/j.tics.2016.03.001
https://doi.org/10.1007/s004220000160
https://doi.org/10.1523/JNEUROSCI.3733-05.2006
https://doi.org/10.1007/s10827-010-0310-z
https://doi.org/10.3389/fninf.2014.00076
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

