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Related interleukin-2, -15, and -15-like (IL-2, -15, and -15L) are ancient cytokines, with

all three genes surviving in extant fish and some mammals. The present study is the first

to identify IL-15L functions, namely in rainbow trout. In isolated trout splenocytes, and

in vivo, purified recombinant IL-15L+IL-15Rα molecules induced expression of IL-4 and

IL-13 homologs, which are markers of type 2 immunity. In contrast, trout IL-15 stimulated

type 1 immunity markers, thus IL-15 and IL-15L can have opposing functions. Trout

IL-15L was more dependent on “in trans” presentation by the receptor chain IL-15Rα

than IL-15, and stimulated CD4−CD8−(IgM−) lymphocytes from thymus and spleen. We

propose an important role for IL-15L early in the type 2 immunity cytokine cascade.

Trout IL-2 and IL-15 exhibited features reminiscent of their mechanistic and functional

dichotomy observed in mammals; for example, IL-15 but not IL-2 required a receptor

alpha chain (only IL-15Rα in the case of fish) for its stability, and only IL-15 was efficient

in stimulating lymphocytes from mucosal tissues. Data suggest that IL-15L and IL-15

may be particularly effective in stimulating innate lymphocyte type 2 cells (ILC2) and

natural killer (NK) cells, respectively, but further identification of the cell types is needed. An

interesting finding different from in mammals was the efficient stimulation of CD4+CD8+

thymocytes by IL-2. In short, this study presents fundamental information on the evolution

of the IL-2/15/15L cytokine family.
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INTRODUCTION

Interleukin 2 (IL-2) was one of the first cytokines to be characterized. This was due to the
remarkable power of IL-2 to induce and sustain T lymphocyte proliferation in vitro, and IL-2
was originally named “T cell growth factor” (TCGF) (1–3). Many years later, IL-15, a molecule
closely related to IL-2, was discovered (4), and it took even longer to realize that IL-15 was
especially potent/stable in combination with its “heterodimer partner” IL-15Rα (5–7). Nowadays,
recombinant IL-2 and IL-15 (with or without IL-15Rα), or antibodies blocking their action, provide
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TABLE 2 | Data obtained in the present study for rainbow trout IL-15La, IL-15Lb, IL-15, and IL-2.

The proteins were tested in combination with or without soluble rainbow trout IL-15Rα.

+, clearly positive reaction; -, no reaction; ±, weak reaction.

When expressed in insect cells, IL-15La + IL15Rα, or IL-15 + IL-15Rα, were expressed as genetic fusion (receptor-linker-interleukin; RLI) forms.

Figures and Supplementary files (Sf.) with the respective information are indicated between brackets.

Gray fields represent absence of experiments or not applicable.
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FIGURE 13 | (A) Summary of IL-15, IL-15L, and IL-2 features in fish and mammals. (B) Model for IL-15 and IL-15L pathways in type 1 vs. type 2 immunity (a human

IL-33 pathway for inducing type 2 immunity is shown for comparison).

of the experiments described in the present study were done at
the FLI.

Fish handling and experimental protocols complied with
the guidelines for animal welfare in the respective countries
and institutes.

Rainbow Trout Permanent Cell Lines and
Primary Head Kidney (HK) Macrophage
Cultures
Four rainbow trout cell lines were used for gene expression
analysis: a monocyte/macrophage-like cell line RTS-11 from
spleen (99), an epithelial cell line RTL from liver (100), a
fibroblastic cell line RTG-2 from gonad (101), and an epithelial
cell line RTGill from gills (102). Cells were maintained in
Leibovitz (L-15) medium (Invitrogen) containing 30% fetal
bovine serum (FBS; Labtech International, for RTS-11 cells) or
10% FBS (for the other three cell lines and for primary HK
macrophages) and antibiotics (100U penicillin/ml and 100 µg
streptomycin/ml; Invitrogen) at 20◦C. Primary HK macrophage
cultures from four individual trout at the SFIRC were prepared
as outlined by Costa et al. (103).

Permanent Human and Insect Cell Lines
HEK (Human Embryo Kidney) 293T Cells
HEK293T cells were used for transient expression of
recombinant proteins. Cells were maintained in minimal

essential medium (MEM) supplied with 10% FBS at 37◦C in a
2.5% CO2 atmosphere.

High Five and Sf9 Cells
Two insect cell lines, High Five and Sf9, were used for producing
recombinant proteins. These cells were maintained in Grace’s
Insect medium supplied with lactalbumin hydrolysate, yeast
extract and 5% FBS, at 26◦C.

These cell lines and media were obtained from the Collection
of Cell Lines in Veterinary Medicine (CCLV) at FLI.

Database Searches and Analysis of
Nucleotide and Deduced Amino Acid
Sequences
BLAST similarity searches were performed on sequence
datasets of the National Center for Biotechnology Information
(NCBI; http://blast.ncbi.nlm.nih.gov/Blast.cgi) (104) and
the Ensembl database of the European Bioinformatics
Institute (EBI; https://www.ensembl.org/) (105). Retrieved
sequences were analyzed using genetic analysis software
GENETYX (Version 12.0.3) and FGENESH gene prediction
software (www.softberry.com) (106). For deduced amino
acid sequences, the leader peptides were predicted using
SignalP (http://www.cbs.dtu.dk/services/SignalP/) software
(107). Alignments of deduced amino acid sequences
were performed manually, based on comparisons of more
sequences, and considerations of gene and protein structures
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and of phylogeny (13), and also considering the clarity
of the figure. For construction of a phylogenetic tree, see
Supplementary File 1D.

Read numbers per 108 reads of IL-15La and IL-15Lb
were determined by similarity searches against tissue-specific
single read archive (SRA) datasets using the BLAST search
function at NCBI. For rainbow trout, the SRA datasets of
Bioproject PRJEB4450 (NCBI datasets ERX297509-to-297524)
(40), Bioproject PRJNA389609 (NCBI datasets SRX2894150-
to-2894164) (108) and Bioproject PRJNA380337 (NCBI
datasets SRX2668643-to-2668653 and SRX2668655-to-2668657;
Norwegian University of Life Sciences) were investigated. For
Atlantic salmon, the SRA datasets of Bioproject PRJNA260929
(NCBI datasets SRX1046658, SRX1052181, SRX1052182,
SRX1052184, SRX1052187-to-1052192; Norwegian University
of Life Sciences) and Bioproject PRJNA72713 (NCBI datasets
SRX608567, SRX608569, SRX608571, SRX608574, SRX608575,
SRX608579, SRX608583, SRX608588, SRX608594, SRX608599,
SRX608607, SRX608616, SRX608620, SRX608621; University
of Victoria) were investigated. The species-specific IL-15La
or IL-15Lb ORF sequences were subjected to “Megablast”
analysis (blastn) using default settings except that the “max
target sequences” number was changed to 20,000 and the
“word size” was changed to 64. To ensure specificity of the
Megablast analysis, only matches with score values ≥187
for PRJEB4450, ≥185 for PRJNA389609 and PRJNA72713,
≥233 for PRJNA380337, ≥192 for Bioproject PRJNA260929
were counted.

Isolation of RNA, Synthesis of cDNA, PCR
Amplification, Sequencing and Cloning
Into Expression Vectors
Total RNA samples of trout were isolated from tissues by two-
fold purification with TRIzol (Gibco) and stored at the NRIA.
Equal amounts of RNA were transcribed into cDNA using
Superscript transcriptase (Invitrogen). A cDNA sample from
spleen of Trout-2 was used for the amplification of the full-length
IL-15La open reading frame (ORF) using primer set Trout_IL-
15La_CDS and ExTaq polymerase kit (Takara) while a cDNA
sample from gill of Trout-2 was used for the amplification of the
full-length IL-15Lb ORF using primer set Trout_IL-15Lb_CDS.
These primer sequences are shown in Supplementary File 9A.
For 5’-RACE analysis cDNA samples were synthesized from
total RNA of spleen and gill of Trout-2 using the SMARTER
RACE cDNA amplification system (Clontech). The first PCR
was performed using spleen cDNA (for IL-15La) or gill cDNA
(for IL-15Lb) with NUP primer (provided with the kit) and
a specific primer for corresponding gene. Subsequently, nested
PCR was performed using each first PCR product with UPM
primer (provided with the kit) and a specific inner primer
for corresponding gene. The sequences of primers used for

5
′

-RACE analysis are shown in Supplementary File 9A. The
first PCR schedule was 94◦C for 5min, 5 × (94◦C for 30 s,
72◦C for 1:30min), 10 × (94◦C for 30 s, 70◦C for 30 s, 72◦C
for 1min), 25 × (94◦C for 30 s, 68◦C for 30 s, 72◦C for
1min), 72◦C for 7min. After diluting the product of the first

reaction (1/200), the amplification schedule for the nested PCR
was 94◦C for 5min, 32 × (94◦C for 30 s, 60◦C for 1min,
72◦C for 30 s), 72◦C for 7min. The amplified IL-15La and IL-
15Lb full-length ORF and 5’-RACE fragments were prepared
for sequencing by standard TA-cloning with the pGEM T-
Vector System (Promega). The sequences of multiple clones
were determined by dideoxy chain termination method and
using an automated sequencer to exclude PCR errors. Assembled
sequences of the overlapping full-length ORF and 5′-RACE
amplifications of rainbow trout IL-15La and IL-15Lb were
deposited to GenBank and are available as accessions MK619679
and MK619680, respectively.

For semi-quantitative analysis of tissue distribution of
transcripts, PCR was performed with the ExTaq polymerase kit,
using equal amounts of cDNA solution as templates, and the
primer sets Trout_IL-15La, Trout_IL-15Lb, and Trout_EF1A
(Supplementary File 9B), for amplification of fragments of IL-
15La, IL-15Lb, and elongation factor 1 alpha (EF1A), respectively.
For the semi-quantitative PCR analysis of IL-15La and IL-15Lb
expression, the amplification schedule was: 94◦C for 5min,
32 × (94◦C for 30 s, 60◦C for 30 s, 72◦C for 40 s), 72◦C for
7min; and for EF1A amplification, the schedule was: 94◦C
for 5min, 25 × (94◦C for 30 s, 60◦C for 30 s, 72◦C for 30 s),
72◦C for 7 min.

For construction of DNA expression vectors, gene sequences
were amplified from cDNA or commercially ordered, and,
often after PCR-mediated gene modifications, cloned into
commercial DNA plasmid vectors by using appropriate
restriction enzymes behind the CMV-IE promoter, or into the
baculovirus transfer vector pFBD-P10Uhis-ieGFP behind the
p10-promoter (for cloning details see Supplementary File 2).
The vector pFBD-P10Uhis-ieGFP is based on the vector
pFBD1XhoI_Histag (109) which is a derivate of pFastBac-
Dual (Invitrogen) in which the PolH promoter region was
replaced by a CMV-IE promoter driven GFP expression
cassette (Dr. Günther M. Keil, personal communication).
The expression vectors were multiplied in E. coli and isolated
by standard techniques. To check whether the sequences
were correctly inserted, all DNA expression vectors were
sequenced by dideoxy chain termination method and using an
automated sequencer.

Reverse Transcription Quantitative
Real-Time PCR (RT-qPCR) Analysis of Trout
IL-15La and IL-15Lb Tissue Distribution
Six healthy rainbow trout were used at the SFIRC for RT-
qPCR analysis of IL-15La and IL-15Lb tissue distribution.
The RNA preparations from trout tissues, cell lines, and
primary HK macrophage cultures, and the following RT-qPCR
analysis, were performed as described previously (54, 110). The
relative expression levels of each IL-15L gene were normalized
against the expression level of EF1A, a highly expressed
gene widely used as house-keeping gene in gene expression
analysis in salmonids. A common reference containing
equal molar amounts of purified PCR products of trout IL-
15La, IL-15Lb, and EF1A was used for the quantification.
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The primer sets used for amplification were Trout_IL-
15La_qPCR, Trout_IL-15Lb_qPCR and Trout_EF1A_qPCR
(Supplementary File 9B).

Expression of Recombinant Proteins in
Human HEK293T Cells
Transfection
HEK293T cells were transfected using X-tremeGENE HP
DNA Transfection Reagent (Roche) as described in our
previous study (111), with slight changes. For co-expression
of cytokines with IL-15Rα or IL-2Rα, HEK293T cells at
a 80–90% confluency were co-transfected with 2 µg of
the cytokine-encoding plasmid together with 2 µg of IL-
15Rα-encoding plasmid or IL-2Rα-encoding plasmid (in
total 4 µg) per well. To express only cytokines or receptor
α chains, HEK293T cells were co-transfected with 2 µg
of the respective plasmid together with 2 µg of “empty”
pcDNA3.1 or pRc/CMV2 commercial vector (Invitrogen).
Negative control cells were transfected with 4 µg of empty
vector. The recombinant molecules were expressed by
using the following expression vectors (for sequences see
Supplementary File 2): bovine IL-2, pRcCMV2-Bos-IL-2-
FLAG; bovine IL-15; pRcCMV2-Bos-IL-15-FLAG; bovine
IL-15L, pRcCMV2-Bos-IL-15L-FLAG; bov.IL-15Lhyb-h-RLI,
pcDNA3.1-IL-2-Lead-RLI-bov.IL-15Lhyb; bovine (full-length)
IL-15Rα, pcDNA3.1-Bos-IL-15Rα-Myc-His; bovine soluble
IL-15Rα (aka sIL-15Rα), pcDNA3.1-Bos-solIL-15Rα-Myc-His;
bovine (full-length) IL-2Rα, pcDNA3.1-Bos-IL-2Rα-Myc-His;
bovine soluble IL-2Rα (aka sIL-2Rα), pcDNA3.1-Bos-solIL-2Rα-
Myc-His; trout IL-2, pcDNA3.1-trout-IL-2-FLAG; trout IL-2(N),
pcDNA3.1-trout-IL-2-(non-tagged); trout IL-15, pcDNA3.1-
trout-IL-15-FLAG; trout IL-15(N), pcDNA3.1-trout-IL-15-
(non-tagged); trout IL-15La, pcDNA3.1-trout-IL-15La-FLAG;
trout IL-15La(N), pcDNA3.1-trout-IL-15La-(non-tagged); trout
IL-15Lb, pcDNA3.1-trout-IL-15Lb-FLAG; trout IL-15Lb(N),
pcDNA3.1-trout-IL-15Lb-(non-tagged); trout IL-15La-h-RLI,
pcDNA3.1-IL-2-Lead-RLI-trout-IL-15La; trout (full-length)
IL-15Rα, pcDNA3.1-trout-IL-15Rα-Myc; trout soluble IL-15Rα

(aka sIL-15Rα), pcDNA3.1-trout-solIL-15Rα-Myc.

Analysis of Transfected HEK293T Cells by Flow

Cytometry
In order to check the binding ability of receptor α-chains
for each cytokine, HEK293T cells were co-transfected with
plasmids encoding full-length (transmembrane) forms of
IL-15Rα or IL-2Rα and plasmids encoding the cytokines,
or, as negative controls, transfected with only one of these
plasmids or with empty vector alone (see above). Two days
after transfection, HEK293T cells were collected, washed and
stained with mouse ANTI-FLAG M2 Monoclonal Antibody
(Sigma) and anti-mouse IgG, IgM (H+L) secondary antibody
conjugated with Alexa Fluor 488 (Thermo Fisher Scientific)
diluted according to the manufacturer’s instructions. The
stained HEK293T cells were analyzed with a FACSCalibur
flow cytometer (BD Biosciences). Conditions were adjusted
by setting the thresholds for conjugate controls. Dead cells
were excluded from analysis by propidium iodide (PI)

staining. The data were analyzed using BD CellQuest Pro
Software (BD Biosciences).

Expression of Soluble Cytokine (-Complexes) in

HEK293T Cells
HEK293T cells were co-transfected with plasmids encoding
soluble forms of IL-15Rα or IL-2Rα and plasmids encoding
the cytokines, or transfected with only one of these plasmids,
or (as negative control) with empty vector alone. Medium of
HEK293T cells was replaced to EX-CELL Serum-Free Medium
(Sigma) before transfection. Two days after transfection, 2ml of
supernatant was collected from each well, and filtered through
a 0.22µm pore PVDF membrane (Syringe Driven Filter Unit,
Millex-GV). For analysis by Western blotting as shown in
Figure 6 and Supplementary File 5B, the 2ml supernatants were
concentrated to 40–50 µl by ultrafiltration with a 3 kDa nominal
molecular weight cutoff membrane (Amicon Ultracel - 3K,
Millipore), yielding the “concentrated supernatant” samples.
For leukocyte stimulation experiments, supernatants were used
without concentration (“unconcentrated supernatant” samples).
Remaining HEK293T cells in each well were collected, pelleted
and lysed in 100 µl of NP40 Cell Lysis Buffer (Thermo Fisher
Scientific) supplied with Protease Inhibitor Cocktail (Sigma), and
used for further analysis as “cell lysate” samples.

SDS-PAGE and Western Blotting
Fifteen µl of the samples were mixed with 5 µl of 4 ×

reducing Laemmli Sample Buffer (Bio-Rad), heated for 3min at
95◦C and electrophoresed using (unless mentioned otherwise)
12% poly-acrylamide gels and standard procedures (112) and
with PageRuler Prestained Protein Ladder (Thermo Fisher
Scientific) as molecular weight marker. After electrophoretic
separation, proteins were either visualized by treatment with
Coomassie Brilliant Blue (CBB) R-250 staining solution (BioRad)
or prepared for Western blotting by transfer to Amersham
Hybond P 0.45 PVDF membranes (GE Healthcare) using a
Trans-Blot Turbo Transfer System (Bio-Rad). Membranes were
blocked by incubation in StartingBlock (TBS) Blocking Buffer
(Thermo Fisher Scientific) and subsequently incubated overnight
at 4◦C with mouse ANTI-FLAG M2 Monoclonal Antibody,
Myc-Tag (9B11) Mouse mAb or Phospho-Stat5 XP Rabbit mAb
(Cell Signaling Technology) specific for phosphorylated Tyr694
(Tyr694 and surrounding residues are conserved between trout
and mouse STAT5), made up in blocking buffer. The membranes
were washed with TBS/0.1% Tween-20, followed by incubations
with HRP-Conjugated Goat Anti-mouse IgG (Pierce) or
HRP-linked Anti-rabbit IgG (Cell Signaling Technology) in
blocking buffer for 1–2 h. All antibodies were used at the
concentrations recommended by the manufacturer. Bands were
visualized by chemiluminescence reaction (SuperSignal West
Pico Chemiluminescent Substrate, Thermo Fisher Scientific) and
documented on a VersaDoc 4000 MP workstation (BioRad)
using Quantity One software (BioRad). As a loading control,
membranes which had been subjected to pSTAT5-detection were
stripped by incubation in 0.1M glycine-HCI buffer (pH 2.8) for
2 h with gentle shaking at room temperature and subsequently
reprobed for actin using mAb C4 (Millipore).
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Expression of Recombinant Proteins in
Insect Cells
Construction of Recombinant Bacmid DNA
Recombinant plasmids were isolated and transformed to
DH10Bac competent cells (Invitrogen) with standard procedure,
after which bacmid DNA was isolated. The recombinant
plasmids are explained in Supplementary File 2, with the names
of the encoded recombinant proteins and plasmids as follows:
trout IL-2, pFBD-P10Uhis-ieGFP-trout-IL-2-FLAG; trout IL-15,
pFBD-P10Uhis-ieGFP-trout-IL-15-FLAG; trout IL-15La, pFBD-
P10Uhis-ieGFP-trout-IL-15La-FLAG; trout soluble IL-15Rα

(aka sIL-15Rα), pFBD-P10Uhis-ieGFP-trout-solIL-15Rα-Myc;
trout IL-15-RLI, pFBD-P10Uhis-ieGFP-trout-IL-15-RLI; trout
IL-15La-RLI, pFBD-P10Uhis-ieGFP-trout-IL-15La-RLI.

Transfection of Recombinant Bacmid DNA Into High

Five Insect Cells
High Five cells were seeded into a 6-well plate and incubated
at 26◦C for 1 h. A transfection mix with 5 µg bacmid DNA
and 6 µl X-tremeGENE reagent in 100 µl α-MEM (Sigma) was
prepared for each cytokine and incubated at room temperature
for 40min. These transfection mixes were diluted with 900 µl
Insect-XPRESS medium, and then dropped onto the High Five
cells. After 5 h incubation, the supernatant was replaced by 2ml
of fresh Insect-XPRESS medium per well and continued to be
cultured. After 3 days cultivation, cells and supernatants were
collected and stored at−80◦C.

Isolation of Recombinant Baculoviruses by Plaque

Assay
Sf9 cells were seeded into 6-well plates and incubated for 30min
at room temperature. Aliquots of the transfected High Five cells
and their supernatants were thawed and diluted from 100 to
10−2 in Grace’s insect medium, and 100 µl of each dilution was
added to the well. After 1 h cultivation at 26◦C, supernatants were
removed and cultures were overlaid with 1% low-melting agarose
containing Grace’s insect medium. After 3 days cultivation,
GFP-positive plaques were picked and resuspended individually
in 1ml of Grace’s insect medium. Each resuspended plaque
was transferred into flasks with 105 Sf9 cells to be infected.
Infection progress was monitored by GFP fluorescence. After 5–7
days cultivation, Sf9 cells and their supernatants were collected,
aliquoted and kept at−80◦C as recombinant baculovirus stocks.

Titration of Recombinant Baculoviruses by Endpoint

Dilution Assay
Aliquots of recombinant baculovirus stocks were thawed and
diluted from 10−1 to 10−8 in Grace’s insect medium, and
100 µl of each virus dilution was pipetted into 96-well plates
in quadruplicate. Subsequently, 6 × 104 freshly harvested Sf9
cells/well were added. After 5–7 days incubation at 26 ◦C, the
numbers of GFP-positive wells were counted and virus titers
were calculated as endpoint dilution assay TCID50 [TCID50 =

D (n/p+0.5) × 1/sample volume (ml); D = dilution factor; n =

number of positive wells; p= number of parallel values].

Infection of Sf9 Cells With Recombinant

Baculoviruses
To obtain recombinant cytokines, Sf9 cells were infected in
suspension (1 × 106 /ml) or in T175 flasks with Insect-XPRESS
medium. For suspension culture, 0.1% Pluronic-F68 (Gibco) was
added. For infection with recombinant baculoviruses encoding
IL-15-RLI or IL-15La-RLI an MOI of 2–3 was used, while
infection with recombinant baculovirus encoding IL-2 was
carried out with an MOI of 0.5 in order to reduce aggregation
events. After 4–6 days incubation at 26◦C, supernatants were
collected, filtered through a 0.22µm membrane and kept at 4◦C
until further analysis or purification.

Purification of Recombinant Cytokines
From Insect Cell Supernatants
Filtered supernatants from infected Sf9 cells were mixed with
ANTI-FLAG M2 Affinity Gel (Sigma) at a ratio of 600:1 (e.g.,
300ml of supernatant was mixed with 0.5ml of affinity gel). After
overnight incubation at 4 ◦C, the mixtures were poured into
10ml columns with 35µm filter pore size (MoBiTec), washed
with ∼150ml of TBS and eluted six times with 1ml aliquots of
0.1M glycine HCl, pH 3.5 into vials containing 20 µl of 1M Tris,
pH 8.0. Subsequently the buffer was exchanged and concentrated
to 300 µl PBS (-) using Amicon Ultracel - 3K centrifugal
filters. Protein concentrations were determined with Pierce BCA
Protein Assay Kit (Thermo Fischer Scientific) according to the
manufacturer’s instructions. Amount of substance (mol) for
each recombinant protein was calculated based on the protein
amount in the preparations andmolecular weight. Themolecular
weight of recombinant proteins was estimated based on their
amino acid sequences using Compute pI/Mw tool (https://web.
expasy.org/compute_pi/). Purified recombinant proteins were
analyzed immediately by Western blotting or gel filtration
chromatography, or they were supplemented with 0.1% Bovine
serum albumin (BSA) and 50% glycerol (recombinant protein
storage buffer) for storage at−20◦C.

Gel Filtration Chromatography
To analyze purified recombinant proteins, gel filtration
chromatography was carried out on a Superose 12 column
(30 cm length, 1 cm diameter, Pharmacia) using an HPLC system
(BT 9200 Titan pump, BT 9520 IN UV monitor, Eppendorf
Biotronik) for solvent delivery and UV monitoring at 280 nm.
For the equilibration with PBS (-) and for the separation of
proteins, a constant flow rate of 0.5 ml/min was maintained
throughout the experiment. Samples of recombinant proteins
containing between 10 and 15 µg were diluted in 0.5ml PBS (-),
injected using a 0.5ml sample loop (Rheodyne), and fractionated
(1 fraction/0.5ml). The fractionated samples corresponding
to peaks in the chromatogram were concentrated to 40–50 µl
by ultrafiltration with an Amicon Ultracel - 3K filter and were
analyzed by SDS-PAGE and Western blotting. The calibration
of the column was carried out using standard procedures
and the same chromatographic conditions as described for
the recombinant proteins. The void volume was estimated
with Blue dextrane (Sigma). For the calibration, elution
volumes of calibrant proteins (Sigma) were plotted against
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the decadic logarithms of their molecular weights and linear
regression models were calculated which were then used for the
determination of molecular weights of the recombinant proteins.

Deglycosylation Assay
PNGase-F digestion of the lysates of transfected HEK293T cells
and purified recombinant cytokine preparations was performed
using the PNGase-F kit (New England Biolabs) with similar
procedures as described in our previous study (111). Prior
to assay, the concentration of purified recombinant protein
preparations in PBS (-) was adjusted to ∼500 ng/30 µl. Nine µl
of the cell lysates or the recombinant cytokines were subjected
to assay as suggested by the manufacturer, and incubated
in the presence or absence (mock control) of PNGase-F.
Digested samples were subjected to buffer exchange to PBS
(-) and concentrated to 40–50 µl by ultrafiltration with an
Amicon Ultracel - 3K filter. SDS-PAGE and Western blotting
analysis were performed as described above except for using
16% poly-acrylamide gels for analysis of the purified cytokines
[Supplementary Files 4D(e),4E(e),4F(e)].

Establishment of a Monoclonal Antibody
(mAb) Against Rainbow Trout CD8α

Although an anti-trout CD8α mAb had already been established
by our group (51), a new mAb clone named 7α8c with a different
immunoglobulin isotype was established enabling multi-color
immunostaining with mAbs against other molecules. MAb
7α8c was established as previously described (52, 113) with
slight modifications as follows: Rats were immunized twice,
with a 3-4 week interval, into the tail base with Normal Rat
Kidney cells expressing trout CD8α (51) emulsified in Complete
Freund’s Adjuvant (Sigma). Hybridomas were cloned twice by
limiting dilution, and one of the resulting clones, designated
as 7α8c, was selected for further experiments. Supernatants
were stored as 50% glycerol stocks at −20◦C. For validation
of mAb specificity, HEK293T cells expressing trout CD8α-HA
(established by Takizawa et al., unpublished) were tested for the
reactivity with mAb 7α8c by flow cytometry using FACSCanto
II (BD Biosciences). As a positive expression control, an anti-
HA mAb was applied. Anti-rat IgG Alexa Fluor 488 (Thermo
Fisher scientific) and anti-Mouse IgG, IgM (H+L) Alexa Fluor
488 Secondary Antibody were used as secondary conjugates,
respectively. To further prove the specificity of mAb 7α8c,
mAb+ and mAb− lymphocyte subpopulations were flow sorted
from trout intestine as described in the next paragraph. Total
RNA was extracted from the subpopulations using NucleoSpin
RNA kit (Macherey-Nagel). As was done in all the experiments
for which we used the NucleoSpin RNA kit, total RNA was
treated with rDNase I on the NucleoSpin column according
to the manufacturer’s instruction in order to degrade genomic
DNA prior to downstream steps. Total RNA was then subjected
to semi-quantitative one step RT-PCR analysis with primers
for β-actin and CD8α (Supplementary File 9B) as described
previously (51). The cycle numbers used for β-actin and CD8α
were 25 cycles and 37 cycles, respectively.

Isolation of Rainbow Trout Lymphocyte
Subpopulations
Leukocytes from trout thymus, gill, head kidney (HK), spleen,
and intestine were isolated as described previously (51). Briefly,
the cell suspensions were layered onto an isotonic Percoll (GE
Healthcare) gradient (ρ = 1.075 g/ml) and centrifuged at 650
× g for 40min. After centrifugation, cells lying at the interface
were collected and washed twice with cold mixed medium
(MM): Iscove’s DMEM/Ham’s F12 (Gibco) at a ratio of 1:1,
supplemented with 10% fetal bovine serum (FBS) and 100U
penicillin/ml and 100 µg streptomycin/ml. If leukocyte isolation
was followed by flow sorting, leukocytes from 4 to 8 clonal
individuals were pooled to get sufficient amounts of lymphocytes
(Supplementary File 3). The cell suspensions were kept on ice
until further preparation.

To isolate CD8α+ and CD8α− lymphocytes, leukocytes
from thymus, gill, HK, spleen, and intestine were stained
with anti-CD8α (clone 13.2D; rat IgG2a isotype) (51) and
anti-rat IgG Alexa Fluor 488. To isolate CD8 single positive
[SP], CD4SP, double positive [DP] and double negative [DN]
lymphocytes, leukocytes from thymus, spleen, and intestine
were stained with anti-CD4-1 (rat IgG2a isotype) (52), anti-
CD4-2 (rat IgG2b isotype) (52) and anti-CD8α [clone 7α8c;
rat IgG1 isotype (Supplementary File 3A)] mAbs. Stained cells
were detected with anti-rat IgG2a-PE (eBioscience), anti-rat
IgG2b-PE (eBioscience), and anti-rat IgG1-FITC conjugates (BD
Bioscience), respectively. To isolate CD8SP, CD4SP, IgMSP, and
triple negative [TN] lymphocytes, splenocytes were stained with
anti-CD4-1, anti-CD4-2, and anti-CD8α mAbs as described
above in addition to anti-IgM (mouse IgG1 isotype) mAb
(114). Stained cells were detected with anti-rat IgG2a-eFluor
660 (eBioscience), anti-rat IgG2b-eFluor 660 (eBioscience), anti-
rat IgG1-FITC, and anti-mouse IgG1-Brilliant Violet 421TM

conjugates (Biolegend), respectively.
Cell suspensions were incubated on ice with mAbs and

corresponding secondary conjugates for 30min and then washed
twice with MM after each respective staining steps. For negative
controls, conjugate controls were prepared as described above.
Doublets were excluded by FSC-A/FSC-H gating, and dead
cells were excluded by DAPI (4’, 6-diamidino-2-phenylindole)-
or PI- staining. Secondary antibodies were tested before
the experiments to exclude possible cross-reactions between
isotype/species specific conjugates. Stained cells were sorted
using a BD FACSAriaTM Fusion flow cytometer (BD Biosciences).
For flow sorting, only “lymphocyte gate” cells (FSClow/SSClow;
aka “morphological lymphocytes”) where considered; it should
be noted that the so isolated cell population, besides lymphocytes,
is expected to also contain thrombocytes and small monocytes.
For sorting of IgMSP and TN lymphocytes, only the CD4−CD8−

DN population was considered. After all conditions were
adjusted by setting the thresholds for conjugate controls and
the compensation parameters, test sortings were performed for
each of the populations to confirm their purity. The purity of
each sorted lymphocyte subpopulation was at least 99.2%. Data
on flow cytometry were analyzed using FlowJo V10 software
(Tree Star). Sorted-lymphocyte subpopulations were cultivated
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overnight with MM (containing 20% FBS) at 15◦C under a 2.5%
CO2 atmosphere, prior to the next experimental steps.

Stimulation of Trout Leukocytes With
Recombinant Cytokines
Stimulation of Trout Leukocyte Subpopulations and

Western Blot Analysis
CD8+ and CD8− lymphocytes were isolated from trout thymus,
gill, HK, spleen, and intestine while CD8SP, CD4SP, DP, and
DN lymphocytes were isolated from trout thymus, spleen
and intestine, as described above. In each experiment, equal
numbers of lymphocyte subpopulations (1–3 × 105/incubation,
depending on the yields achieved after flow sorting) were
resuspended in 400 µl of supernatants containing recombinant
cytokines (1:1 dilution in MM) from transfected HEK293T
or in 400 µl of purified recombinant proteins diluted in
MM (5, 25, and 125 nM) and incubated for 15min at
15◦C. As negative controls, lymphocyte subpopulations were
incubated with supernatants from mock-transfected HEK293T
cells (1:1 dilution in MM) or protein storage buffer (see
paragraph Purification of recombinant cytokines with anti-
FLAG agarose) diluted with MM. After incubation, lymphocytes
were pelleted at 1,500 × g for 5min at 4◦C, and lysed
with 17 µl of NP40 Cell Lysis Buffer supplied with Protease
Inhibitor Cocktail and Halt Phosphatase Inhibitor Cocktail
(Thermo Fisher Scientific). Then the samples were subjected to
Western blot analysis for detection of phosphorylated STAT5
similar to as described above except for using 8% poly-
acrylamide gels.

Stimulation of Trout Leukocytes and RT-qPCR

Analysis
Trout total splenocytes were freshly isolated as described
above. Samples were used per individual fish in “total
splenocytes” stimulation experiments, but pooled from
multiple clonal fish prior to flow sorting into CD8SP,
CD4SP, IgMSP, and TN lymphocytes. Total splenocytes
were incubated for 4 or 12 h with 400 µl of supernatants
containing recombinant cytokines (1:1 dilution in MM)
from transfected HEK293T cells or with 400 µl of purified
recombinant proteins diluted in MM (5, 25, and 125 nM).
The subpopulations were incubated for 12 h with 400 µl
of purified recombinant proteins diluted in MM (0.2 nM
and 5 nM). For negative controls, total splenocytes and
their subpopulations were mock-treated as described above.
In each experiment, equal numbers of total splenocytes (2
× 105) or lymphocyte subpopulations (1–3 × 105) were
incubated. After incubation at 15◦C, cells were pelleted
as described above, followed by treatment with 350 ul
of Lysis Buffer RA1 (supplied by NucleoSpin RNA kit)
containing 1/100 2-mercaptoethanol.

Total RNA was extracted from the incubated cells using
NucleoSpin RNA kit and aliquots corresponding to 0.5–
1.6 × 105 cells were reverse transcribed into cDNA using
SensiFASTTM cDNA Synthesis Kit (Bioline) according to
the manufacturer’s instruction. The resulting cDNA was
diluted 1:6 with distilled water. Five µl of the diluted

cDNA was used for qPCR detection of expression of IFNγ ,
Perforin, IL-4/13A, IL-4/13B1, IL-4/13B2, and EF1A using primer
sets Trout_IFNγ (1/2)_qPCR, Trout_PFN1_qPCR, Trout_IL-
4/13A_qPCR, Trout_IL-4/13B1_qPCR, Trout_IL-4/13B2_qPCR,
and Trout_EF1A_qPCR (Supplementary File 9B). qPCRs were
performed using SensiFASTTM SYBR Lo-ROX Kit (Bioline) with
Stratagene Mx3000P and MxPro software version 4.10 (Agilent
Technologies). The comparative quantitation mode was chosen
with default settings except for the amplification conditions
(120 s at 95◦C, followed by 40 cycles of 5 s at 95◦C, 11 s at
60◦C and 15 s at 72◦C). As in the other RT-qPCR experiments
performed in this study, each primer set was designed with at
least one primer across an intron or corresponding to different
exons to avoid amplification from genomic DNA, and after
each RT-qPCR amplification, melting curve analysis of PCR
products was performed in order to exclude the presence of
amplified genomic DNA, unspecific products, or primer dimer
synthesis. All PCR reactions were done in duplicate (independent
mixing of same cDNA and same amplification mix into two
wells of the same PCR plate) for technical replication, and non-
template controls were included. Based on the two replicates,
the Ct values were calculated automatically by MxPro software,
and used for analysis. The Ct-variabilities between technical
duplicates were lower than 0.5 in most cases. However, especially
at higher Ct values when the number of target gene transcripts
was low, these variabilities were sometimes above 0.5 (indicated
in Italic in Supplementary File 6). The relative expression levels
in the lymphocytes were normalized to the expression levels
of EF1A using the equation 2−11Ct (115). For the graphs in
Figure 10 and Supplementary File 6A, the EF1A-normalized
gene expression levels were normalized to those of the relevant
control samples (4 or 12 h) in the same experiment which
were set as 1, while such normalization was applied for the
graphs in Figure 11 and Supplementary File 6B by setting each
TN control sample as the standard. This method was chosen
because it focuses on the fold-differences induced within cell
samples, and in the case of Figure 11 also allows an instantaneous
impression of the differences in expression levels between
cell populations.

Stimulation of Rainbow Trout With
Recombinant Cytokines
Stimulation of Rainbow Trout and RT-qPCR Analysis
Forty rainbow trout juveniles of ∼10 grams, ten per cytokine,
were injected intraperitoneally (i.p.) with 50 µl recombinant
cytokine (1µM) in protein storage buffer or with buffer control;
the cytokines were purified IL-2, IL-15-RLI, or IL-15La-RLI that
had been produced in insect cells. At 6 h and 12 h after protein
injection the spleen and head kidney were harvested from five
fish per treatment and stored in RNAlater (Ambion) for RNA
extraction. Total RNA was extracted using NucleoSpin RNA
kit (Macherey-Nagel) and 1 µg RNA was subjected to cDNA
synthesis using QuantiTect Reverse Transcription Kit (Qiagen).
Transcripts of IFNγ , Perforin, IL-4/13A, IL-4/13B1, IL-4/13B2,
and EF1A were analyzed by qPCR using primer sets as listed
in the manuscript table (Supplementary File 9B) and PowerUp
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SYBR Green Master mix (Applied Biosystems) with CFX96 PCR
system (Bio-Rad) and CFX ManagerTM Software (Bio-Rad). The
comparative quantitation mode was chosen with default settings
except for the amplification conditions (120 s at 50◦C, 120 s at
95◦C followed by 40 cycles of 3 s at 95◦C and 30 s at 60◦C). All
reactions were done in duplicate and the mean Ct values were
used for analysis. The relative expression levels in spleen and
head kidney were normalized to the expression levels of EF1A.
Quality controls were similar to as described in the paragraph
“Stimulation of trout leukocytes and RT-qPCR analysis.” For the
statistical evaluation of the qPCR data, one-way ANOVA was
applied to the log-adjusted EF1A-normalized gene expression
levels using IBM SPSS Statistics 25 Software.

Next Generation Sequencing (NGS) and

Quantification of Immune Gene Reads
Total RNA samples derived from spleen from the four groups of
five fish of the above described 6 h treatment panel were used
for NGS analysis. RNA quality from each fish was confirmed
using the RNA 6000 Pico chips by Agilent 2100 Bioanalyzer. Total
RNA samples were pooled per IL-2, IL-15-RLI, IL-15La-RLI, or
buffer control treatment (n = 5 per pool) and polyadenylated
mRNA was purified from 10 µg pooled total RNA using the
Dynabeads mRNADIRECTMicro kit (Thermo Fisher Scientific)
and the addition ERCC ExFold RNA Spike-In mix 1 was used
as the external RNA control. Whole cDNA barcoded libraries
were then generated using the Ion Total RNA-Seq Kit v2
(Thermo Fisher Scientific) and quantified by the KAPA Library
Quantification Kit (Roche) on Ion Torrent platform (Thermo
Fisher Scientific). The final equimolar pools were used for
sequencing by Ion S5XL sequencing system with the Ion 540
OT2 kit (Thermo Fischer Scientific) for the generation of the
necessary datasets, resulting in 20 million 80 bps single end
reads, on average, per sample. The percentages of high quality
reads in the samples generated after stimulation with IL-15-RLI
(85%), IL15-La-RLI (83%), IL-2 (84%) and buffer control (83%)
were determined by Geneious RNA assembler (https://www.
geneious.com) based on comparison with rainbow trout genome
sequence (GenBank assembly accession: GCA_002163495.1).
The number of reads specific for the open reading frames
of immune marker genes of interest were determined by the
method of minimum 99.9% mapping quality without gaps using
Geneious 11.1.5 (https://www.geneious.com), and the results are
in Supplementary File 8.

Statistics
For the statistical evaluation of the qPCR data, the paired
samples t-test was applied to the log-adjusted EF1A-normalized
gene expression levels calculated for biological quadruplicates
using IBM SPSS Statistics 25 Software (54). Calculated p-
values < 0.05 between cytokine-treated and mock-treated
samples of the same cell populations were considered to
be significant.

Sample-Size Estimation and Replicates
For important observations concerning a quantitative issue, we
required confirmation by at least three independent biological

tests, often involving multiple approaches (not necessarily
each approach was performed in triplicate). No outlier data
were excluded. For RT-qPCR and flow cytometry experiments
all data obtained are presented. Most of the Western blot
results, including repeats, are shown, and after the experimental
conditions had been established no Western blots were
excluded for analysis/interpretation although some are not
presented for editorial reasons such as the quality of the image.
The replicate data are shown in the Supplementary Files

and are mentioned at appropriate locations in the
main text.
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