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Abstract. We show that the parametrised topological complexity of Cohen,

Farber and Weinberger gives an invariant of group epimorphisms. We ex-
tend various bounds for the topological complexity of groups to obtain bounds

for the parametrised topological complexity of epimorphisms. Several appli-

cations are given, including an alternative computation of the parametrised
topological complexity of the planar Fadell–Neuwirth fibrations which avoids

calculations involving cup products. We also prove a homotopy invariance re-

sult for parametrised topological complexity of fibrations over different bases.

1. Introduction

The topological complexity TC(X) of a space X is defined to be the Schwarz
genus, or sectional category, of the endpoint fibration π : XI → X × X which
sends a free path to its pair of endpoints. This notion due to Michael Farber [10]
is of potential applicability in the field of robotics, since sections of π correspond
to motion planning algorithms for mechanical systems with X as their space of
configurations.

One potential obstacle to applying TC(X) to robotics problems is that it assumes
that the configuration space is known in advance. In order to address this, Cohen,
Farber and Weinberger [4, 5] have introduced a parametrised version of topological
complexity, which models motion planning problems for which the configuration
space varies within a fixed homotopy type according to some space of parameters.
Briefly, let p : E → B be a surjective fibration with path-connected fibre X.
Letting EIB denote the space of paths in E with image in a single fibre of p, we have
a parametrised endpoint fibration Π : EIB → E ×B E which again sends a path to
its pair of endpoints. Then the parametrised topological complexity of p : E → B,
denoted TC[p : E → B] (or TCB(X) if the role of the space X is to be emphasized),
is defined to be the sectional category of Π. Further details will be given in Section
2 below.

As well as generalizing the topological complexity, the parametrised topologi-
cal complexity has interesting mathematical properties. The papers [4, 5] com-
pute the parametrised topological complexity of the Fadell–Neuwirth fibrations
p : F (Rd,m + n) → F (Rd,m), which model the motion planning problem of n
agents moving in Euclidean space avoiding collisions with each other and with m
obstacles, whose positions are a priori unknown. These calculations show that
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TCB(X) can exceed TC(X) by an arbitrary amount. The paper [14] by Garćıa-
Calcines considers this new invariant from the point of view of fibrewise topology.

Any homotopy invariant of spaces gives an invariant of discrete groups via the
correspondence between groups and homotopy 1-types. Farber [11] posed the prob-
lem of describing TC(π) := TC(K(π, 1)) in terms of other algebraic invariants of the
group π. This problem has stimulated a great deal of research (see [12, 13, 7] for
recent examples) but remains unanswered. By contrast, for the related invariant
Lusternik–Schnirelmann category the corresponding problem has a simple solution
after ground-breaking work of Eilenberg and Ganea [8], Stallings [21] and Swan
[22]: one has cat(π) := cat(K(π, 1)) = cd(π), the cohomological dimension of the
group.

In Section 3 we define the parametrised topological complexity TC[ρ : G↠ Q] of
an epimorphism of discrete groups, and show that it agrees with the Cohen–Farber–
Weinberger definition applied to aspherical fibrations. Although our definition

TC[ρ : G↠ Q] := secat(∆ : G→ G×Q G),

where ∆(g) = (g, g) is the diagonal homomorphism into the fibred product, makes
sense for arbitrary homomorphisms, we restrict our attention to epimorphisms since
these correspond to fibrations of aspherical spaces with path-connected fibre.

Since the parametrised topological complexity of epimorphisms generalises the
topological complexity of groups, we do not expect or seek a purely algebraic de-
scription. We show here however that certain bounds for the topological complexity
of groups given by the author, Lupton and Oprea [16] and the author [15] admit
generalizations to the parametrised setting. These bounds for TC[ρ : G ↠ Q]
depend only on the cohomological dimensions of various auxiliary groups, and do
not require the calculation of cup products. In particular, in Sections 4 and 5
respectively we prove:

Theorem. Let ρ : G ↠ Q be an epimorphism with kernel N . Given subgroups
A,B ≤ G such that gAg−1 ∩B = {1} for all g ∈ N , we have

cd(A×Q B) ≤ TC[ρ : G↠ Q],

where A×Q B = {(a, b) ∈ A×B | ρ(a) = ρ(b)} is the fibred product.

Theorem. Let ρ : G ↠ Q be an epimorphism with kernel N . Let H ◁ G be a
normal subgroup with [H,N ] = 1. Then ∆(H) is normal in G×Q G, and

TC[ρ : G↠ Q] ≤ cd

(
G×Q G
∆(H)

)
.

These bounds are employed in Section 6, together with classical results on duality
groups due to Bieri and Eckmann [2], to give a new computation of the parametrised
topological complexity of the Fadell–Neuwirth fibrations in the planar case which
appears to be more conceptual that the computation in [5] involving cup-lengths.

Our methods can also be used to give an easy example of a fibration for which
TC(X) = 1 and TCB(X) = ∞ (Example 4.3), and to prove that if N is central in G
then TC[ρ : G↠ Q] = cd(N) (Corollary 5.2). We also prove the following homotopy
invariance for parametrised topological complexity (Proposition 2.7), which should
be of independent interest.
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Proposition. Let p : E → B and p′ : E′ → B′ be fibrations. Assume given a
commutative diagram

E
h //

p

��

E′

p′

��
B

h̄ // B′

in which h and h̄ are homotopy equivalences. Then

TC[p : E → B] = TC[p′ : E′ → B′].

The author would like to thank Dan Cohen and Michael Farber for stimulating
conversations.

2. Sectional category and parametrised topological complexity

In this section we recall some material about sectional category and parametrised
topological complexity. We claim no originality, with the possible exception of
Proposition 2.7 which is a mild generalisation of a result in [4].

Recall that a (Hurewicz) fibration is a map having the homotopy lifting property
with respect to all spaces, while a Serre fibration is a map having the homotopy
lifting property with respect to CW-complexes. Schwarz [19] defined the genus
of a fibration p : E → B, denoted genus(p), to be the smallest k such that B
admits a cover by open sets U0, . . . , Uk, each of which admits a local section, i.e.
a map si : Ui → E such that p ◦ si equals the inclusion ji : Ui ↪→ B. This notion
was subsequently generalised to give an invariant of arbitrary maps (see [1] and
references therein). The sectional category of a map p : E → B, denoted secat(p),
is defined to be the smallest k such that B admits a cover by open sets U0, . . . , Uk,
each of which admits a local homotopy section, i.e. a map σi : Ui → E such that
p ◦ σi ≃ ji : Ui ↪→ B.

The following lemma collects some basic facts about the genus and sectional
category. Proofs can be found in [1] or [19], or supplied by the reader.

Lemma 2.1. Let p : E → B be a map.

(a) If p : E → B is a fibration, then secat(p) = genus(p).
(b) If p : E → B is a fibration and q : D → A is the pull-back of p along some

map α : A→ B, then secat(q) ≤ secat(p).
(c) If p′ : E → B is homotopic to p, then secat(p′) = secat(p).
(d) Let h : E′ → E be a homotopy equivalence. Then secat(p ◦ h) = secat(p).
(e) Let α : B → B′ be a homotopy equivalence. Then secat(α ◦ p) = secat(p).

Two fundamental examples of sectional category are the (Lusternik–Schnirelmann)
category and topological complexity. Let Y be a path-connected space with base
point y0. The category of Y may be defined by

cat(Y ) = secat({y0} ↪→ Y ) = secat(p : P0Y → Y ),

where P0Y = {γ : I → Y | γ(0) = y0} is the based path space and p : γ 7→ γ(1) is
the evaluation fibration. The topological complexity of Y may be defined by

TC(Y ) = secat(d : Y → Y × Y ) = secat(π : Y I → Y × Y ),

where d : Y → Y ×Y is the diagonal map, Y I = {γ : I → Y } is the free path space
and π : γ 7→

(
γ(0), γ(1)

)
is the endpoint fibration.
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The following lemma, implicit in [15], can be used to bound the sectional category
of a map by finding a suitable fibering of its codomain.

Lemma 2.2. Let p : E → B be a map. Suppose we have a homotopy commutative
diagram

E

p

��
F

ι //

??

B
q // Y

in which Y is connected and the row is a fibration sequence. Then secat(p) ≤ cat(Y ).

Proof. Let U be an open set in Y such that the inclusion U ↪→ Y factors through
{y0} ↪→ Y up to homotopy. The homotopy lifting property for q implies that the
inclusion q−1(U) ↪→ B factors through ι : F → B, and hence through p : E → B,
up to homotopy. □

Given a map p : E → B, the parametrised endpoint map is defined by

Π : EIB → E ×B E, Π(γ) =
(
γ(0), γ(1)

)
where EIB = {γ : I → E | p(γ(t)) = p(γ(0)) for all t ∈ I} is the space of paths in E
contained in a single fibre of p, and E ×B E := {(e1, e2) ∈ E × E | p(e1) = p(e2)}
is the fibred product.

Previous papers on parametrised topological complexity [4, 5, 14] claim that the
parametrised endpoint map Π : EIB → E ×B E is a Hurewicz fibration whenever
p is a Hurewicz fibration, leaving the verification to the reader. Here we prove a
slightly stronger statement.

Lemma 2.3. Let p : E → B be a Serre fibration. Then the parametrised endpoint
map Π : EIB → E ×B E is a Hurewicz fibration.

Proof. By [20, Theorem 2.7.8], a map is a Hurewicz fibration if and only if it admits
a lifting function. Let

W = {(γ, ω) ∈ EIB × (E ×B E)I |
(
γ(0), γ(1)

)
= ω(0)}.

A lifting function for Π is a map λ : W → (EIB)
I such that Π ◦ λ(γ, ω) = ω. Note

that ω : I → E ×B E can be viewed as a pair of paths ω0, ω1 : I → E such that
pω0(t) = pω1(t) for all t ∈ I. The data of a point (γ, ω) ∈ W sets up a relative
homotopy lifting problem

∂I × I ∪ I × {0}

��

ω∪γ // E

p

��
I × I

H //

H̃

55

B

where H(s, t) = p ◦ ω0(t) = p ◦ ω1(t) for ω = (ω0, ω1) ∈ (E ×B E)I . Since p is a
Serre fibration, it has the relative homotopy lifting property for the pair (I, ∂I),

hence the dotted lift H̃ : I × I → E exists. We set λ(γ, ω)(s)(t) = H̃(s, t). It is
easily verified that λ is a lifting function for Π. □

Definition 2.4 ([4, 5]). Let p : E → B be a fibration. The parametrised topological
complexity of p is defined to be

TC[p : E → B] := secat(Π),



PARAMETRISED TC OF EPIMORPHISMS 5

the sectional category of the parametrised endpoint fibration Π : EIB → E ×B E.

The following lemma describes the behaviour of parametrised topological com-
plexity under taking pull-backs, and is a generalization of [4, (4.3)]; see also [14,
Corollary 15].

Lemma 2.5. Let q : D → A be the pull-back of the fibration p : E → B under a
map α : A→ B. Then

TC[q : D → A] ≤ TC[p : E → B].

Proof. We have D = {(a, e) ∈ A× E | α(a) = p(e)}, and a commuting diagram

D

q

��

α̃ // E

p

��
A

α // B

in which α̃(a, e) = e and q(a, e) = a. Observe that α̃ induces a map D ×A D →
E ×B E. The reader can verify that the pull-back of Π : EIB → E ×B E under
this map is homeomorphic as a fibration to Φ : DI

A → D ×A D, the parametrised
endpoint fibration associated to q. Hence by Lemma 2.1(b),

TC[q : D → A] = secat(Φ) ≤ secat(Π) = TC[p : E → B].

□

We now turn to the homotopy invariance of TC[p : E → B]. Recall that a
fibrewise map from a fibration p : E → B to another fibration p′ : E′ → B is a map
h : E → E′ such that p′(h(e)) = p(e) for all e ∈ E. A fibrewise homotopy is a map
H : E × I → E′ such that p′(H(e, t)) = p(e) for all e ∈ E, t ∈ I, so that for each
t ∈ I the map ht := H(−, t) : E → E′ is a fibrewise map. Then H is a fibrewise
homotopy from h0 to h1. Two fibrations p : E → B and p′ : E′ → B are fibrewise
homotopy equivalent if there are fibrewise maps h : E → E′ and i : E′ → E such
that i ◦ h : E → E is fibrewise homotopic to IdE : E → E and h ◦ i : E′ → E′

is fibrewise homotopic to IdE′ : E′ → E′. It is well known that if fibrewise map
h : E → E′ is a homotopy equivalence, then it is a fibrewise homotopy equivalence.

Proposition 2.6 ([4, Proposition 5.1]). If p : E → B and p′ : E′ → B are fibrewise
homotopy equivalent fibrations, then TC[p : E → B] = TC[p′ : E′ → B].

We will generalise this result somewhat in order to compare fibrations over dif-
ferent bases. Let p : E → B and p′ : E′ → B′ be fibrations. A fibre-preserving map
from p to p′ is a pair of maps h : E → E′ and h̄ : B → B′ such that the following
diagram commutes:

E
h //

p

��

E′

p′

��
B

h̄ // B′.

We will denote such a pair by (h, h̄) : p → p′. It is obvious that fibre-preserving
maps are the morphisms in a category whose objects are the fibrations.
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A fibre-preserving homotopy is a pair of homotopies H : E × I → E′ and H̄ :
B × I → B′ such that the following diagram commutes:

E × I
H //

p×IdI

��

E′

p′

��
B × I

H̄ // B′.

In other words, for each t ∈ I the pair ht := H(−, t) : E → E′ and h̄t := H̄(−, t) :
B → B′ form a fibre-preserving map. Then the pair (H, H̄) is a fibre-preserving
homotopy from (h0, h̄0) : p → p′ to (h1, h̄1) : p → p′. Two fibrations p : E → B
and p′ : E′ → B′ are said to be fibre-preserving homotopy equivalent if there are
fibre-preserving maps (h, h̄) : p→ p′ and (i, ī) : p′ → p such that (i◦h, ī◦ h̄) is fibre-
preserving homotopic to (IdE , IdB) and (h ◦ i, h̄ ◦ ī) is fibre-preserving homotopic
to (IdE′ , IdB′).

Proposition 2.7. Let p : E → B and p′ : E′ → B′ be fibrations. Assume given a
commutative diagram

E
h //

p

��

E′

p′

��
B

h̄ // B′

in which h and h̄ are homotopy equivalences. Then

TC[p : E → B] = TC[p′ : E′ → B′].

Proof. According to the Proposition on page 53 of [17], the pair (h, h̄) is in fact
a fibre-preserving homotopy equivalence. It therefore suffices to show that fibre-
preserving homotopy equivalent fibrations have the same parametrised topological
complexity.

Observe that a fibre-preserving homotopy (H, H̄) from p to p′ induces a fibre-
preserving homotopy

EIB × I
F //

Π×IdI

��

(E′)IB′

Π′

��
(E ×B E)× I

F̄ // E′ ×B′ E′

between parametrised endpoint fibrations. Explicitly, the homotopy F is defined
by

F (γ, t)(s) = H(γ(s), t), γ ∈ EIB , s, t ∈ I

and the homotopy F̄ is defined by

F̄ (e1, e2, t) =
(
H(e1, t), H(e2, t)

)
, (e1, e2) ∈ E ×B E, t ∈ I.

It follows that if p and p′ are fibre-preserving homotopy equivalent, then there is a
fibre-preserving map

EIB
h //

Π

��

(E′)IB′

Π′

��
E ×B E

h̄ // E′ ×B′ E′
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between their parametrised endpoint fibrations such that both h and h̄ are homo-
topy equivalences. Then

TC[p : E → B] = secat(Π) = secat(Π′) = TC[p′ : E′ → B′]

by parts (d) and (e) of Lemma 2.1. □

3. Parametrised TC of group epimorphisms

Recall that the topological complexity of a discrete group π is defined by TC(π) :=
TC(K(π, 1)), where K(π, 1) stands for any Eilenberg–MacLane space for π (a con-
nected space with fundamental group π and trivial higher homotopy groups). Such
a space may be taken to be a CW-complex, which then is unique up to homotopy
equivalence. This follows from the well-known bijection

[K(π, 1),K(π′, 1)]∗
∼= Hom(π, π′)

between pointed homotopy classes of pointed Eilenberg–MacLane CW-complexes
and homomorphisms of groups. Therefore TC(π) is well-defined.

In this section we define the parametrised topological complexity TC[ρ : G↠ Q]
of an epimorphism ρ : G ↠ Q of discrete groups. We first define the sectional
category of group homomorphisms. It will be useful to introduce the following
terminology.

Definition 3.1. We say that a pointed map f : X → Y realizes the group homo-
morphism φ : G→ Q if X is a K(G, 1) space, Y is a K(Q, 1) space, and f induces
φ on fundamental groups.

Lemma 3.2. Any homomorphism φ : G→ Q of discrete groups may be realized by
a pointed map. Furthermore, any two such maps have the same sectional category.

Proof. The first statement is clear, due to the existence of Eilenberg–MacLane
spaces and the bijection

[K(G, 1),K(Q, 1)]∗
∼= Hom(G,Q).

Let f : X → Y and f ′ : X ′ → Y ′ be pointed maps both of which realize
φ : G → Q. Then there are pointed homotopy equivalences h : X → X ′ (realizing
the identity G→ G) and α : Y → Y ′ (realizing the identity Q→ Q) such that the
following diagram commutes up to pointed homotopy:

X
h //

f

��

X ′

f ′

��
Y

α // Y ′

Using parts (c), (d) and (e) of Lemma 2.1 we then have

secat(f) = secat(α ◦ f) = secat(f ′ ◦ h) = secat(f ′).

□

The above lemma allows us to make the following definition (compare [3, §1]
where the focus is on group monomorphisms).
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Definition 3.3. The sectional category of a group homomorphism φ : G → Q is
defined to be

secat(φ) := secat(f)

for any map f which realizes φ.

For example, we have cat(π) := cat(K(π, 1)) = secat(ι : 1 → π) where ι denotes
the inclusion of the identity element, and TC(π) = secat(∆ : π → π × π) where ∆
denotes the diagonal homomorphism.

Given homomorphisms α : A → Q and β : B → Q, we may form their fibred
product

A×Q B = {(a, b) ∈ A×B | α(a) = β(b)}.

It is a subgroup of the direct product A×B.

Definition 3.4. Let φ : G → Q be a group homomorphism. The parametrised
topological complexity of φ is defined by

TC[φ : G→ Q] := secat(∆ : G→ G×Q G),

where ∆(g) = (g, g) is the diagonal homomorphism to the fibred product.

Although the above definition can be made for arbitrary group homomorphisms,
our focus will be on epimorphisms ρ : G ↠ Q, for the following reason. Recall
that a fibration p : E → B is 0-connected if it is surjective and has path-connected
fibres. While any homomorphism can be realised by a surjective fibration (use the
path space construction to convert a realizing map to a fibration), it is precisely
the epimorphisms which can be realised by 0-connected fibrations.

Proposition 3.5. Let p : E → B be a 0-connected fibration which realizes the
epimorphism ρ : G↠ Q. Then

TC[p : E → B] = TC[ρ : G↠ Q].

Proof. By definition TC[p : E → B] = secat(Π : EIB → E ×B E). The map
h : E → EIB which embeds E as the constant paths has as homotopy inverse the
map m : EIB → E which sends a path to its midpoint. Furthermore, the following
diagram commutes, where d : E → E ×B E is the diagonal embedding:

E
h //

d ##

EIB

Π{{
E ×B E

By Lemma 2.1(d), we therefore have TC[p : E → B] = secat(d : E → E×BE). The
proof will be complete once we show that d : E → E ×B E realizes the diagonal
homomorphism ∆ : G→ G×Q G.

By assumption E is a K(G, 1) and B is a K(Q, 1). Let X be the fibre of
p : E → B, which by assumption is path-connected. Note that E ×B E fibres over
E with fibre X, hence is path-connected. We examine the Mayer–Vietoris sequence
associated to the fibre sequence ΩB → E ×B E → E × E (see for instance [18,
Corollary 2.2.3]), in which the map (of pointed sets) π1(E) × π1(E) → π1(B) is
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given by (g, h) 7→ ρ(g) · ρ(h)−1:

· · · πi(E ×B E) πi(E)× πi(E) πi(B)

π2(E ×B E) π2(E)× π2(E) π2(B)

π1(E ×B E) π1(E)× π1(E) π1(B)

π0(E ×B E) π0(E)× π0(E) π0(B)

∂

∂

This confirms that E×BE is aK(G×QG, 1), and identifies the inclusion induced
map π1(E×BE) → π1(E×E) with the subgroup inclusion G×QG ↪→ G×G. From
this it follows easily that d : E → E×BE realizes the diagonal ∆ : G→ G×QG. □

Remark 3.6. By Proposition 3.5, any two 0-connected fibrations p : E → B and
p′ : E′ → B′ which realize ρ : G ↠ Q have the same parametrised topological
complexity. This also follows directly from Proposition 2.7, by an argument similar
to the proof of Lemma 3.2.

Let ρ : G ↠ Q be an epimorphism with kernel N ◁ G. Then the fibre X of
any 0-connected fibration p : E → B which realizes ρ is a K(N, 1) space. We may
therefore introduce the alternative notation TCQ(N) for TC[ρ : G ↠ Q], although
this de-emphasizes the important role played by the extension G.

We end this section with some trivial observations relating the parametrised
topological complexity of epimorphisms with the topological complexity of groups.

Example 3.7. Let ρ : G ↠ 1 be the epimorphism from a group G to the trivial
group. Then TC[ρ : G→ 1] = TC(G).

Lemma 3.8. Let N = ker(ρ : G↠ Q). Then TC(N) ≤ TC[ρ : G↠ Q].

Proof. Since the fibre X of p : E → B is a K(N, 1) space, this is a special case of
[4, (4.4)]. □

4. A lower bound

In this section we establish a lower bound for the parametrised topological com-
plexity of group epimorphisms, which generalizes the lower bound for the topo-
logical complexity of groups due to Grant–Lupton–Oprea [16]. In particular, it
depends only on the cohomological dimension of certain subgroups, and therefore
circumvents cup-product calculations.

Recall that the cohomological dimension of a discrete group π, denoted cd(π), is
the minimal length of a projective resolution of Z by Zπ-modules, or equivalently
the largest k such that Hk(π;M) ̸= 0 for some Zπ-moduleM . Following celebrated
results of Eilenberg–Ganea [8], Stallings [21] and Swan [22], we have cd(π) = cat(π),
where the latter denotes the category of any K(π, 1) space.

Theorem 4.1. Let ρ : G ↠ Q be a group epimorphism with kernel N . Given
subgroups A,B ≤ G such that gAg−1 ∩B = {1} for all g ∈ N , we have

cd(A×Q B) ≤ TC[ρ : G↠ Q].
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Here A×Q B = {(a, b) ∈ A×B | ρ(a) = ρ(b)} is the fibred product of ρ|A : A→ Q
and ρ|B : B → Q.

Proof. The proof follows closely that of [16, Theorem 1.1].
Let A,B ≤ G be subgroups as in the statement, and let p : E → B be a fibration

realizing ρ : G↠ Q. Let Y be a K(A×Q B, 1) space, and let ψ : Y → E ×B E be
a map realizing the inclusion A×Q B ↪→ G×Q G. Form the pull-back

D

q

��

// EIB

Π

��
Y

ψ // E ×B E

and observe that secat(q) ≤ secat(Π) = TC[ρ : G ↠ Q] by Lemma 2.1(b). We will
show that under the given assumptions, cd(A×Q B) = cat(Y ) ≤ secat(q).

Recall that the 1-dimensional category of a space Y , denoted cat1(Y ), is the
smallest k such that Y admits a cover by 1-categorical open sets U0, . . . , Uk. An
open set U ⊆ Y is 1-categorical if every composition L → U ↪→ Y where L is a
CW-complex with dim(L) ≤ 1 is null-homotopic. It is well-known that if Y is a
K(π, 1) space then cat1(Y ) = cat(Y ). We are therefore reduced to showing that
secat(q) ≥ cat1(Y ).

Let U ⊆ Y be an open set such that the inclusion U ↪→ Y factors through
q : D → Y . We must show that U is 1-categorical, which by [16, Lemma 5.3] is
equivalent to showing that every composition ϕ : S1 → U ↪→ Y is null-homotopic.
Applying the functor [S1,−] given by unbased homotopy classes of loops, we have
the following diagram

[S1, D]

q∗

��

// [S1, EIB ]

Π∗

��

m∗ // [S1, E]

d∗xx
[S1, Y ]

ψ∗ // [S1, E ×B E]

Recall that for connected pointed spaces there is a natural bijection between [S1, X]
and the set of conjugacy classes in π1(X,x0). Therefore [ϕ] ∈ [S1, Y ] corresponds to
some conjugacy class [(a, b)] in A×QB. Since [ϕ] is in the image of q∗, by the above
diagram ψ∗[ϕ] is in the image of d∗, which in terms of conjugacy classes implies
that (a, b) is conjugate in G×QG to some element of the diagonal subgroup ∆(G).
It follows that there exists (k, ℓ) ∈ G ×Q G such that kak−1 = ℓbℓ−1. But then
g := ℓ−1k ∈ N conjugates a ∈ A to b ∈ B, which under our assumptions implies
that a = b = 1, and hence that ϕ is null-homotopic. □

Remark 4.2. Theorem 4.1 specializes to [16, Theorem 1.1] in the case of the
trivial epimorphism ρ : G↠ 1. For general epimorphisms, we have more flexibility
in choosing the subgroups A and B (since we only need trivial intersections under
conjugation by elements of the kernel) but the conclusion may be weaker (since
A×Q B ≤ A×B implies cd(A×Q B) ≤ cd(A×B).)

Example 4.3. Let G = Z ⋊ Z/2 be the infinite dihedral group, expressed as the
semi-direct product of the sign representation of Z/2 on Z, and let ρ : G→ Q = Z/2
be the projection. Note that TC(N) = TC(Z) = 1. We can show that TCZ/2(Z) =
∞ using Theorem 4.1, as follows.
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We denote Z/2 = {1, σ} multiplicatively and Z additively, so an arbitrary ele-
ment of G is of the form (n, 1) or (n, σ) for n ∈ Z. Define subgroups

A = {(0, 1), (1, σ)}, B = {(0, 1), (0, σ)}

of G, both isomorphic to Z/2. The calculation

(n, 1)(1, σ)(−n, 1) = (1− 2n, σ) ̸= (0, σ)

verifies that the assumptions of Theorem 4.1 are satisfied for these subgroups, and
clearly A×Q B is isomorphic to Z/2. Hence ∞ = cd(Z/2) ≤ TCZ/2(Z).

This example is realized topologically by the bundle

S1 // S1 ×Z/2 S
∞ // RP∞

associated to the universal principal Z/2-bundle S∞ → RP∞ with fibre S1 ⊂ C
acted on by conjugation.

5. An upper bound

We now turn our attention to upper bounds for TC[ρ : G ↠ Q], and prove a
generalisation of [15, Proposition 3.7]. Recall that ∆ : G → G ×Q G denotes the
diagonal homomorphism.

Theorem 5.1. Let ρ : G↠ Q be a group epimorphism with kernel N . Let H ◁G
be a normal subgroup such that [H,N ] = 1. Then ∆(H) is normal in G×Q G, and

TC[ρ : G↠ Q] ≤ cd

(
G×Q G
∆(H)

)
.

Proof. The verification that ∆(H) is normal in G×Q G is straightforward and left
to the reader. Let W denote the quotient. The diagram of groups

G

∆

��
1 // H

- 

;;

∆|H// G×Q G // W // 1

in which the row is an extension may be realised by a diagram of aspherical spaces

K(G, 1)

f

��
K(H, 1)

i //

77

K(G×Q G, 1)
p // K(W, 1)

in which the row is a fibration sequence. By Definition 3.4 and Lemma 2.2, we
therefore have

TC[ρ : G↠ Q] = secat(f) ≤ cat(K(W, 1)) = cd(W ).

□

Corollary 5.2. If the extension

1 // N // G
ρ // Q // 1

is central, then TC[ρ : G↠ Q] = cd(N).
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Proof. If N is central in G then we may take H = G in Theorem 5.1. One checks
that the map

G×Q G
∆(G)

→ N, [g, h] 7→ gh−1

is a group isomorphism. Therefore TC[ρ : G↠ Q] ≤ cd(N). On the other hand we
have

cd(N) = TC(N) ≤ TC[ρ : G↠ Q],

where the equality follows from the fact that N is abelian and the inequality is
Lemma 3.8. □

6. Fadell–Neuwirth fibrations

Recall that for a topological space X and integer m ≥ 1, the m-th ordered
configuration space of X is the space

F (X,m) := {(x1, . . . , xm) ∈ Xm | i ̸= j =⇒ xi ̸= xj},

topologised as a subspace of the Cartesian power Xm. Fadell and Neuwirth [9]
showed that when X is a manifold and n ≥ 0, the projection maps

p : F (X,m+ n) → F (X,m), (x1, . . . , xm+n) 7→ (x1, . . . , xm)

are locally trivial fibrations, and used this to study the homotopy type of configu-
ration spaces. These so-called Fadell-Neuwirth fibrations are of potential relevance
in robotics, as calculations of their parametrised topological complexity give in-
formation about the motion planning problem for n agents moving in the space
X, avoiding collisions with each other and with m obstacles whose positions may
not be know in advance. For X = Rd the Euclidean space of dimension d, these
calculations were carried out in the papers [4, 5], where it was shown that

TC[p : F (Rd,m+ n) → F (Rd,m)] =

{
2n+m− 1 d ≥ 3 odd,

2n+m− 2 d ≥ 2 even.

The case d even turns out to be significantly more difficult, with the cup-length
calculation in [5] running to several pages. Here we note that for d = 2 the spaces
involved are all aspherical, and so we may apply the methods developed in this
paper to give a shorter proof.

We first recall some facts about duality groups. Recall that a group π is a duality
group of dimension n if there exists a Zπ-module C and an element e ∈ Hn(π;C)
such that cap product with e induces an isomorphism

− ∩ e : Hk(π;A)
≃→ Hn−k(π;A⊗ C)

for all k and all Zπ-modules A. It follows that cd(π) = n.

Lemma 6.1 (Bieri–Eckmann [2]). (1) If N and Q are duality groups of di-
mensions r and s respectively, which fit into an extension of groups

1 // N // π // Q // 1,

then π is a duality group of dimension r + s.
(2) Non-trivial free groups are duality groups of dimension 1.
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Theorem 6.2 ([5]). Let m ≥ 2 and n ≥ 1, and let p : F (C,m+ n) → F (C,m) de-
note the Fadell-Neuwirth fibration with fibre F (Cm, n), where Cm := C\{1, 2, . . . ,m}
is the m-th punctured plane. Then

TC[p : F (C,m+ n) → F (C,m)] = 2n+m− 2.

Proof. Let Pr = π1(F (C, r)) denote the pure braid group on r strands. Then
p : F (C,m+n) → F (C,m) realizes the epimorphism ρ : Pm+n → Pm which deletes
the last n strands. The kernel of ρ is Pn,m := π1(F (Cm, n)), the n-strand braid
group of the m-th punctured plane. All of these groups are iterated semi-direct
products of free groups [6], hence are duality groups of dimension equal to the
number of free factors. In particular, cd(Pr) = r − 1 and cd(Pn,m) = n.

Let A and B be the subgroups of Pm+n arising in the proof of [16, Proposition
3.3]. Namely, A is free abelian of rank m+ n− 1 generated by the braids αj which
pass the j-th strand over and behind the last m + n − j strands and back to its
starting position, for j = 1, 2, . . . ,m+ n− 1; and B is the image of the embedding
Pm+n−1 ↪→ Pm+n as the first m + n − 1 strands. It is shown in [16] using linking
numbers that gAg−1∩B = {1} for all g ∈ Pm+n, so A and B satisfy the assumptions
of Theorem 4.1.

The group B fits in an extension

1 // Pn−1,m
// B

ρ|B // Pm // 1.

Pulling back this extension along the map ρ|A : A→ Pm produces an extension

1 // Pn−1,m
// A×Pm

B // A // 1.

Now, the groups Pn−1,m and A are duality groups, of respective dimensions n− 1
and m+ n− 1. Hence by Theorem 4.1 and Lemma 6.1,

TC[ρ : Pm+n → Pm] ≥ cd(A×Pm B) = (n− 1) + (m+ n− 1) = 2n+m− 2.

Now let Z ≤ Pm+n denote the centre, an infinite cyclic group. By Theorem 5.1
we have

TC[ρ : Pm+n → Pm] ≤ cd

(
Pm+n ×Pm

Pm+n

∆(Z)

)
.

Pulling back the extension

1 // Pn,m // Pm+n
ρ // Pm // 1

by ρ : Pm+n → Pm gives an extension

1 // Pn,m // Pm+n ×Pm
Pm+n

// Pm+n
// 1.

Taking the quotient by Z in each of the latter groups gives rise to an extension

1 // Pn,m // Pm+n ×Pm
Pm+n

∆(Z)
// Pm+n

Z
// 1

in which the kernel and quotient are duality groups of dimensions n and m+ n− 2
respectively (the latter follows from a splitting Pm+n

∼= P 2,m+n−2 ×Z). Hence by
Lemma 6.1 the middle group is a duality group of dimension 2n + m − 2, which
gives the desired upper bound. □
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