Anticholinergic Burden Measures Predict Older People's Physical Function and Quality of Life: A Systematic Review

Objectives: This systematic review (PROSPERO CRD42019115918) compared the evidence behind anticholinergic burden measures and their ability to predict changes in older people's physical function and quality of life.

Design: Eligible cohort or case-control studies were identified systematically using comprehensive search terms and a validated search filter for prognostic studies. Medline (OVID), EMBASE (OVID), CINAHL (EMBSCO) and PsycINFO (OVID) databases were searched. Risk of bias, using Quality in Prognosis Studies tool, and quality of evidence, using GRADE, were assessed.

Setting and Participants: People aged 65 years and older from any clinical setting.

Measures: Any anticholinergic burden measures were accepted (including the anticholinergic domain of the Drug Burden Index). Any global/multi-dimensional measure for physical function and/or quality of life was accepted for outcome.

Results: Thirteen studies reporting associations between anticholinergic burden and physical function (n=10) or quality of life (n=4) were included. Exposure measures included; Anticholinergic Cognitive Burden Scale, Anticholinergic Drug Scale, Anticholinergic Risk Scale, Clinician Rated Anticholinergic Score and the anticholinergic domain of the Drug Burden Index. All studies were rated moderate risk of bias in ≥2 QUIPS categories with five rated high risk in ≥ 1 categories. Seven of ten studies (5,251 of 7,569 participants) reported significant decline in physical function with increased burden. All four studies (2,635 participants) reporting quality of life demonstrated similar association with increased burden. High risk of biases and inadequate data reporting restricted analysis. There was no evidence to support one measure being superior to another.

Conclusions and Implications: The evidence supports association between increased anticholinergic burden and future impairments in physical function and quality of life. No conclusion can be made regarding which ACB measure has the best prognostic value. Well-designed longitudinal studies are required to address this. Clinicians should be aware of patient's...
anticholinergic burden and consider alternative medications where appropriate.
Title: Anticholinergic Burden Measures Predict Older People’s Physical Function and Quality of Life: A Systematic Review

Running Title: Anticholinergic Burden and Older People’s Function and Quality of Life

Authors:

Dr. Carrie Stewart PhD
Ms. Kaisa Yrjana BSc
Ms. Mitrysha Kishor BSc
Dr. Roy L. Soiza MD
Dr. Martin Taylor-Rowan PhD
Dr. Terence J Quinn MD
Prof. Yoon K Loke MD
Prof. Phyo Kyaw Myint MD

Affiliations:

a Ageing Clinical and Experimental Research (ACER) Group, Institute of Applied Health Sciences, University of Aberdeen, U.K.
b Aberdeen Royal Infirmary, NHS Grampian, Aberdeen, Scotland, UK
c Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K.
d Norwich Medical School, University of East Anglia, U.K.

corresponding author: Dr. Carrie Stewart carrie.stewart@abdn.ac.uk carrie.stewart1@outlook.com

Rm 1.128, Polwarth Building, University of Aberdeen, Foresterhill Health Campus, Aberdeen, AB25 2ZD.

Second corresponding author: Prof. Phyo Kyaw Myint phyo.myint@abdn.ac.uk

Keywords: Anticholinergics; adverse outcomes; prognostic study; older adults; measurement scales

Funding: This work was supported by The Dunhill Medical Trust [grant number RPGF1806/66].

Word count: Text: 297

No. References: 5

No. of Tables/ Figures: 5
Brief Summary: Our systematic review demonstrated that anticholinergic burden was associated with impairments of physical function and quality of life, but no anticholinergic burden measure was superior to another.

Acknowledgements: Our funder (Dunhill Medical Trust) had no role in the design, methods, data collection, analysis or preparation of this manuscript.
Objectives: This systematic review (PROSPERO CRD42019115918) compared the evidence behind anticholinergic burden measures and their ability to predict changes in older people’s physical function and quality of life.

Design: Eligible cohort or case-control studies were identified systematically using comprehensive search terms and a validated search filter for prognostic studies. Medline (OVID), EMBASE (OVID), CINAHL (EMBSCO) and PsycINFO (OVID) databases were searched. Risk of bias, using Quality in Prognosis Studies tool, and quality of evidence, using GRADE, were assessed.

Setting and Participants: People aged 65 years and older from any clinical setting.

Measures: Any anticholinergic burden measures were accepted (including the anticholinergic domain of the Drug Burden Index). Any global/ multi-dimensional measure for physical function and/ or quality of life was accepted for outcome.
Results: Thirteen studies reporting associations between anticholinergic burden and physical function (n=10) or quality of life (n=4) were included. Exposure measures included; Anticholinergic Cognitive Burden Scale, Anticholinergic Drug Scale, Anticholinergic Risk Scale, Clinician Rated Anticholinergic Score and the anticholinergic domain of the Drug Burden Index. All studies were rated moderate risk of bias in ≥2 QUIPS categories with five rated high risk in ≥ 1 categories. Seven of ten studies (5,251 of 7,569 participants) reported significant decline in physical function with increased burden. All four studies (2,635 participants) reporting quality of life demonstrated similar association with increased burden. High risk of biases and inadequate data reporting restricted analysis. There was no evidence to support one measure being superior to another.

Conclusions and Implications:

The evidence supports association between increased anticholinergic burden and future impairments in physical function and quality of life. No conclusion can be made regarding which ACB measure has the best prognostic value. Well-designed longitudinal studies are required to address this. Clinicians should be aware of patient’s anticholinergic burden and consider alternative medications where appropriate.
Introduction

Physical function and quality of life are two important health outcomes for older people.\(^1\) Physical function focuses upon an individual’s activities and participation, particularly in relation to what would be considered normal general daily tasks, self-care activities, and participation in community and social interactions.\(^2\) Quality of life overlaps this, defined as “a broad ranging concept affected in a complex way by the person’s physical health, psychological state, personal beliefs, social relationships and their relationship to salient features of their environment”.\(^3\) Quality of life is concerned more with the impact of activity and participation limitations upon well-being.\(^4\) Both outcomes are considered key research priorities by both older people and health professionals.\(^1\)

Understanding what influences these outcomes is important; factors which are modifiable can be targeted to improve older people’s physical function and quality of life. One potentially important factor is anticholinergic burden (ACB)\(^5\) the accumulation of anticholinergic effects from one or more anticholinergic medications.\(^7\) Medications with anticholinergic properties are prescribed for a range of common problems in older age, including urinary incontinence, depression and gastrointestinal complaints.\(^8\) Side-effects include confusion, constipation, delirium, dizziness, drowsiness and dry mouth.\(^8\) Studies estimate up to 50% of community dwelling older adults use one or more anticholinergic medications.\(^10\) However, in addition to being the greatest consumers of anticholinergic medications, older people are more susceptible to side effects and adverse outcomes.\(^8\) To date, while a number of reviews in this area have included older people, few reviews have specifically restricted inclusion and
There is an urgent need to understand anticholinergic use and its consequences within the older adult population. Several factors presently limit advancing knowledge in this area, not least study design and choice of ACB measure. Our previous (unpublished) research identified fourteen ACB measures reported in the literature. The variation in ACB measures makes interpretation challenging; the ACB measures differ substantially. The number of medications assessed in each scale varies from 27 in the Anticholinergic Burden Classification, to 117 in the Anticholinergic Drug Scale. The potency score for individual medications also varies between scales. For example, Nortriptyline is rated as having high anticholinergic activity by Boustani et al., (2008) in the Anticholinergic Cognitive Burden Scale but moderate by Rudolph et al., (2008) in the Anticholinergic Risk Scale. As yet no evidence provides clear rationale to support use of one measure above another. Additionally, many reviews have included cross-sectional study designs, restricting our understanding of the temporal relationship between ACB and future outcomes. There is a need to explore the ability of individual ACB measures to predict these outcomes and identify if one ACB measure performs better than another. Understanding the prognostic utility of ACB measures will enhance future outcome reporting for trials seeking to reduce ACB.

This systematic review aims to:

- describe the association of individual ACB measures with physical function and quality of life, and
compare the prognostic utility of ACB measures.

Methods

This PROSPERO registered systematic review (CRD42019115918, available: http://www.crd.york.ac.uk/PROSPERO) was conducted using the Cochrane Prognostic Review Group Framework for Prognostic Reviews (https://methods.cochrane.org/prognosis/our-publications) and reported in accordance with Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) (see supplementary file 1 for PRISMA checklist).

Literature search strategy

The search strategy was developed following extensive scoping searches to identify appropriate MeSH and other controlled vocabulary for ACB and ACB measures. We employed a validated search filter for the identification of prognostic studies. The strategy was modified to suit each database searched (MEDLINE (Ovid), EMBASE (Ovid), CINAHL (EBSCO) and PsycINFO (Ovid)). Searches were from 1st January 2006 to 4th March 2020. The 2006 inception was chosen as the time when ACB was first conceptualised and studied. The full strategy is reported in our supplementary file 1.

Inclusion criteria

The following criteria were applied to identify appropriate studies:
• Report a prospective or retrospective observational study (longitudinal cohort or case-control)

• Involve adults aged ≥65 years (or mean age ≥ 65 years)

• Assess ACB exposure using any ACB measure (to include anticholinergic (Ach) domain of the Drug Burden Index (DBI))

• Any length of follow-up period

• Report any global/multi-dimensional measure of physical function and/or quality of life as an outcome

Exclusion criteria

The following exclusion criteria were applied:

• Studies restricted to measuring classes of or specific anticholinergic medications (e.g. psychotropics)

• Measure of medications not specifically directed at anticholinergic drugs (e.g. Beers criteria)

Study selection process

Searches were conducted on the 16th November 2018, then updated on 4th March 2020 and identified studies transferred to Covidence systematic review software ©2019 (Veritas Health Innovation Ltd., www.covidence.org). After duplicates were removed, 13,394 studies remained. These were then screened by title and abstract by two independent reviewers (shared between CS, KY, MK). Both primary reviewers had to agree upon exclusion and, where
this was not the case, a third independent reviewer made the final decision (TQ). The full text of remaining studies (n=124) were screened by two independent reviewers (shared between CS, KY, MK). Again, a third independent reviewer resolved any disagreements (TQ). Exclusion reasons are reported in the identified PRISMA flow chart (Supplementary file). Reference lists of included studies were searched, and citations via PubMed reviewed, to check for studies our search had omitted. Reference lists and citations of recent seminal articles13,18 were also searched. No additional studies for inclusion were identified. Thirteen articles remained which reported physical function or quality of life as an outcome.

Data collection and extraction

A data extraction template was developed in accordance with guidance by the Cochrane Prognostic Review Group framework (https://methods.cochrane.org/prognosis/our-publications).16 This included study characteristics (e.g. year of publication, country, study setting), measures assessed, timing and methods of assessments, statistical plan, confounders/ adjustments and results. Two reviewers (shared between CS, KY, MK) independently extracted data and a third reviewer arbitrated any disagreements (TQ). Data were then transferred to a Microsoft Excel 2016 (https://products.office.com/en-gb/excel) sheet and imported to Comprehensive Meta-Analysis v3.3.070 (https://www.meta-analysis.com/) for analysis.

Risk of bias
Risk of bias for each included study was assessed using the Quality in Prognosis Studies tool, developed by the Cochrane Prognosis Methods Group (QUIPS, available: https://methods.cochrane.org/sites/methods.cochrane.org.prognosis/files/public/uploads/QUIPS20tool.pdf). Risk of bias is assessed across six domains: study participation, attrition, prognostic measurement, outcome measurement, study confounding and statistical analysis. As recommended, we took the QUIPS anchoring statement and modified the wording to suit our review question. We agreed to accept any baseline measure of ACB and for statistical analysis we agreed within the research team a minimum level of adjustment (set of confounders) that would constitute high quality (discussed further below). Assessments were conducted by those who completed data extraction (CS, KY, MK) and any disagreements arbitrated by a third reviewer (TQ). Publication bias was planned to be assessed by way of funnel plot.

Analysis

All included studies underwent narrative analysis following the guidance provided by the European Social Research Council. Findings were assessed qualitatively considering clinical heterogeneity and the risk of biases. Patterns of associations across the studies were also explored and described. Association data extracted included odds ratios, risk ratios, their respective confidence intervals, β values, standard error and p values, where reported. Baseline and follow-up scores for ACB and relevant outcome were recorded if reported. Pooled analysis was planned with summary statistics where possible for both adjusted and unadjusted data.
Which factors and what constitutes minimum adjustment was determined by consensus, using a Delphi approach involving the senior authors (CS, RLS, YKL, PKM). It was agreed after one round that minimum adjustment would be age and sex and ≥1 co-morbidities (or a global measure of the number of co-morbidities). Where possible forest plots and meta-analyses using random effects modelling techniques were planned to graphically and statistically demonstrate the body of evidence. Results were analysed according to our hierarchy of research questions:

- Prognostic utility of individual ACB measures for each outcome of interest (all measures for either physical function or quality of life combined)
- Comparison of prognostic utilities of ACB measures for each outcome of interest (all measures for either physical function or quality of life combined)

Quality assessment

The GRADE assessment tool was used to determine the quality of the body of evidence for each scale and outcome. The GRADE approach assesses the evidence across all studies analysed for a given outcome, rather than assessing the evidence from each study individually.\(^{21}\) The GRADE framework allows the quality of the evidence to be judged across criteria known to limit the quality of evidence.\(^{21}\) Guidance for applying GRADE to prognostic studies was taken from Huguet et al. (2013).\(^{22}\) Quality was assessed across seven criteria; study limitations, inconsistency, indirectness, imprecision, publication bias, effect size and dose-effect. Further details regarding these criteria can be found on the GRADE website [http://www.gradeworkinggroup.org].
Results

Of the 13 studies, 23-35, ten reported associations between ACB and physical function 23,24,26,27, 29-34 and four reported associations with quality of life 23,25,28,35. One study 23 is reported twice as it reports both outcomes. Five measures for ACB exposure were included; Anticholinergic Cognitive Burden Scale, Anticholinergic Drug Scale (modified Clinician Rated Anticholinergic Score), Anticholinergic Risk Scale, Clinician Rated Anticholinergic Score, and the anticholinergic domain of the Drug Burden Index. Each scale was developed within the United States of America. The Anticholinergic Cognitive Burden Score assesses 88 medications considered by expert opinion to have anticholinergic properties which have significant impact upon cognition. 24 The Anticholinergic Drug Scale assesses 117 medications which are scored based on each medications serum anticholinergic activity as published in the existing literature. 13,35 The Anticholinergic Drug Scale was originally known as the modified Clinician Rated Anticholinergic Score. 13 The Anticholinergic Risk Scale assesses 49 medications considered to have anticholinergic properties which have significant impact on both cognitive and physical function. 24 The Clinician Rated Anticholinergic Score assess 60 medications, identified from several ACB scales, considered strongly implicated in the development of delirium. 13,26 The anticholinergic domain of the Drug Burden Index is somewhat different from other ACB measures in that it considers dose and duration of use of individual anticholinergic medications. 28 It was also developed based upon existing literature and expert opinion. 28

Physical function

Descriptive details for each study are presented in table 1. In total 7,569 older people participated across the ten studies, with mean (+/-SD) ages ranging from 71.9 (12.0) years 23
to 86.1 (6.8) years. Three studies were conducted in Italy, three in the USA, and one each from Australia, Israel, Spain and the U.K.

Table 2 Characteristics of studies reporting association between ACB and physical function (n=10) and quality of life (n=4)

Table 2

Risk of bias for each study (n=10) is presented in Figure 1. Of the ten studies, four papers were considered high risk of bias ≥1 QUIPS categories. High risk of bias arose most commonly from issues around participation, including poor descriptions of sample group, inadequate description of those excluded or little information regarding participation rate. Moderate risks of bias were common throughout all studies; attrition (the number, reasons for or exploration of outcome factors in those lost) was rarely addressed. A funnel plot for assessing publication bias was not possible due to variation in statistical effect sizes presented and too few studies.

Fig. 1. QUIPS Risk of bias assessment of studies reporting association between ACB and physical function (n=10) and quality of life (n=4)

Anticholinergic Cognitive Burden Scale (ACBS) and physical function

Six studies, with sample sizes ranging from n=99 to n=1429, explored the relationship between baseline ACB and future physical function using the ACBS (See table 2). Three studies
reported significant associations between increased ACB and impaired physical function24,29,31 with little difference between un-adjusted and adjusted results. Brombo 201824 reported the strongest association between increased ACBS score and a decline in Activities of Daily Living scores (2.77, 95% CI 1.39,5.54). Inconsistencies between studies regarding statistical analysis and data presented limited further analysis. For example, as shown in table 2 the six studies utilised four different physical function outcome measures and varied in comparison groups (e.g. ACBS=0 v ACBS ≥ 1 or ACBS≤ 1 v. ACBS ≥ 2).

Table 2 Summary of results for studies reporting impact of ACB upon physical function (n=10)

<table>
<thead>
<tr>
<th>Anticholinergic Risk Scale (ARS) and physical function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four studies with sample sizes ranging from n=10530 to n=149032 explored relationships between ACB and physical function using the ARS (table 2). Studies varied in statistical analysis and findings; two of four studies reported significant association between baseline ARS and future functional decline.30,32 Notably, Brombo 201824, in contrast to their findings using the ACBS, failed to find a positive association between function and ACB using the ARS measure (OR 1.49, 95% CI 0.60, 3.70).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinician Rated Anticholinergic Score (CRAS) & modified Clinician Rated Anticholinergic Score (mCRAS) and physical function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two studies explored relationships between ACB and physical function using the CRAS or mCRAS.23,26 Sample sizes ranged from n=46123 to n=54426. Agar (2009)23 reported an OR 0.85</td>
</tr>
</tbody>
</table>
(95% CI 0.81, 0.90) between the baseline CRAS of older palliative care patients and a decrease in Australian-modified Karnofsky Performance Status (AKPS) category; those with higher ACB were less likely to be classed as independent at follow-up. Han (2008)26 reported an effect estimate of 0.10 (95% CI 0.04, 0.17) suggesting for every unit increase in mCRAS score there is a 10% reduction in IADL (i.e. lower independence).

Comparison of prognostic ability of ACB measures to predict future physical function

Only two studies directly compared >1 ACB measures in the same population; Brombo (2018)24 and Pasina (2013)34 both compared the ACBS and ARS abilities to predict future physical function. Brombo (2018)24 reported associations with the ACBS but not ARS, while Pasina (2013)34 failed to find a significant relationship with either the ACBS or ARS.

Quality of Life outcome studies

In total 2,635 older people participated across the four studies, with mean (SD) ages ranging from 71.0 (12.0) years23 to 78.6 (6.7) years28. Two studies were conducted in the U.S.A.28,35 and one each from Australia23 and Canada.25 Further details of each study are presented in table 1.

Risk of bias for each study (n=4) is presented in Fig. 1. Of the four studies, two papers were considered high risk of bias in ≥1 QUIPS categories.23,35 High bias risks arose from a lack of reporting of, or adjustment for, confounders and unclear analysis plans.23,35 Moderate risks of bias were common throughout; Participation rates were rarely reported, the number,
reasons for or exploration of those lost to follow up was rarely addressed, along with non-reporting of missing data. A funnel plot for assessing publication bias was not possible due to variation in statistical effect sizes presented and too few studies.

ACBS and quality of life

Two studies, with sample sizes ranging from n=426 to n=1793 explored the relationship between baseline ACB and quality of life using the ACBS. Table 3 summarises results. Cossette (2017) identified a significant association between baseline ACB and the physical domain of the SF36 ($\beta = -0.50$ (95% CI -0.31, -0.68) $p<.001$)) but not the mental domain ($\beta = 0.19$ (95% CI 0.01, 0.37) $p=ns$). Conversely, using the EQ5D, Ie (2017) did not identify any association with ACBS score over 12 months ($\beta = 0.006$ (95% CI -0.01 to 0.02) $p=ns$)). Cossette (2017) do not present results combining the domains of the SF36 making it difficult to compare the two sets of results.

Table 3 Summary of results for included studies reporting impact of ACB upon quality of life

(n=4)

Anticholinergic Drug Scale (ADS) and quality of life

Two studies with sample sizes ranging from n=112 to n=1793 explored relationships between ACB and physical function using the ADS (shown in table 3). Both studies demonstrated moderate significant associations between increased ACB measured by the ADS and the physical domain of the SF36 ($\beta = -0.30$ (95% CI -0.10, -.51) $p<.01$) and SF12
-7.48 (95% CI -12.57, -2.39) p<.01)35 respectively. Neither study detected association between the ADS and the mental domains of the SF36 (β –0.07 (95% CI –0.28, 0.13) p=ns) or SF12 (Mean between group difference in SF12 scores –2.27 (95% CI -7.81, 3.27) p=0.43)25,35.

ARS and quality of life

Only one study explored relationships between ACB and quality of life using the ARS.25 Results are detailed in table 3, but again a significant association with the physical, but not the mental, domains of the SF36 were identified.

Drug Burden Index- Anticholinergic sub scale (DBI-Ach) and quality of life

Only one study explored the relationship between DBI-ACh and quality of life28 which demonstrated a small but significant relationship with reduced quality of life measured by the EQ5D (table 3).28

Modified Clinician Rated Anticholinergic Score (mCRAS) and quality of life

Only one study explored the relationship between mCRAS and quality of life23 which demonstrated significant association with the McGill Quality of Life score (table 3). Those with higher ACB scores reported poorer quality of life at follow-up.23

Comparison of prognostic ability of ACB measures to predict future quality of life
Only two studies directly compared different ACB measures in the same population sample; Cossette (2017)\(^{25}\) compared three measures (ACBS, ADS ARS), while Ie (2016)\(^{28}\) compared the ACBS and DBI-ACH, to predict quality of life. The ACBS demonstrated the strongest associations in comparison to the ADS and ARS.\(^{25}\) Ie (2016) demonstrated a stronger relationship using the DBI-ACH than the ACBS, however associations were very small (\(\beta - 0.095, p<.05\)).\(^{28}\)

GRADE Assessment

All GRADE assessments conducted for each ACB scale and outcome combination resulted in an assessment of ‘Very Low’, meaning that we have little confidence in the results and further studies will likely change the results. Quality was commonly downgraded due to serious concerns regarding study biases, inconsistency in results, indirectness, potential for publication bias and small effect sizes (see supplementary file 1 for detailed GRADE assessments).

Discussion

This systematic review included 13 studies reporting the prognostic value of one or more ACB measures in relation to physical function or quality of life in older people. Seven out of ten studies reported a significant association between increased ACB and future impaired physical function, with the remaining studies showing a non-significant trend towards this. However, statistical and clinical heterogeneity prevents meta-analysis and our ability to recommend one measure above another. In relation to quality of life, four studies reported
the longitudinal relationships between ACB and quality of life amongst older people. Each study reported at least one significant association between ACB and quality of life, but again limited evidence prevents recommending one measure above another. At present, the evidence behind the ability of individual ACB measures to predict future physical function and quality of life is poor and does not permit informed decisions regarding which measure is best to assess ACB. We conclude that, in relation to older people, ACB shows a general trend towards impaired physical function and reduced quality of life but the question as to which ACB measure performs best remains unanswered.

In the review by Fox et al., (2014) studies which failed to associate ACB and physical function often focused upon single domain aspects of function e.g. walking ability. Our study excluded such outcomes to focus upon global measures that are more comparable between populations. However, it has been suggested that specific domains of physical function such as gait may play important mediating roles between ACB and other adverse outcomes such as falls. Research focusing upon the temporal relationship between ACB and global physical function, specific physical abilities and how these relate to other outcomes are required to advance our understanding of the complexities of this relationship.

Our findings support a general trend for increased ACB being associated with a reduction in quality of life; however, the evidence is limited by few studies and low study quality. The divergence in results between domains of quality of life, demonstrating greatest associations with the physical domain of quality of life than the mental domain, is not unique to ACB. Similar results were recently published in relation to associations between multi-morbidity...
and quality of life where strong associations with physical, but not mental domains were also
found.37 Exploration of older peoples perspectives towards ACB and its impact upon quality
of life is necessary to further understand what aspects, if any, ACB is perceived to impact
upon, which may help explain this finding.

The number of, and variations between ACB measures, has been documented previously.13,38 Many were developed to target specific adverse outcomes, most commonly cognitive
impairment and dementia.13,38 These may nevertheless be associated with the outcomes
assessed in this review because cognitive impairment is associated with poorer physical
function39 and quality of life,40 and because anticholinergics are well known to have many
other adverse effects beyond cognitive impairment. Reliance upon expert rated
anticholinergic potency is troublesome due to divergent views amongst clinicians. 13,38
Conversely attempts to rate anticholinergic potency objectively is not without its limitations,
not least discordance between measurable biological markers and symptoms of
anticholinergic properties.13,38 Despite our intentions this present review cannot answer the
question as to which ACB measure may be most suitable for predicting specific outcomes. The
small number of studies, diverse range of outcome measures, and substantial differences in
study characteristics means determining one ACB measure as being a better predictor of
future physical function or quality of life is not possible. To improve prognostic research
future research should be prospective longitudinal or case-control in design and sufficiently
large, with sample size calculations appropriate for the outcome of interest and adjust for
important confounding variables.
The strengths of this systematic review include its novelty in both focusing upon comparing ACB measures and being restricted to older people. Other strengths include its comprehensive search strategy using a validated search filter to identify relevant studies, reference list checks of all included studies and any seminal studies not included to ensure no eligible studies were omitted, and our decision to focus on longitudinal and case-control studies more suited to understanding adverse outcomes. However, this review also has some limitations. We did not include grey literature; while this can help avoid contaminating results with low quality non-peer reviewed evidence, we cannot say with certainty that its exclusion did not result in the omission of insightful and relevant papers. Finally, the small number of studies identified meant it was not possible to adequately assess for publication bias so we have to assume there is a possibility of this.

Conclusions and Implications

This systematic review identified 13 studies reporting the prognostic value of one or more ACB measures in relation to physical function or quality of life. The majority of studies show at least a general trend towards impaired function and reduced quality of life associated with increased ACB. At present the evidence behind individual ACB measures’ ability to predict physical function and quality of life amongst older adults is poor and does not permit informed decisions regarding which is the best measure to use. Well-designed longitudinal studies are required to address this. However, the general consistency in our findings, alongside the wider body of evidence, suggests clinicians should continue to be aware of individual patients’ anticholinergic burden and consider alternatives to anticholinergic medications where appropriate.
Funding: This work was supported by The Dunhill Medical Trust [grant number RPGF1806/66].

Conflicts of interest: The authors confirm there are no conflicts of interest.

Supplementary file 1 PRISMA checklist, search strategy and GRADE assessments

References

7 Kersten H & Wyller TB. Anticholinergic drug burden in older people's brain - how well is it measured?. BASIC CLIN PHARMACOL 2014;114:151-159.

11 Merchant RA, Li B, Yap KB & Ng TP. Use of drugs with anticholinegic effects and cognitive impairment in community-living older persons. AGE AGEING 2008;38:105-108.

Pasina L, Djade CD, Lucca U, et al. Association of anticholinergic burden with
cognitive and functional status in a cohort of hospitalized elderly: comparison of the
anticholinergic cognitive burden scale and anticholinergic risk scale: results from the
REPOSI study. DRUGS AGING 2013;30:103-112.

Sura SD, Carnahan RM, Chen H & Aparasu RR. Anticholinergic drugs and health-

Zia A, Kamaruzzaman S, Myint PK & Tan MP. Anticholinergic burden is associated
with recurrent and injurious falls in older individuals. MATURITAS 2016;84:32-37.

Makovski TT, Schmitz S, Zeegers MP et al. 2019. Multimorbidity and quality of life:
systematic literature review and meta-analysis. AGE RES REV 2019;53:100903

Villalba-Moreno AM, Alfaro-Lara ER, Pérez-Guerrero MC et al. Systematic review on
the use of anticholinergic scales in poly pathological patients. ARCH GERONTOL GERIAT

Tolea MI, Morris JC, Galvin JE. Longitudinal associations between physical and
cognitive performance among community-dwelling older adults. PLOS ONE
2015;10:e0122878

Stites SD, Harkins K, Rubright JD, Karlawish J. Relationships between cognitive
complaints and quality of life in older adults with mild cognitive impairment, mild
Alzheimer disease dementia, and normal cognition. ALZHEIMER DIS ASSOC DISORD 2018;
32:276-283
<table>
<thead>
<tr>
<th>Study (Design)</th>
<th>Design</th>
<th>n</th>
<th>Age Years (Mean, SD)</th>
<th>Sex Male (n, %)</th>
<th>Country Setting</th>
<th>Follow-up duration</th>
<th>ACB Measure</th>
<th>Function Measure</th>
<th>QoL Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agar 2009²³</td>
<td>Prospective</td>
<td>461*</td>
<td>71.9 (12.0)</td>
<td>232 (50.0)</td>
<td>Australia</td>
<td>Palliative care</td>
<td>Death (mean 107 days)</td>
<td>CRAS</td>
<td>AKPS</td>
</tr>
<tr>
<td>Brombo 2018²⁴</td>
<td>Retrospective</td>
<td>1123</td>
<td>81.0 (7.4)</td>
<td>494 (44.0)</td>
<td>Italy</td>
<td>Acute care (hospital)</td>
<td>1 year</td>
<td>ARS & ACBS</td>
<td>ADL (Katz)</td>
</tr>
<tr>
<td>Cossette 2017²⁵</td>
<td>Prospective</td>
<td>1793</td>
<td>74.4 (4.2)</td>
<td>853 (48)</td>
<td>Canada</td>
<td>Community</td>
<td>36 months</td>
<td>ACBS, ADS & ARS</td>
<td>SF36</td>
</tr>
<tr>
<td>Han 2008²⁶</td>
<td>Prospective</td>
<td>544</td>
<td>74.4 (5.2)</td>
<td>544 (100.0)</td>
<td>USA</td>
<td>Primary care clinic</td>
<td>1 year</td>
<td>mCRAS</td>
<td>IADL(OARS)</td>
</tr>
<tr>
<td>Hershkovitz 2018²⁷</td>
<td>Retrospective</td>
<td>869</td>
<td>83.4 (6.9)†</td>
<td>41 (20.2)</td>
<td>Israel</td>
<td>Geriatric rehabilitation centre</td>
<td>Discharge (mean NR)</td>
<td>ACBS</td>
<td>FIM</td>
</tr>
<tr>
<td>Ie 2017²⁸</td>
<td>Retrospective</td>
<td>426</td>
<td>78.6 (6.72)</td>
<td>48 (11.3)</td>
<td>USA</td>
<td>Care homes & Community</td>
<td>12 months</td>
<td>ACBS & DBI-Ach</td>
<td>EQ-5D</td>
</tr>
<tr>
<td>Kolanowski 2015²⁹</td>
<td>Prospective</td>
<td>99</td>
<td>86.1 (6.8)</td>
<td>22 (32.0)</td>
<td>USA</td>
<td>Post-acute care (hospital)</td>
<td>Discharge (mean NR)</td>
<td>ACBS</td>
<td>BI</td>
</tr>
<tr>
<td>Study (Design)</td>
<td>Design</td>
<td>n</td>
<td>Age Years (Mean, SD)</td>
<td>Sex Male (n, %)</td>
<td>Country</td>
<td>Setting</td>
<td>Follow-up duration</td>
<td>ACB Measure</td>
<td>Function Measure</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>-----</td>
<td>----------------------</td>
<td>------------------</td>
<td>---------</td>
<td>--</td>
<td>-------------------</td>
<td>-------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Koshoedo 2012²⁰</td>
<td>Prospective</td>
<td>105</td>
<td>79.0 (7.0)</td>
<td>29 (25.0)</td>
<td>UK</td>
<td>Orthopaedic rehabilitation unit</td>
<td>Discharge (mean 15 days)</td>
<td>ARS</td>
<td>BI</td>
</tr>
<tr>
<td>Koyama 2014³¹</td>
<td>Prospective</td>
<td>1429</td>
<td>83.0 (3.1)</td>
<td>0 (0.0)</td>
<td>USA</td>
<td>Community</td>
<td>5 years</td>
<td>ACBS</td>
<td>IADL (NS)</td>
</tr>
<tr>
<td>Landi 2014³²</td>
<td>Prospective</td>
<td>1490</td>
<td>83.6 (65.1-106.4) ‡</td>
<td>425 (28.5)</td>
<td>Italy</td>
<td>Nursing home</td>
<td>1 year</td>
<td>ARS</td>
<td>ADL (MDS-HC)</td>
</tr>
<tr>
<td>Lopez-Matons 2018²³</td>
<td>Retrospective</td>
<td>126</td>
<td>80.0 (6.7)</td>
<td>28 (27.8)</td>
<td>Spain</td>
<td>Geriatric clinic (hospital)</td>
<td>1 year</td>
<td>ACBS</td>
<td>BI</td>
</tr>
<tr>
<td>Pasina 2013³⁴</td>
<td>Retrospective</td>
<td>1323</td>
<td>79.9 (7.3)</td>
<td>51 (49.7)</td>
<td>Italy</td>
<td>internal medicine and geriatric wards (hospital)</td>
<td>3 months</td>
<td>ARS & ACBS</td>
<td>BI</td>
</tr>
<tr>
<td>Sura 2016³⁵</td>
<td>Retrospective</td>
<td>112</td>
<td>Aged 65.00–79.0 (n=59)</td>
<td>48 (42.9)</td>
<td>USA</td>
<td>Community</td>
<td>24 months</td>
<td>ADS</td>
<td>-</td>
</tr>
</tbody>
</table>

Index Anticholinergic sub-scale, EQ-5D: EuroQol 5D, FIM: Functional Independence Measure, IADL: Instrumental Activities of Daily Living, mCRAS: modified Clinician Rated Anticholinergic Score, MDS-HC: Minimum Data Set for Home Care, MQoL: MacGill Quality of Life Score, NR: Not Reported, NS: Not Specified, OARS: Older American Resources and Services, QoL: Quality of Life, SF-12: Short Form Health Survey 12, SF-36: Short Form Health Survey 36.

*461 participants recruited but Quality of Life analysis conducted with 304 participants who died during study follow-up; †Mean age for ACB users within sample; ‡ Median and IQR presented instead of mean (SD)
Fig. 1. QUIPS Risk of bias assessment of studies reporting association between ACB and physical function (n=10) and quality of life (n=4)

Physical Function

<table>
<thead>
<tr>
<th>Study</th>
<th>Participation</th>
<th>Attrition</th>
<th>Prognostic Factor</th>
<th>Outcome</th>
<th>Confounding</th>
<th>Statistical Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agar 2009</td>
<td>High risk</td>
<td>Moderate risk</td>
<td>Low risk</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>High risk</td>
</tr>
<tr>
<td>Brombo 2018</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Moderate risk</td>
</tr>
<tr>
<td>Han 2008</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Moderate risk</td>
</tr>
<tr>
<td>Hershkovitz 2018</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Moderate risk</td>
</tr>
<tr>
<td>Kolanowski 2015</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Moderate risk</td>
</tr>
<tr>
<td>Koshoedo 2012</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Moderate risk</td>
</tr>
<tr>
<td>Koyama 2014</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Moderate risk</td>
</tr>
<tr>
<td>Landi 2014</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Moderate risk</td>
</tr>
<tr>
<td>Lopez-Matos 2018</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Moderate risk</td>
</tr>
<tr>
<td>Pasina 2013</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Moderate risk</td>
</tr>
</tbody>
</table>

Quality of Life

<table>
<thead>
<tr>
<th>Study</th>
<th>Participation</th>
<th>Attrition</th>
<th>Prognostic Factor</th>
<th>Outcome</th>
<th>Confounding</th>
<th>Statistical Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agar 2009</td>
<td>High risk</td>
<td>Moderate risk</td>
<td>Low risk</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>High risk</td>
</tr>
<tr>
<td>Cossette 2017</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>Low risk</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>High risk</td>
</tr>
<tr>
<td>Ie 2017</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>Low risk</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>High risk</td>
</tr>
<tr>
<td>Sura 2016</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>Low risk</td>
<td>Moderate risk</td>
<td>Moderate risk</td>
<td>High risk</td>
</tr>
</tbody>
</table>
Table 2 Summary of results for studies exploring prognostic relationships between ACB scale and physical function (n=10)

<table>
<thead>
<tr>
<th>Scale/ Outcome</th>
<th>Study</th>
<th>ACB (Baseline)</th>
<th>Physical Function (Baseline)</th>
<th>Statistical Approach</th>
<th>Results (Unadjusted)</th>
<th>Results (Adjusted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACBS (Range 0-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADL (≥1 ADL)</td>
<td>Brombo 2018<sup>24</sup></td>
<td>ACBS≤1: 381 (33.9%)</td>
<td>Any ADL: 542 (48.3%)</td>
<td>Multivariable logistic regression OR 95% CI (ACBS ≥1 versus ACBS=0)</td>
<td>2.38 (1.37,4.13) p=.002</td>
<td>2.77 (1.39, 5.54) p=.004*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACBS≥2: 348 (31.0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI (Range 0-100)</td>
<td>Kolanowski 2015<sup>29</sup></td>
<td>ACBS Mild: 81 (81.8%)</td>
<td>NR</td>
<td>Multiple linear regression β (SE)</td>
<td>NR</td>
<td>Mild: -3.41 (2.14) p = NS †</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACBS Mod/Sev: 25 (25.2%)</td>
<td></td>
<td></td>
<td></td>
<td>Mod/Sev: 5.76 (1.99) p=<0.05</td>
</tr>
<tr>
<td></td>
<td>Lopez-Matons 2018<sup>23</sup></td>
<td>ACBS≥1: 26.4%</td>
<td>BI (Mean, SD): 88.9 (18.5)</td>
<td>Difference in the BI scores between exposed and unexposed patients Mean (SD) (95% CI)</td>
<td>-4.3 (3.3) (-10.8, -2.2)</td>
<td>-4.0 (4.5) (-12.9, 4.9) †</td>
</tr>
<tr>
<td></td>
<td>Pasina 2013<sup>24</sup></td>
<td>ACBS≥1: 724 (58.8%)</td>
<td>NR</td>
<td>Correlation Pearson Coefficient</td>
<td>0.004 p = 0.91</td>
<td>NR</td>
</tr>
<tr>
<td>FIM (Range 18-126)</td>
<td>Hershkowitz 2018<sup>27</sup></td>
<td>ACB ≤1: 666 (76.6%)</td>
<td>60.5 (17.8)</td>
<td>Multiple linear regression β (SE)</td>
<td>NR</td>
<td>- 0.03 (0.85) p=0.02 §</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACB≥2: 203 (23.4%)</td>
<td>56.3 (18.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale/ Outcome</td>
<td>Study</td>
<td>ACB (Baseline)</td>
<td>Physical Function (Baseline)</td>
<td>Statistical Approach</td>
<td>Results (Unadjusted)</td>
<td>Results (Adjusted)</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>IADL (Range 0-8)</td>
<td>Koyama 2014<sup>31</sup></td>
<td>ACBS Mean (SD): 1.6 (1.9)</td>
<td>NR</td>
<td>Multiple logistic regression OR (95% CI)</td>
<td>1.11 (1.04, 1.18)</td>
<td>p=NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.11 (1.04, 1.19)</td>
<td>p=NR</td>
</tr>
<tr>
<td>ARS (Range 0-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADL (Range 0-28)</td>
<td>Brombo 2018<sup>24</sup></td>
<td>ARS≥1: 208 (18.5%)</td>
<td>ADL any: 542 (48.3%)</td>
<td>Multivariable logistic regression OR 95% CI</td>
<td>2.43 (1.26, 4.68)</td>
<td>p=.008</td>
</tr>
<tr>
<td></td>
<td>Landi 2014<sup>32</sup></td>
<td>ARS≥1: 721 (48.4%)</td>
<td>ADL Mean (SD): 15.4 (10.3)</td>
<td>Multivariable logistic regression OR 95% CI</td>
<td>NR</td>
<td>1.13 (1.03, 1.23)</td>
</tr>
<tr>
<td>BI (Range 0-100)</td>
<td>Koshoedo 2012<sup>30</sup></td>
<td>ARS Median (IQR): 0 (0-1)</td>
<td>BI Median (IQR): 55 (40-60)</td>
<td>Poisson regression IRR (95% CI)</td>
<td>NR</td>
<td>0.97 (0.95, 0.99)</td>
</tr>
<tr>
<td></td>
<td>Pasina 2013<sup>34</sup></td>
<td>ARS ≥1: 112 (9.1%)</td>
<td>NR</td>
<td>Correlation Pearson Coefficient</td>
<td>-0.06 p = 0.15</td>
<td>NR</td>
</tr>
<tr>
<td>CRAS/ mCRAS (Range 0-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKPS (Range 0-100)</td>
<td>Agar 2009<sup>23</sup></td>
<td>NR</td>
<td>AKPS (Mean, SD): 61.0 (13.8)</td>
<td>Logistic regression OR (95% CI)</td>
<td>NR</td>
<td>0.85 (0.81, 0.90)</td>
</tr>
<tr>
<td>IADL (Range 0-8)</td>
<td>Han 2008<sup>26</sup></td>
<td>CRAS Mean (SD): 1.3 (1.5)</td>
<td>IADL Mean (SD): 6.5 (1.07)</td>
<td>Mixed effects linear regression Effect Estimate (95% CI)</td>
<td>0.16 (0.11, 0.25)</td>
<td>p=.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.10 (0.04, 0.17)</td>
<td>p=0.001<sup>‡‡</sup></td>
</tr>
</tbody>
</table>

Adjustments:

1. Adjusted for age, sex, education, smoking, mini-mental state examination score, ACBS score at first follow-up, hypertension, coronary heart disease, renal failure, anaemia, infectious diseases.
2. Adjusted for age, sex, body mass index, smoking, high blood pressure, diabetes, dyslipidaemia, heart disease, stroke, dementia.
3. Adjusted for age, sex, time from surgery to rehabilitation, admission albumin level, education, presence of caregiver, residency, mini-mental state examination score, admission FIM, ischemic heart disease, congestive heart failure, diabetes, hypertension, cardiovascular disease, depression, Parkinson’s, chronic obstructive pulmonary disease.
4. Adjusted for age, race, years of education, smoking, physical activity, Charlson comorbidity index.
5. Adjusted for schizophrenia, depression, cognitive performance scale score, age, sex, cumulative index rating scale, activities of daily living (baseline).
6. Adjusted for age, sex, Charlson comorbidity index, abbreviated mental test, total of other medications, Barthel index at admission.
7. Adjusted for time before death.
8. Adjusted for age, race, education, living arrangement, follow-up year, baseline value of the outcome, activities of daily living, centre-epidemiological studies depression scale, smoking, alcohol use, Charlson comorbidity index and hypertension.
Table 3 Summary of results for studies exploring prognostic relationships between ACB and quality of life (n=4)

<table>
<thead>
<tr>
<th>Scale/ Outcome</th>
<th>Study</th>
<th>ACB (Baseline)</th>
<th>QoL (Baseline)</th>
<th>Statistical Approach</th>
<th>Results (Unadjusted)</th>
<th>Results (Adjusted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACBS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Range 0-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF-36 PCS</td>
<td>Cossette 2017²⁵</td>
<td>ACBS≥1: 33%</td>
<td>SF-36 PCS (Mean, SD): 49.0 (8.2)</td>
<td>Multiple linear regression β (95% CI)</td>
<td>NR</td>
<td>-0.50 (-0.31, -0.68) p<.001 *</td>
</tr>
<tr>
<td>(Range 0-100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ-5D</td>
<td>Lee 2017²⁸</td>
<td>ACBS Mean (SD): 0.55 (0.87)</td>
<td>EQ-5D (Mean, SD): 0.82 (0.14)</td>
<td>Multiple linear regression β, SE (95% CI)</td>
<td>NR</td>
<td>0.006, .009 (-0.01, 0.02) p=NR †</td>
</tr>
<tr>
<td>(Range 0-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Range 0-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF-36 PCS</td>
<td>Cossette 2017²⁵</td>
<td>ACBS≥1: 33%</td>
<td>SF-36 PCS (Mean, SD): 49.0 (8.2)</td>
<td>Multiple linear regression β (95% CI)</td>
<td>NR</td>
<td>-0.30 (-0.10, -0.51) p<.01 *</td>
</tr>
<tr>
<td>(Range 0-100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF-12 PCS</td>
<td>Sura 2016²⁵</td>
<td>Ach user: 17 (15.2%)</td>
<td>NR</td>
<td>Multiple linear regression Parameter estimate (95% CI)</td>
<td>NR</td>
<td>-7.48 (-12.57, -2.39) p<.01 †</td>
</tr>
<tr>
<td>(Range 0-100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Range 0-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF-36 PCS</td>
<td>Cossette 2017²⁵</td>
<td>ACBS≥1: 33%</td>
<td>SF-36 PCS (Mean, SD): 49.0 (8.2)</td>
<td>Multiple linear regression β (95% CI)</td>
<td>NR</td>
<td>-0.43 (-0.69, -0.17) p<.01 *</td>
</tr>
<tr>
<td>(Range 0-100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mCRAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Range 0-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MQoL</td>
<td>Agar 2009²³</td>
<td>NR</td>
<td>McGill QOL Mean (SD): 6.0 (2.0)</td>
<td>Generalised linear models OR (95% CI)</td>
<td>NR</td>
<td>0.90 (0.85, 0.95) p=NR ‡</td>
</tr>
<tr>
<td>(Range 0-10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBI-Ach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Range 0-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ-5D</td>
<td>le 2015<sup>28</sup></td>
<td>DBI-Ach (Mean, SD): 0.05 (0.14)</td>
<td>EQ-5D (Mean, SD): 0.82 (0.14)</td>
<td>Multiple linear regression</td>
<td>NR</td>
<td>-0.09, .05 (-.19, .002) p<.05<sup>b</sup></td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td>-----</td>
<td>---</td>
</tr>
</tbody>
</table>

Ach: Anticholinergic, ACB: Anticholinergic Burden, ACBS: Anticholinergic Cognitive Burden Scale, ADS: Anticholinergic Drug Scale, ARS: Anticholinergic Risk Scale, DBI-Ach: Drug Burden Index Anticholinergic sub-scale, EQ-5D: EuroQol 5D, mCRAS: modified Clinician Rated Anticholinergic Score, MQoL: MacGill Quality of Life Score, nr: Not Reported, QoL: Quality of Life, SF-12 PCS: Short Form Health Survey 12 Physical Component, SF-36 PCS: Short Form Health Survey 36 Physical Component.

Adjustments:
- Adjusted for age, sex, education, income, living alone, frailty, number of comorbidities, modified mini-mental state examination and Geriatric Depression Scale.
- Adjusted for age, sex, living with someone, income, no. of comorbidities, use of assistive devices, falls < 12 months, baseline DBI ACH, baseline DBI-SED, Baseline ACBS, no. regular medications, no. of BEERs list medications.
- Adjusted for predisposing factors such as age, race/ethnicity, gender, marital status, and education. Enabling factors included family income, health insurance coverage, region, and metropolitan status area (MSA). Need factors comprised of perceived general and mental health status, activities of daily living (ADL), instrumental activities of daily living (IADL), and cholinesterase inhibitors. The baseline PCS and MCS summary scores were used as additional need factors.
- Adjusted for time before death.
Click here to access/download
Supplementary Material
ACB Prog Rev Function QOL S1 v2.docx