CANONICAL ORIENTATIONS FOR MODULI SPACES OF
G_2-INSTANTONS WITH GAUGE GROUP $SU(m)$ OR $U(m)$

DOMINIC JOYCE AND MARKUS UPMEIER

Abstract. Suppose (X, g) is a compact, spin Riemannian 7-manifold, with Dirac operator $\mathcal{D} : C^\infty(X, \mathbb{S}) \to C^\infty(X, \mathbb{S})$. Let G be $SU(m)$ or $U(m)$, and $E \to X$ be a rank m complex bundle with G-structure. Write \mathcal{B}_E for the infinite-dimensional moduli space of connections on E, modulo gauge. There is a natural principal \mathbb{Z}_2-bundle $O_E^g \to \mathcal{B}_E$ parametrizing orientations of $\det \mathcal{D}_A^g$ at each $[A]$ in \mathcal{B}_E. A theorem of Walpuski [33] shows O_E^g is trivializable.

We prove that if we choose an orientation for $\det \mathcal{D}^g$, and a flag structure on X in the sense of [17], then we can define canonical trivializations of O_E^g for all such bundles $E \to X$, satisfying natural compatibilities.

Now let (X, φ, g) be a compact G_2-manifold, with $d(\ast \varphi) = 0$. Then we can consider moduli spaces $\mathcal{M}_{G_2}^E$ of G_2-instantons on $E \to X$, which are smooth manifolds under suitable transversality conditions, and derived manifolds in general, with $\mathcal{M}_{G_2}^E \subset \mathcal{B}_E$. The restriction of O_E^g to $\mathcal{M}_{G_2}^E$ is the \mathbb{Z}_2-bundle of orientations on $\mathcal{M}_{G_2}^E$. Thus, our theorem induces canonical orientations on all such G_2-instanton moduli spaces $\mathcal{M}_{G_2}^E$.

This contributes to the Donaldson–Segal programme [11], which proposes defining enumerative invariants of G_2-manifolds (X, φ, g) by counting moduli spaces $\mathcal{M}_{G_2}^E$, with signs depending on a choice of orientation.

Contents

1. Introduction 1
2. Orientations and determinants 6
3. Flag structures 14
4. Canonical orientations 16
References 24

1. Introduction

This is the third of six papers: Upmeier [30], Joyce–Tanaka–Upmeier [21], this paper, Cao–Gross–Joyce [7], and the authors [22, 23], on orientability, canonical orientations, and spin structures, for gauge-theoretic moduli spaces.

The first [30] proves the Excision Theorem (see Theorem 2.15 below), which relates orientations on different moduli spaces. The second [21] develops the general theory of orientations of moduli spaces, and applies it in dimensions 3,4,5 and 6. This paper studies orientations of moduli spaces in dimension 7. It uses results from [21,30], but is self-contained and can be read independently. The sequel [7] concerns dimension 8.
Let X be a compact connected manifold, G be SU(m) or U(m) for $m \geq 1$, and g be the Lie algebra of G, and $E \to X$ be a rank m complex vector bundle with a G-structure, so that E is associated to a principal G-bundle $Q \to X$ in the vector representation. Let $\text{Ad} E$ be the associated bundle of Lie algebras, the bundle of skew-Hermitian endomorphisms of E, trace-free if $G = SU(m)$.

Definition 1.1. $\mathcal{A}_E \subset \Omega^1(Q, g)$ is the space of connections on Q, equipped with its affine Fréchet structure modelled on $\Omega^1(X, \text{Ad} E)$. The gauge group $\mathcal{G} = \text{Aut}(Q)$ acts continuously on \mathcal{A}_E by pullback. The quotient space $\mathcal{B}_E := \mathcal{A}_E/\mathcal{G}$ is the moduli space of connections on E, as a topological space with the quotient topology. As in [11] p. 133, a connection $\nabla \in \mathcal{A}_E$ is irreducible if the stabilizer group of ∇ under the \mathcal{G}-action on \mathcal{A}_E equals the centre $Z(G)$. Write $\mathcal{A}_E^{\text{irr}} \subset \mathcal{A}_E$ for the subset of irreducible connections, and $\mathcal{B}_E^{\text{irr}} = \mathcal{A}_E^{\text{irr}}/\mathcal{G} \subset \mathcal{B}_E$ for the moduli space of irreducible connections.

Suppose now that (X, g) is an odd-dimensional compact Riemannian spin manifold with real spinor bundle $\mathcal{S} \to X$. The real Dirac operator coupled to the induced connections on $\text{Ad} E$ defines a family of self-adjoint elliptic operators

\[(1.1) \quad \mathcal{D}^g_{\text{Ad} A} : C^\infty(X, \mathcal{S} \otimes \text{Ad} E) \longrightarrow C^\infty(X, \mathcal{S} \otimes \text{Ad} E), \quad \forall A \in \mathcal{A}_E.
\]

Let $\det \mathcal{D}^g_{\text{Ad} A}$ be the determinant line bundle of this family, a real line bundle over \mathcal{A}_E, and let $\mathcal{O}_E^{\text{B}^g} = (\det \mathcal{D}^g_{\text{Ad} A} \setminus \{\text{zero section}\})/\mathbb{R}_{>0}$ be the associated orientation double cover, a principal \mathbb{Z}_2-bundle $\mathcal{O}_E^{\text{B}^g} \to \mathcal{A}_E$, where $\mathbb{Z}_2 = \{\pm 1\}$. As \mathcal{A}_E is contractible, $\mathcal{O}_E^{\text{B}^g}$ is trivializable, and we have two possible orientations.

For X a compact spin 7-manifold and $G = SU(m)$ the argument of Walpuski in [33, Prop. 6.3] shows that the gauge group acts trivially on the set of trivializations of $\mathcal{O}_E^{\text{B}^g}$, and [21, Ex. 2.13] implies that this also holds for $G = U(m)$. Hence $\mathcal{O}_E^{\text{B}^g}$ descends to a principal \mathbb{Z}_2-bundle $\mathcal{O}_E^{\text{B}^g} \to \mathcal{B}_E$, and orientations may be constructed equivalently over \mathcal{A}_E or \mathcal{B}_E. See [21] for more details.

We define a G_2-manifold (X, ϕ, g) to be a 7-manifold X with a G_2-structure (ϕ, g), not necessarily torsion-free. (This differs from [15, §10–§12], where (ϕ, g) was supposed torsion-free.) Suppose (X, ϕ, g) is a compact G_2-manifold with $d(\ast \phi) = 0$. As in Donaldson–Thomas [12] and Donaldson–Segal [11], a connection A on E is called a G_2-instanton if its curvature F_A satisfies

\[F_A \wedge \ast \phi = 0.\]

As $d(\ast \phi) = 0$ the deformation theory of G_2-instantons is elliptic, and therefore the moduli space $\mathcal{M}_E^{G_2}$ of irreducible G_2-instantons on E modulo gauge is a smooth manifold (of dimension 0) under suitable transversality assumptions, and a derived manifold (of virtual dimension 0) in the sense of [16, 18, 20] in the general case. Examples and constructions of G_2-instantons on compact G_2-manifolds are given in [26, 28, 32, 34].

As in [21, §4.1], the restriction of $\mathcal{O}_E^{\text{B}^g} \to \mathcal{B}_E$ to $\mathcal{M}_E^{G_2} \subset \mathcal{B}_E$ is the principal \mathbb{Z}_2-bundle of orientations of $\mathcal{M}_E^{G_2}$, as a (derived) manifold. Thus $\mathcal{M}_E^{G_2}$ is orientable, and an orientation of $\mathcal{O}_E^{\text{B}^g} \to \mathcal{B}_E$ determines an orientation of $\mathcal{M}_E^{G_2}$. Such orientations are important for the programme of [11, 12].

In the present paper, we solve the problem of defining canonical orientations for $\mathcal{M}_E^{G_2}$. As for moduli spaces of anti-self-dual instantons in dimension four, where
orientations depend on an orientation of $H^0(X) \oplus H^1(X) \oplus H^2(X)$ (see Donaldson [9] and Donaldson–Kronheimer [10], Prop. 7.1.39)), this will depend on some additional algebro-topological data, a so-called flag structure [17, §3.1].

Oversimplifying a bit, a flag structure F on a 7-manifold X assigns $F(Y, s) = \pm 1$ to each compact 3-submanifold $Y \subset X$ with a nonvanishing section s of the normal bundle $N_Y \to Y$, such that if s, s' have winding number $d(s, s') \in \mathbb{Z}$ then $F(Y, s') = (-1)^{d(s, s')} F(Y, s)$, and if $C \subset X \times [0, 1]$ is an compact 4-submanifold with nonvanishing normal section t and boundary $\partial(C, t) = (Y_0 \times \{0\}, s_0) \amalg (Y_1 \times \{1\}, s_1)$ then $F(Y_0, s_0) = F(Y_1, s_1)$. See [17] for more details.

When (X, φ, g) is a compact G_2-manifold one can define an interesting class of minimal 3-submanifolds Y in X called associative 3-folds [15, §10.8]. Compact associative 3-folds have elliptic deformation theory, and form well-behaved moduli spaces $\mathcal{M}^{\text{ass}}_m$, as (derived) manifolds. In the spirit of [11, 12], the first author [17] discussed defining enumerative invariants of (X, φ, g) counting associative 3-folds. To determine signs, he defined canonical orientations on moduli spaces of associative 3-folds, using the new idea of flag structures.

Now Donaldson and Segal [11] (see also Walpuski [34]) explain that associative 3-folds are connected to G_2-instantons, as a sequence of G_2-instantons $(E_i, A_i)_{i=1}^\infty$ can ‘bubble’ along an associative 3-fold Y as $i \to \infty$. So the problems of defining canonical orientations on moduli spaces of associative 3-folds and of G_2-instantons should be related. In [17, Conj. 8.3], the first author conjectured that one should define canonical orientations for moduli spaces of G_2-instantons using flag structures. This paper proves that conjecture.

We make heavy use of ideas and results from the previous paper [21], recalled in Section 3. Given the $O^{\text{ss}}_E \to B_E$ are orientable. [21, Th. 2.27] gives a way to choose orientations on all O^{ss}_E and \mathcal{M}^G_E after making finitely many algebraic choices. But here we do something different: we construct orientations on all O^{ss}_E and \mathcal{M}^G_E depending on a geometric structure on X, the flag structure. We use a general procedure for doing this using excision outlined in [21, §3.3].

In (2.2), we define the orientation \mathbb{Z}_2-torsor Or_E of a $\text{SU}(m)$-bundle E. Up to an orientation for the untwisted Diracian, this is the set of orientations on the determinant line bundle of E. For a $\text{SU}(m_1)$-bundle $E_1 \to X$ and $\text{SU}(m_2)$-bundle $E_2 \to X$ we have canonical isomorphisms (Proposition 2.14)

$\text{Or}_{E_1 \oplus E_2} \cong \text{Or}_{E_1} \otimes \mathbb{Z}_2 \text{Or}_{E_2},$

(1.2)

$\text{Or}_{\mathbb{C}^m} \cong \mathbb{Z}_2,$

(1.3)

where (1.3) corresponds to the ‘standard orientations’ of [21, §2.2.2].

Here is our main result. The proof is sketched below.

Theorem 1.2. A flag structure F on a compact spin 7-manifold X determines, for every $\text{SU}(m)$-bundle $E \to X$ and $m \in \mathbb{N}$, a canonical orientation

$\text{o}^F(E) \in \text{Or}_E$ (1.4)

satisfying the following axioms, by which $\text{o}^F(E)$ is uniquely determined:

(a) **(Normalization.)** For $E = \mathbb{C}^m$ trivial, let $\text{o}^{\text{flat}}(E) \in \text{Or}_E$ be the image of $1 \in \mathbb{Z}_2$ under the isomorphism (1.3). Then

$\text{o}^F(E) = \text{o}^{\text{flat}}(E).$ (1.5)
Hence the first part gives canonical orientations
\[(1.7)\]
and \[21, \text{Ex. } 2.13\]
\[(1.8)\]
The problem with extending (i) to \(U(\ldots)\) is that if \(\Lambda \) changing from \(E \) satisfies (a),(b),(i),(ii), and perhaps (c), by a different method.

Now let \(E \to X \) be a rank \(m\) complex vector bundle with \(U(m)\)-structure. Then \(\tilde{E} = E \oplus \Lambda^m E^*\) is a rank \(m + 1\) complex vector bundle with \(SU(m + 1)\)-structure, and \[21\] \(\text{Ex. } 2.13\) defines a canonical isomorphism of \(\mathbb{Z}_2\)-torsors \(\text{Or}_{\tilde{E}} \cong \text{Or}_E\). Hence the first part gives canonical orientations \(o^\tilde{F}(E) \in \text{Or}_E\) for all \(U(m)\)-bundles \(E \to X\). These satisfy the analogues of (a)-(c) and (ii), but may not satisfy (i).

Remark 3.1. The problem with extending (i) to \(U(m)\)-bundles in the last part, is that if \(E_1, E_2 \to X\) are \(U(m_1)\)- and \(U(m_2)\)-bundles then the left hand side of \[1.8\] comes from the orientation for the \(SU(m_1 + m_2 + 1)\)-bundle \((E_1 \oplus E_2) \oplus \Lambda^{m_1+m_2}(E_1 \oplus E_2)^*\), but the right hand side comes from the orientation for the \(SU(m_1 + m_2 + 2)\)-bundle \((E_1 \oplus \Lambda^{m_1} E^*_1) \oplus (E_2 \oplus \Lambda^{m_2} E^*_2)\), which is different.

The orientations \(o^\tilde{F}(E)\) for \(U(m)\)-bundles defined in the last part may not satisfy (i). For example, let \(X = \mathbb{C}P^3 \times S^1\), which has two flag structures \(F^+, F^-\), and take \(E_1 = \pi_{\mathbb{C}P^3}(\mathcal{O}(k))\) and \(E_2 = \pi_{\mathbb{C}P^3}(\mathcal{O}(l))\) for \(k, l \in \mathbb{Z}\) odd. Using \[1.7\] we find that changing from \(F^+\) to \(F^-\) changes the sign of all three of \(o^{F^+}(E_1), o^{F^-}(E_2), o^{F^+}(E_1 \oplus E_2)\), so \[1.8\] holds for only one of \(F^+, F^-\).

It may still be possible to choose orientations \(o^\tilde{F}(E)\) for all \(U(m)\)-bundles \(E \to X\) satisfying (a),(b),(i),(ii), and perhaps (c), by a different method.

One application of this theorem is to the problem of defining orientations for moduli spaces of \(G_2\)-instantons \(\mathcal{M}^{G_2}_E\). As the moduli space is zero-dimensional, there are many arbitrary orientations, so the point of the problem is to come up with a natural assignment, in particular one that is stable under deformations of
the G-structure. Following [21] §4.1, we have already explained how Walpuski [33] Prop. 6.3] and Theorem 1.4] imply the following:

Corollary 1.4. Let (X, φ, g) be a compact G_2-manifold with $\det \mathcal{D}$ for the untwisted Diracian and a flag structure F on X. Then we can define a canonical orientation for the moduli space M^{G_2} of G_2-instantons on X whenever $E \to X$ is a $U(m)$- or $U(m)$-bundle.

Donaldson and Segal [11] have proposed to define enumerative invariants of (X, φ, g) by counting M^{G_2}, with signs, and adding correction terms from associative 3-folds in X. To determine the signs we need an orientation of M^{G_2}. Thus, Corollary 1.4 contributes to the Donaldson–Segal programme.

It is natural to want to extend Theorem 1.2 and Corollary 1.4 to moduli spaces of connections on principal G-bundles $Q \to X$ for Lie groups G other than $SU(m)$ and $U(m)$, but this is not always possible. Section 2.4 gives an example of a compact, spin 7-manifold X for which $O^{B_2}_Q \to B_Q$ is not orientable when $Q = X \times Sp(m) \to X$ is the trivial $Sp(m)$-bundle, for all $m \geq 2$.

In the sequel we use Theorem 1.2] to construct ‘spin structures’ on moduli spaces B_P for principal $U(m)$- or $SU(m)$-bundles $P \to X$ over a compact spin 6-manifold X, and apply this to construct ‘orientation data’ for Calabi–Yau 3-folds X, as in Kontsevich and Soibelman [24, §5], solving a long-standing problem in Donaldson–Thomas theory.

Outline of the paper. We begin in §2 by recalling background material on determinant line bundles. Then our main object of study, the orientation torsor Or_E of a $U(m)$-bundle $E \to X$, is introduced along with its basic properties. We recall from [30] the excision technique from index theory in the context of orientations. It can be regarded as extending the functoriality of orientation torsors from globally defined isomorphisms to local ones. Section 3 briefly recalls flag structures, and §4 proves Theorem 1.2. In brief, the proof works as follows:

(A) Let X be a compact spin 7-manifold with flag structure F, and $E \to X$ a $SU(m)$-bundle. We show that we can find:

(a) A compact 3-submanifold $Y \subset X$.

(b) An $SU(m)$-trivialization $\rho : \mathbb{C}^m|_{X \setminus Y} \xrightarrow{\cong} E|_{X \setminus Y}$.

(c) An embedding $\iota : Y \hookrightarrow \mathcal{S}^7$, so $Y' = \iota(Y)$ is a 3-submanifold of \mathcal{S}^7.

(d) An isomorphism $\Psi : N_Y \to \iota^*(N_{Y'})$ between the normal bundles of Y in X and Y' in \mathcal{S}^7, preserving orientations and spin structures.

(e) Tubular neighbourhoods U of Y in X and U' of Y' in \mathcal{S}^7, and a spin diffeomorphism $\psi : U \to U'$ with $\psi|_Y = \iota$ and $d\psi|_{N_Y} = \psi$.

Define a $SU(m)$-bundle $E' \to \mathcal{S}^7$ by $E'|_{\mathcal{S}^7 \setminus Y'} \cong \mathbb{C}^m$, $E'|_{U'} \cong \psi^*(E|_{U'})$, identified over $U' \setminus Y'$ by $(\psi|_{U' \setminus Y'})_*(\rho)$, with $\Xi : E|_U \xrightarrow{\cong} \psi^*(E'|_{U'})$. Then we have an excision isomorphism $Or(\psi, \Xi, \rho, \rho') : Or_E \to Or_{E'}$.

Now every $SU(m)$-bundle on \mathcal{S}^7 is stably trivial, so Theorem 1.2(a), (b) determine a unique orientation $\sigma_{\text{flat}}^{E'} \in Or_{E'}$. Following Theorem 1.2(c) we define an orientation $\sigma^F_{\psi, \rho, \rho', \Psi}(E) \in Or_E$ by

\begin{equation}
\sigma^F_{\psi, \rho, \rho', \Psi}(E) = \left(F|_U / \psi^*(F_{\mathcal{S}^7}|_{U'}) \right)[Y] \cdot Or(\psi, \Xi, \rho, \rho')^{-1}(\sigma_{\text{flat}}^{E'}) \right),
\end{equation}

where $F_{\mathcal{S}^7}$ is the unique flag structure on \mathcal{S}^7.
Observe that if the conditions Theorem 1.2(a)–(c) hold, they force \(o^{F}(E) = o^{Y,\rho,\iota,\Psi}(E) \). Thus, if orientations \(o^{F}(E) \) exist satisfying Theorem 1.2(a)–(c), then they are uniquely determined, as claimed.

(B) We prove \(o^{Y,\rho,\iota,\Psi}(E) \) is independent of the choices in (A)(a)–(e):

(i) Independence of \(U, U', \psi \) for fixed \(Y, \rho, \iota, \Psi \) is obvious from properties of excision isomorphisms.

(ii) Independence of \(\Psi \) for fixed \(Y, \rho, \iota \) is nontrivial. Given two different choices \(\Psi_0, \Psi_1 \) and \(\psi_0, \psi_1 \), we compute the signs comparing how \(\psi_0, \psi_1 \) act on orientations of bundles trivial away from \(Y \), and how \(\psi_0, \psi_1 \) act on flag structures near \(Y \), and show these signs are the same, so the combined effect of both signs in (1.9) cancels out. This is the main point where flag structures are used in the proof.

(iii) Independence of \(\iota : Y \hookrightarrow S^7 \) for fixed \(Y, \rho \) is easy, as any two such embeddings are isotopic through embeddings.

(iv) Independence of \(Y, \rho \) is again nontrivial, and is proved by analyzing a bordism \(Z \subset X \times [0,1] \) between two choices \(Y_0, Y_1 \subset X \).

We can now define \(o^{F}(E) = o^{Y,\rho,\iota,\Psi}(E) \) for all \(X, F \) and \(E \rightarrow X \).

(C) We verify the \(o^{F}(E) \) in (B) satisfy Theorem 1.2(a)–(c), (i)–(ii).

(D) We extend from SU(\(m \))-bundles to U(\(m \))-bundles, which is easy.

Acknowledgements. This research was partly funded by a Simons Collaboration Grant on ‘Special Holonomy in Geometry, Analysis and Physics’. The second author was funded by DFG grant UP 85/3-1 and by grant UP 85/2-1 of the DFG priority program SPP 2026 ‘Geometry at Infinity.’ The authors would like to thank Yalong Cao, Aleksander Doan, Sebastian Goette, Jacob Gross, Andriy Haydys, Johannes Nordström, Yuuji Tanaka, Richard Thomas and Thomas Walpuski for helpful conversations, and the referee.

2. Orientations and determinants

2.1. The Quillen determinant.

2.1.1. Finite dimensions. For finite-dimensional vector spaces, the top exterior power has the fundamental property that a short exact sequence

\[
0 \rightarrow U \xrightarrow{f} V \xrightarrow{g} W \rightarrow 0
\]

induces a canonical isomorphism

\[
\Lambda^{\top}U \otimes \Lambda^{\top}W \cong \Lambda^{\top}V.
\]

Lemma 2.1. For finite-dimensional vector spaces \(V \) and \(W \) we have

\[
\Lambda^{\top}(V \otimes W) \cong (\Lambda^{\top}V)^{\otimes \dim W} \otimes (\Lambda^{\top}W)^{\otimes \dim V}.
\]

2.1.2. Fredholm determinant. The determinant of a morphism \(f : V^0 \rightarrow V^1 \) of finite-dimensional vector spaces is an element of \((\Lambda^{\top}V^0)^{\ast} \otimes \Lambda^{\top}V^1 \). This is isomorphic to \((\Lambda^{\top} \ker f)^{\ast} \otimes \Lambda^{\top} \coker f \), by the fundamental property applied to

\[
0 \rightarrow \ker f \rightarrow V^0 \rightarrow V^1 \rightarrow \coker f \rightarrow 0.
\]

Definition 2.2. Let \(F : \mathcal{H}^0 \rightarrow \mathcal{H}^1 \) be a Fredholm operator between Hilbert spaces. The determinant line of \(F \) is \(\det F := \Lambda^{\top} \ker F \otimes (\Lambda^{\top} \coker F)^{\ast} \).
Proposition 2.3. For every commutative diagram of bounded operators

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & F^0 & \longrightarrow & G^0 & \longrightarrow & H^0 & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & F^1 & \longrightarrow & G^1 & \longrightarrow & H^1 & \longrightarrow & 0 \\
\end{array}
\]

with exact rows and \(F,G,H\) Fredholm there is a canonical isomorphism

\[\det G \cong \det F \otimes \det H.\]

Proof. Snake lemma and the fundamental property in finite dimensions. □

Definition 2.4. Let \(T\) be a paracompact Hausdorff space. A \(T\)-family of Fredholm operators \(\{F_t : \mathcal{H}_t^0 \to \mathcal{H}_t^1\}_{t \in T}\) is a homomorphism \(F : \mathcal{H}_t^0 \to \mathcal{H}_t^1\) of Hilbert space bundles over \(T\) whose restriction to every fibre is Fredholm. The determinant line bundle of \(F\) is \(\det F := \bigwedge_{t \in T} \det F_t\).

To see that \(\det F\) is locally trivial, pick \(t_0 \in T\) and \(s(t_0) : \mathbb{C}^k \to \mathcal{H}_{t_0}^1\) so that \(F_{t_0} \oplus s(t_0)\) is surjective. Extend \(s\) to a neighbourhood of \(t_0\). Proposition 2.3 for \((F,F \oplus s,\mathbb{C}^k \to \{0\})\) gives

\[\det F = \det(F \oplus s) = \Lambda^{\text{top}} \kappa(F \oplus s)^*.\]

Since \(F \oplus s\) is surjective near \(t_0\), \(\kappa(F \oplus s)\) is a subbundle there.

Example 2.5. Let \(D\) be a family of elliptic differential or pseudo-differential operators over a compact manifold \(X\). These determine Fredholm operators by regarding them as acting on Sobolev spaces. The determinant line bundle is independent of the degree of the Sobolev space, since by elliptic regularity the kernels of \(D\) and \(D^*\) consist of smooth sections. Here, \(D^*\) denotes the formally adjoint differential operator and we recall \(\kappa D^* \cong \text{Coker} D\).

For a family of differential operators the manifold and vector bundle may depend on \(t \in T\), as long as they form a fibre bundle [6].

Lemma 2.6. Let \(\{F_t^0 : \mathcal{H}_t^0 \to \mathcal{H}_t^1\}_{t \in T}\) and \(\{F_t^1 : \mathcal{H}_t^0 \to \mathcal{H}_t^1\}_{t \in T}\) be homotopic through \(T\)-families of Fredholm operators. Then \(\det F^0 \cong \det F^1\).

Proof. By definition, a homotopy is a \((T \times [0,1])\)-family of Fredholm operators \(H(t,s)\). The determinant line bundle of \(H\) restricts over \(T \times \{s\}\) to \(\det F^s\) for \(s = 0,1\). The inclusions of the endpoints of \(T \times [0,1]\) are homotopic and as \(T\) is paracompact Hausdorff, the pullbacks \(\det H|_{T \times \{0\}}\) and \(\det H|_{T \times \{0\}}\) are isomorphic. □

Up to this point the discussion applies to operators over both the real or the complex numbers. From now on we need real operators.

Definition 2.7. The orientation cover of a \(T\)-family of real Fredholm operators \(\{F_t : \mathcal{H}_t^0 \to \mathcal{H}_t^1\}_{t \in T}\) is \(\text{Or } F := (\det F \setminus \{\text{zero section}\})/\mathbb{R}_{>0}\). An orientation for the determinant of the family is a global section of \(\text{Or } F\).

As \(\det F\) is locally trivial, \(\text{Or } F\) is a double cover of \(T\), so for \(T\) connected there are either two orientations or none. An advantage of orientation covers is their deformation invariance. The argument for Lemma 2.6 now gives:
Lemma 2.8. Let \(\{ F_i^0 : \mathcal{H}_i^0 \to \mathcal{H}_i^1 \}_{i \in T} \) and \(\{ F_i^1 : \mathcal{H}_i^0 \to \mathcal{H}_i^1 \}_{i \in T} \) be homotopic through \(T \)-families of real Fredholm operators. Then we have a canonical fibre transport isomorphism \(\text{Or} \, F^0 \cong \text{Or} \, F^1 \).

In particular, the orientation cover of a \(T \)-family of real elliptic operators \(D \) depends only on the principal symbol.

2.2. Orientation torsors and excision.

2.2.1. Basic construction. We now simplify the discussion by restricting to Diracians twisted by connections. On the level of orientations only the underlying vector bundles matter:

Definition 2.9. Let \((X, g)\) be an odd-dimensional compact spin manifold with real spinor bundle \(\mathcal{S}\). Let \(E \to X\) be a vector bundle with \(\text{SU}(m)\)-structure, and let \(\text{Ad} \, E\) be the associated bundle of Lie algebras. The twisted Diracians

\[
\mathcal{D}^g_{\text{Ad}, A} : C^\infty(X, \mathcal{S} \otimes_{\mathbb{R}} \text{Ad} \, E) \to C^\infty(X, \mathcal{S} \otimes_{\mathbb{R}} \text{Ad} \, E), \quad A \in \mathcal{A}_E,
\]

determine a family \(\mathcal{D}^g_{\text{Ad}, E}\) of real elliptic operators parametrized by the space \(\mathcal{A}_E\) of \(\text{SU}(m)\)-connections on \(E\). Let \(\mathcal{D}^g_{\text{Ad}, \mathcal{L}^{\infty}, 0}\) be the Diracian twisted by the trivial bundle \(\text{Ad} \, \mathcal{L}^{\infty}\) and zero connection. The orientation torsor of \(E \to X\) is

\[
\text{Or}_E := C^\infty(\mathcal{A}_E, \mathcal{O}_E^g) \otimes_{\mathbb{Z}_2} \text{Or}(\det(\mathcal{D}^g_{\text{Ad}, \mathcal{L}^{\infty}, 0}))^*.
\]

Similarly, for a paracompact Hausdorff \(P\) and a \(P\)-family of \(\text{SU}(m)\)-bundles, meaning a \(\text{SU}(m)\)-bundle \(E \to X \times P\) smooth in the \(X\) directions, we get a double cover \(\text{Or}_E \to P\) by taking global sections only in the \(X\)-direction.

By Lemma 2.8, \(\text{Or}_E\) does not depend on \(g\) up to canonical isomorphism. More formally, one may take global sections also in this contractible variable.

Remark 2.10. Let \(Q\) be the principal \(\text{SU}(m)\)-frame bundle of \(E\). In the terminology of \([21]\), when \(\mathcal{B}_Q\) is \(n\)-orientable, the orientation torsor \(\text{Or}_E\) is the set of global sections of the \(n\)-orientation bundle \(\mathcal{O}_Q^g \to \mathcal{B}_Q\).

Remark 2.11. As \(\mathcal{D}^g_{\text{Ad}, \mathcal{L}^{\infty}, 0}\) is symmetric, the second factor in (2.2) is canonically trivial. However, when \(m\) is even, this orientation is sensitive to the metric and changes discontinuously according to the spectral flow of \(\mathcal{D}^g\). We prefer to keep track of an extra choice of orientation for the untwisted Diracian \(\mathcal{D}^g\). By (2.1) it induces a trivialization of \(\text{Or}(\det(\mathcal{D}^g_{\text{Ad}, \mathcal{L}^{\infty}, 0}))\). The second factor in (2.2) has been introduced to simplify the formulation of the excision principle below.

Remark 2.12. For anti-self-dual moduli spaces in dimension four the Diracian is replaced by \(d + \delta^* : C^\infty(\Lambda^0 T^* X \oplus \Lambda^2 T^* X) \to C^\infty(\Lambda^1 T^* X)\), as in Donaldson–Kronheimer \([10]\). For these \(\text{Or}_E\) is canonically trivial and the untwisted operator is responsible for the dependence of orientations on \(H^0(X) \oplus H^1(X) \oplus H^2(X)\).

Definition 2.13. For \(E = \mathbb{L}^m\) we can evaluate at the zero connection and canonically identify the orientation torsor with \(\mathbb{Z}_2\). We write \(\varrho^{\text{nat}}(\mathbb{L}^m) \in \text{Or}_{\mathbb{L}^m}\) for this canonical base-point.
2.2. Orientations and direct sums. The behaviour of orientation bundles under direct sums is studied in the companion paper [21, Ex. 2.11]. From there we recall the following:

Proposition 2.14. Let E_1 be a $SU(m_1)$-bundle, E_2 a $SU(m_2)$-bundle over a compact odd-dimensional spin manifold X. We have a canonical isomorphism

\[\lambda_{E_1,E_2} : \text{Or}_{E_1} \otimes \text{Or}_{E_2} \longrightarrow \text{Or}_{E_1 \oplus E_2} . \]

These have the following properties:

(i) (Families.) Let P be compact Hausdorff, $E_1 \rightarrow X \times P$ a $SU(m_1)$-bundle, and $E_2 \rightarrow X \times P$ a $SU(m_2)$-bundle, regarded as P-families of bundles. Then the collection of all maps $\lambda_{E_1|X \times \{p\},E_2|X \times \{p\}}$ for each $p \in P$ becomes a continuous map of double covers over P.

(ii) (Associative.) $\lambda_{E_1, E_2 \oplus E_3} \circ (\text{id}_{E_1} \otimes \lambda_{E_2,E_3}) = \lambda_{E_1 \oplus E_2, E_3} \circ (\lambda_{E_1,E_2} \otimes \text{id}_{E_3})$.

(iii) (Commutative.) $\text{Or}(\text{flip}) \circ \lambda_{E_1,E_2} = \lambda_{E_2,E_1} \circ \text{Or} : \text{Or}_{E_1} \otimes \text{Or}_{E_2} \rightarrow \text{Or}_{E_2 \oplus E_1}$.

(iv) (Unital.) $\lambda_{\mathbb{C}^m, \mathbb{C}^m} \circ (\text{id}_{\mathbb{C}^m} \otimes \text{id}_{\mathbb{C}^m}) = \text{id}_{\mathbb{C}^{m^2}}$.

Moreover, in [21, Eq. 2.14] we will see that the isomorphisms (2.3) are natural.

We shall adopt the product notation $u \cdot v := \lambda_{E_1,E_2}(u \otimes v)$.

Proof. We briefly recall the argument of [21, Ex. 2.11]. For the adjoint bundles $\text{Ad}(E_1 \oplus E_2) \cong \text{Ad}(E_1) \oplus \text{Ad}(E_2) \oplus \mathbb{R} \oplus \text{Hom}_{\mathbb{C}}(E_1, E_2)$, so by (2.1)

\[\mathcal{O}^\mathbb{C}_{E_1 \oplus E_2} \cong \mathcal{O}^\mathbb{C}_{E_1} \otimes_{\mathbb{Z}_2} \mathcal{O}^\mathbb{C}_{E_2} \otimes_{\mathbb{Z}_2} (\text{Or}(\det_{\mathbb{R}} \mathcal{B}) \otimes_{\mathbb{Z}_2} \text{Or}(\det_{\mathbb{R}} \mathcal{B}_{\text{Hom}_{\mathbb{C}}(E_1,E_2)})) \).

As the Diracian twisted by $\text{Hom}_{\mathbb{C}}(E_1, E_2)$ is complex linear, its kernels and cokernels are complex vector spaces and $\text{Or}(\det_{\mathbb{R}} \mathcal{B}_{\text{Hom}_{\mathbb{C}}(E_1,E_2)})$ is canonically trivial. This, combined with the same for \mathbb{C}^{m_1}, \mathbb{C}^{m_2} in place of E_1, E_2, gives (2.3). The same proof works for families. Associativity is [21, (2.12)] and commutativity is [21 (211)], noting that indices vanish in odd dimensions. \qed

2.2.3. Excision. Seeley’s excision principle [29, Th. 1 on p. 198] (also called transplanter) is one of the key techniques in the K-theory proof of the Atiyah–Singer index theorem [4, §8]. Donaldson first applied excision to gauge theory in [9], see also [10, §7]. In [30], the second author observes that on the level of orientations these ideas can be formalized into a ‘categorification’ of the classical calculus for the numerical index. Here is [30, Th. 2.13] in the case $G = SU(m)$:

Theorem 2.15 (Excision). Let $E^\pm \rightarrow X^\pm$ be $SU(m)$-bundles over compact connected spin manifolds. Let $U^\pm \subset X^\pm$ be open and let ρ^\pm be $SU(m)$-frames of E^\pm defined outside compact subsets of U^\pm. Let $\phi : U^+ \rightarrow U^-$ be a spin diffeomorphism covered by a $SU(m)$-isomorphism $\Phi : E^+|_{U^+} \rightarrow E^-|_{U^-}$ with $\Phi \circ \rho^+ = \phi^* \rho^-$ outside some compact subset of U^+. This data induces an excision isomorphism

\[\text{Or}(\phi, \Phi, \rho^+, \rho^-) : \text{Or}_{E^+} \longrightarrow \text{Or}_{E^-} . \]

These excision isomorphisms have the following properties:

(i) (Functoriality.) Let $E^\times \rightarrow X^\times$ be a $SU(m)$-bundle, $U^\times \subset X^\times$ open, $\psi : U^- \rightarrow U^\times$ a spin diffeomorphism, ρ^\times a $SU(m)$-frame defined outside a compact subset of U^\times, and Ψ a $SU(m)$-isomorphism covering ψ that identifies ρ^- and ρ^\times outside a compact subset of U^-. Then

\[\text{Or}(\psi, \Psi, \rho^-, \rho^\times) \circ \text{Or}(\phi, \Phi, \rho^+, \rho^-) = \text{Or}(\psi \circ \phi, \Psi \circ \Phi, \rho^+, \rho^\times) . \]

Moreover, $\text{Or}(\text{id}, \text{id}, \rho^+, \rho^-) = \text{id}_{\text{Or}_{E^+}}$.
(ii) (Families.) Let $E^\pm \to X^\pm \times P$ be SU(m)-bundles, where P is a compact Hausdorff space. Let ρ^\pm be SU(m)-frames of E^\pm outside compact subsets of open $U^\pm \subset X^\pm$. Let $\Phi : E^+_U \to E^-|_{U^-}$ be a SU(m)-isomorphism covering a continuous P-family of spin diffeomorphisms $\phi : U^+ \to U^-$. Assume $\Phi \circ \rho^+ = \rho^+ \rho^-$ outside a compact subset of U^+. Then the collection of all maps Φ for each $p \in P$ becomes a continuous map of double covers over P.

In particular, when E^\pm is pulled back from X^\pm along the projection, the isomorphism Φ is unchanged under deformation of the rest of the data $U^\pm, \rho^\pm, \phi, \Phi$.

(iii) (Empty set.) If $U^\pm = \emptyset$ then $\text{Or}(\phi, \Phi, \rho^+, \rho^-) = \text{id}_{Z_2}$ under the isomorphisms $\text{Or}_{E^\pm} \cong Z_2$ induced by Definition 2.13 and $E^+ = \bigcup_{m \in \mathbb{Z}} E^-$. Let E^\pm_k be SU(m_k)-frames of E^\pm outside compact subsets of $U^\pm \subset X^\pm$. Let $\phi : U^+ \to U^-$ be a spin diffeomorphism covered by SU(m_k)-isomorphisms $\Phi_k : E^+_k \to E^-_k$ for $k = 1, 2$. Then there is a commutative diagram:

$\begin{array}{ccc}
\text{Or}_{E^+_1} \otimes \text{Or}_{E^+_2} & \xrightarrow{\Phi} & \text{Or}_{E^-_1} \otimes \text{Or}_{E^-_2} \\
\downarrow^{2.3} & & \downarrow^{2.3} \\
\text{Or}_{E^+_1} \otimes \text{Or}_{E^+_2} & \xrightarrow{\Phi(\phi, \Phi_1, \rho^+_1, \rho^-_1)} & \text{Or}_{E^-_1} \otimes \text{Or}_{E^-_2}
\end{array}$

(iv) (Direct sums.) For $k = 1, 2$ let E^\pm_k be SU(m_k)-bundles and ρ^\pm_k be SU(m_k)-frames of E^\pm_k outside compact subsets of $U^\pm \subset X^\pm$. Let $\phi : U^+ \to U^-$ be a spin diffeomorphism covered by SU(m_k)-isomorphisms $\Phi_k : E^+_k \to E^-_k$ for $k = 1, 2$. Then we have a commutative diagram:

$\begin{array}{ccc}
\text{Or}_{E^+_1} \otimes \text{Or}_{E^+_2} & \xrightarrow{\Phi(\phi, \Phi_1, \rho^+_1, \rho^-_1)} & \text{Or}_{E^-_1} \otimes \text{Or}_{E^-_2} \\
\downarrow^{2.3} & & \downarrow^{2.3} \\
\text{Or}_{E^+_1} \otimes \text{Or}_{E^+_2} & \xrightarrow{\Phi(\phi, \Phi_2, \rho^+_2, \rho^-_2)} & \text{Or}_{E^-_1} \otimes \text{Or}_{E^-_2}
\end{array}$

(v) (Restriction.) Let $\tilde{\phi} : \tilde{U}^+ \to \tilde{U}^-$ be a spin diffeomorphism extending ϕ to open supersets $U^\pm \subset \tilde{U}^\pm \subset X^\pm$, let Φ be a SU(m)-isomorphism over $\tilde{\phi}$ extending Φ, and assume $\tilde{\Phi} \circ \rho^+ = \tilde{\phi}^+ \rho^-$ outside a compact subset of U^+. Then $\text{Or}(\phi, \Phi, \rho^+, \rho^-) = \text{Or}(\tilde{\phi}, \tilde{\Phi}, \rho^+, \rho^-)$.

Here we recall from [25, p. 86] that a spin diffeomorphism is an orientation-preserving diffeomorphism $\phi : X^+ \to X^-$ together with a choice of lift of the induced map on GL$^+_m(\mathbb{R})$-frame bundles to the topological spin bundles.

If $E^\pm \to X$ are SU(m)-bundles and $\Phi : E^+ \to E^-$ a SU(m)-isomorphism, we may take $X^+ = X^- = U^+ = U^- = X$, and $\phi = \text{id}_X$, and $\rho^+ = \emptyset = \rho^-$ to be defined over the empty set. Then we use the shorthand $\text{Or}(\Phi) = \text{Or}(\text{id}_X, \Phi, \emptyset, \emptyset) : \text{Or}_{E^+} \longrightarrow \text{Or}_{E^-}$.

2.3. Global automorphisms.

2.3.1. Mapping torus. Theorem 2.15 includes as the special case $U^\pm = X^\pm$ the more obvious functoriality for globally defined diffeomorphisms $\phi : X^+ \to X^-$ and Φ. The theorem can be regarded as extending this functoriality to open manifolds and compactly supported data. The effect of a globally defined diffeomorphism can be studied using the following construction.

Definition 2.16. The mapping torus of a diffeomorphism $\psi : X \to X$ is the quotient X_ψ of $X \times [0, 1]$ by the equivalence relation $(x, 1) \sim (\psi(x), 0)$.

Proposition 2.17. The mapping torus has the following properties:

(i) If X is compact, then X_ψ is compact.

(ii) X_ψ is a fibre bundle over S^1 with typical fibre X.

(iii) If X is oriented and ψ is orientation preserving, then X_ψ is oriented.
(iv) When X has a spin structure and ψ is a spin structure preserving diffeomorphism we get a topological spin structure on X_ψ.

(v) Let $E \to X$ be a vector bundle and $\Psi : E \to E$ an automorphism covering ψ. Then the mapping torus E_Ψ is a vector bundle over X_ψ.

2.3.2. Calculating the effect on orientations using the mapping torus.

Proposition 2.18. Let X be an odd-dimensional compact spin manifold and $\Psi : E \to \psi^* (E)$ a $\SU(m)$-isomorphism of a $\SU(m)$-bundle $E \to X$ covering a spin diffeomorphism $\psi : X \to X$. Then

$$\text{Or}(\Psi) := \text{Or}(\text{id}_E)$$

Hence

$$\text{Or}(\Psi) = \text{Or}(\text{id}_E).$$

Proof. By choosing a connection $A_0 \in A_E$ and any smooth path A_t, $t \in [0, 1]$ from A_0 to $A_1 = \Psi^* A_0$ we may regard $E_\Psi \to X_\psi$ as a S^1-family of $\SU(m)$-bundles with connection. Pick a metric on X_ψ. Using the induced metrics g_t on X_ψ we can form the S^1-family of Diracians $D^\varphi_{\Ad A_t}$ twisted by $\Ad E$ and the S^1-family $D^\varphi_{\Ad \ZZ^m, 0}$ twisted by the flat connection. Then $\text{Or}(D^\varphi_{\Ad A_t}) \otimes \ZZ 2 \text{Or}(D^\varphi_{\Ad \ZZ^m, 0})^*$ is a double cover of S^1 with monodromy $\text{Or}(\psi, \Psi, \emptyset, \emptyset)$. On the other hand, since $\dim X$ is odd, the Diracians are self-adjoint and the monodromy coincides with the spectral flow around the loop [3, Th. 7.4].

As explained by Atiyah–Patodi–Singer in [3, p. 95], the spectral flow around a loop agrees with the index of a single operator on the mapping torus, using [2, Th. 3.10]. For the family $D^\varphi_{\Ad A_t}$ we get the positive Diracian $D^\varphi_+ \to X_\psi$ twisted by $\Ad E_\Psi$. To compute the index of a single operator we may complexify and can then apply the cohomological index formula of Atiyah–Singer [7] to get

$$\text{ind}(D^\varphi_{\Ad E_\Psi}) = \int_{X_\psi} \hat{A}(TX_\psi)(\text{ch}(E_\Psi \otimes \RR \C))$$

$$= \int_{X_\psi} \hat{A}(TX_\psi)(\text{ch}(E_\Psi \otimes E_\Psi) - 1),$$

using $(\Ad E_\Psi \otimes \RR \C) \otimes \C \cong E_\Psi \otimes E_\Psi$. Applying the same argument to the family $D^\varphi_{\Ad \ZZ^m, 0}$ and subtracting yields the desired result. \[\square\]

Proposition 2.19. For ψ, Ψ as in Proposition 2.18 and $\dim X = 7$ we have

$$(2.6) \quad \delta(\psi, \Psi) = \int_{X_\psi} c_2(E_\Psi)^2 - \frac{1}{2} \int_{X_\psi} p_1(TX_\psi)c_2(E_\Psi) \mod 2.$$

Hence

$$\text{Or}(\Psi) := \text{Or}(\text{id}, \psi, \Psi, \emptyset, \emptyset) = \text{id}$$

for an $\SU(m)$-automorphism $\Psi : E \to E$ (this was obtained by Walpuski in [33, Prop. 6.3]). Therefore $\text{Or}(\psi, \bar{\Psi}_1, \emptyset, \emptyset) = \text{Or}(\psi, \bar{\Psi}_2, \emptyset, \emptyset)$ whenever $\bar{\Psi}_1$ and $\bar{\Psi}_2$ cover the same spin diffeomorphism.

Proof. The proof is similar to that of Walpuski [33, Prop. 6.3]. We have

$$\delta(\psi, \Psi) = \int_{X_\psi} \frac{m + 6}{6} c_2(E_\Psi)^2 - \frac{m}{3} c_4(E_\Psi) + \frac{m}{12} p_1(TX_\psi)c_2(E_\Psi).$$
By the Atiyah–Singer index theorem \[5\]

\[
A := \int_{X_\psi} \hat{A}(TX_\psi)(\text{ch}(E_\psi) - m)
\]

\[
= \int_{X_\psi} \frac{c_2(E_\psi)^2 - 2c_4(E_\psi)}{12} + \frac{p_1(TX_\psi)c_2(E_\psi)}{24}
\]

is an index and hence an integer. Then (2.6) follows from

\[
\delta(\psi, \Psi) - 2m \cdot A = \int_{X_\psi} c_2(E_\psi)^2,
\]

\[
\delta(\psi, \Psi) - (12 + 2m)A = 2 \int_{X_\psi} c_4(E_\psi) + \frac{1}{2} p_1(TX_\psi)c_2(E_\psi).
\]

Finally, for \(\psi = \text{id}_X\) we have \(X_\psi = X \times S^1\) and \(p_1(TX_\psi) = \text{pr}_X p_1(TX)\). On the spin 7-manifold \(X\) the cohomology class \(p_1(TX)\) is divisible by four. \(\square\)

Example 2.20. Let \(E \to X\) be a \(\text{SU}(m)\)-bundle over a compact spin 7-manifold with second Chern class Poincaré dual to a 3-submanifold \(Y \subset X\).

Let \(\Psi: E \to E\) be a \(\text{SU}(m)\)-isomorphism covering a spin diffeomorphism \(\psi: X \to X\) satisfying \(\psi|_Y = \text{id}_Y\). Then we may regard \(Y \times S^1 \subset X_\psi\).

Formula (2.6) is the self-intersection (mod 2) of the class \(\alpha\) in \(H_4(X_\psi)\) Poincaré dual to \(c_2(E_\psi)\). We have \(\alpha = [Y \times S^1] + \beta\) for some \(\beta \in H_4(X)\), where \(X\) is included into \(X_\psi\) at some fixed point of \([0, 1]\). As the cross term appears twice and \(\beta \cdot \beta = 0\) in \(X_\psi\), we get

\[
\delta(\psi, \Psi) \equiv \int_{X_\psi} c_2(E_\psi)^2 \equiv \alpha \cdot \alpha \equiv [Y \times S^1] \cdot [Y \times S^1] \quad \text{mod} \, 2.
\]

This again shows that \(\delta(\text{id}, \Psi) \equiv 0\) when \(\psi = \text{id}\).

2.4. An example of a non-orientable moduli space \(B_Q\).

Suppose \((X, g)\) is a compact, spin Riemannian 7-manifold, and \(G\) is any Lie group, and \(Q \to X\) is a principal \(G\)-bundle. Then generalizing \([1]\) we may define moduli spaces \(\mathcal{A}_Q\) of connections on \(Q\) and \(B_Q = \mathcal{A}_Q/\mathcal{G}\) of connections on \(Q\) modulo gauge, and a principal \(\mathbb{Z}_2\)-bundle \(\mathcal{O}^{B_Q} \to \mathcal{A}_Q\) parametrizing orientations on \(\text{det} \mathcal{B}^g_{AdA}\) for \(A \in \mathcal{A}_Q\).

In \([1]\) we took \(G = \text{SU}(m)\) or \(\text{U}(m)\), and then Walpuski \([33\, \text{Prop. 6.3}]\) and \([21\, \text{Ex. 2.13}]\) show that \(\mathcal{G}\) acts trivially on the set of global sections of \(\mathcal{O}^{B_Q}\), so that \(\mathcal{O}^{B_Q}\) descends to a principal \(\mathbb{Z}_2\)-bundle \(O^{B_Q} \to B_Q\), which is orientable. But what about other Lie groups \(G\)?

This section will give an example of \((X, g)\) for which when \(G = \text{Sp}(m)\) for \(m \geq 2\) and \(Q = X \times \text{Sp}(m) \to X\) is the trivial \(\text{Sp}(m)\)-bundle, \(\mathcal{G}\) acts non-trivially on the set of global sections of \(\mathcal{O}^{B_Q}\), so that although \(\mathcal{O}^{B_Q}\) does in fact descend to a principal \(\mathbb{Z}_2\)-bundle \(O^{B_Q} \to B_Q\), this is non-orientable (i.e. it has no global sections). Hence the analogue of \([33\, \text{Prop. 6.3}]\) is \textit{false} for \(\text{Sp}(m)\)-bundles.

A result on stabilizing \(\mathbb{H}^m\)-bundles \([21\, \text{Ex. 2.16}]\) implies that if \(\mathcal{O}^{B_Q} \to B_Q\) is non-orientable for \(Q = X \times \text{Sp}(2)\) the trivial \(\text{Sp}(2)\)-bundle, then the same holds for \(Q = X \times \text{Sp}(m)\) for \(m \geq 2\). So we consider only \(G = \text{Sp}(2)\).
To show that $O_Q^{B^o} \to B_Q$ is non-orientable, it is enough to find a smooth loop $\gamma : S^1 \to B_Q$ such that the monodromy of $O_Q^{B^o}$ around γ is -1. As in [7 §2.2], a smooth loop $\gamma : S^1 \to B_Q$ is equivalent to a principal $\text{Sp}(2)$-bundle $R \to X \times S^1$ which is trivial on $X \times \{1\}$, together with a partial connection on R in the X directions, and any such R may be written as the mapping torus R_f of a smooth map $f : X \to \text{Sp}(2)$, obtained by taking the trivial bundle on $X \times [0,1]$ and identifying endpoints using the gauge transformation $f : X \to \text{Sp}(2)$.

As in Walpuski [33 §6.1] or in Proposition 2.18, the monodromy of $O_Q^{B^o}$ around γ is $(-1)^{\text{SF}(\gamma)}$, where SF(γ) is the spectral flow of the family of elliptic operators $(\nabla_{\text{Ad}(\gamma(t))})_{t \in S^1}$, which may be computed as an index $\text{SF}(\gamma) = \text{ind}(\nabla^+_{\text{Ad}(R_f)})$ of the positive Dirac operator ∇^+ on $X \times S^1$ twisted by any connection on $\text{Ad}(R_f)$.

Thus, to show that $O_Q^{B^o} \to B_Q$ is non-orientable on X, we should find a compact spin 7-manifold X and a smooth $f : X \to \text{Sp}(2)$ such that $\text{ind}(\nabla^+_{\text{Ad}(R_f)})$ is odd. We will do this in Example 2.24 after some initial computations.

Lemma 2.21. For a $\text{Sp}(2)$-bundle R over an 8-dimensional base we have

$$\text{ch}(\text{Ad}(R) \otimes \mathbb{R} \mathbb{C}) = 10 - 6c_2(R) + \frac{3}{2}c_2(R)^2 - 2c_4(R).$$

Proof. This can be computed using Chern roots, meaning it suffices to establish (2.7) in the case that the \mathbb{H}^2-bundle $(R \times \mathbb{H}^2)/\text{Sp}(2) \to X$ associated to R is the direct sum of quaternionic line bundles. □

Proposition 2.22. Let X be a compact spin 7-manifold and $R \to X \times S^1$ a $\text{Sp}(2)$-bundle. Then the index has the parity of the Euler number of R:

$$\text{ind}(\nabla^+_{\text{Ad}(R)}) = \int_{X \times S^1} c_4(R) \mod 2.$$

Proof. Using (2.7) we find that

$$\text{ind}(\nabla^+_{\text{Ad}(R)}) + 6 \cdot \text{ind}(\nabla^+_R) = \int_{X \times S^1} \frac{p_1(TX)c_2(R)}{2} + 2c_2(R)^2 - 3c_4(R).$$

As $p_1(TX)$ is divisible by four, the first term on the right is even. □

Let R_f be the mapping torus bundle over $X \times S^1$ of a smooth $f : X \to \text{Sp}(2)$. Then the Euler number of R_f is the degree of

$$X \xrightarrow{f} \text{Sp}(2) \xrightarrow{\pi} \text{Sp}(2)/\text{Sp}(1) = S^7.$$

For non-orientability, we seek X and f such that this degree is odd.

Example 2.23. Let $X = S^7$ and $f : S^7 \to \text{Sp}(2)$ be smooth. Then the degree of $\pi \circ f$ is always divisible by 12 and therefore $O_Q^{B^o} \to B_Q$ is orientable, for Q the trivial $\text{Sp}(2)$-bundle over S^7. To see this, consider the long exact sequence of homotopy groups of the fibration π:

$$\cdots \rightarrow \pi_7 \text{Sp}(2) \xrightarrow{\pi^*} \pi_7 S^7 = \mathbb{Z} \xrightarrow{0} \pi_6 \text{Sp}(1) \rightarrow \pi_6 \text{Sp}(2) \rightarrow \cdots$$

As $\pi_6 \text{Sp}(1) = \mathbb{Z}_{12}$ and $\pi_6 \text{Sp}(2) = \{0\}$, the cokernel of π^* is \mathbb{Z}_{12}. Hence orientability holds for the moduli space of $\text{Sp}(2)$-connections on S^7.

Example 2.24. For \(\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \text{Sp}(2) \) and \(q \in \text{Sp}(1) \), define
\[
M := \begin{pmatrix} |a|^2 + |bq|^2 & a \bar{c} + b \bar{q}d \\ \bar{c}a + dq \bar{b} & |c|^2 + dq \bar{a} \end{pmatrix}.
\]
Then \(M \in \text{Sp}(2) \). Replacing \((a, b, c, d, q)\) by \((ar, bs, cr, ds, sqs)\) for \(r, s \in \text{Sp}(1) \) does not change the matrix \(M \). Hence the formula defines a map
\[
f : X = \text{Sp}(2) \times_{\text{Sp}(1) \times \text{Sp}(1)} \text{Sp}(1) \longrightarrow \text{Sp}(2),
\]
where the diagonal subgroup \((r, s) \in \text{Sp}(1) \times \text{Sp}(1) \subset \text{Sp}(2)\) acts on \(q \in \text{Sp}(1) \) by conjugating with the second factor \(q \mapsto sqs \). It is easy to see that \(\text{deg}(\pi \circ f) = 1 \). It follows that \(O^\text{Dol} \rightarrow B_Q \) is non-orientable, where \(Q = X \times \text{Sp}(2) \rightarrow X \) is the trivial \(\text{Sp}(2) \)-bundle over \(X \).

In the sequel \cite[Ex. 1.14]{7} we will use Example 2.24 to find non-orientable moduli spaces of \(\text{Sp}(m) \)-connections \(B_Q \) for \(m \geq 2 \) on the 8-manifold \(X \times S^3 \).

3. Flag structures

We recall the following from \cite[§3.1]{17}. Here \(X \) is not assumed to be compact.

Definition 3.1. Let \(X \) be an oriented 7-manifold, and consider pairs \((Y, s)\) of a compact, oriented 3-submanifold \(Y \subset X \), and a non-vanishing section \(s \) of the normal bundle \(N_Y \) of \(Y \) in \(X \). We call \((Y, s)\) a flagged submanifold in \(X \).

For non-vanishing sections \(s, s' \) of \(N_Y \) define
\[
d(s, s') := Y \bullet \left\{ t \cdot s(y) + (1 - t) \cdot s'(y) \big| t \in [0, 1], y \in Y \right\} \in \mathbb{Z},
\]
using the intersection product \(\bullet \) between a 3-cycle and a 4-chain whose boundary does not meet the cycle, see Dold \cite[(13.20)]{8}, where we identify \(Y \) with the zero section in \(N_Y \).

Let \((Y_1, s_1), (Y_2, s_2)\) be disjoint flagged submanifolds with \([Y_1] = [Y_2] \in H_3(X; \mathbb{Z})\). Choose an integral 4-chain \(C \) with \(\partial C = Y_2 - Y_1 \). Let \(Y_1', Y_2' \) be small perturbations of \(Y_1, Y_2 \) in the normal directions \(s_1, s_2 \). Then \(Y_1' \cap Y_2' = Y_2' \cap Y_1' = \emptyset \) as \(s_1, s_2 \) are non-vanishing, and \(Y_1' \cap Y_2 = Y_2' \cap Y_1 = \emptyset \) as \(Y_1, Y_2 \) are disjoint and \(Y_1', Y_2' \) are close to \(Y_1, Y_2 \). Define \(D((Y_1, s_1), (Y_2, s_2)) \) to be the intersection number \((Y_2' - Y_1') \bullet C \) in homology over \(\mathbb{Z} \). Here we regard
\[
[Y_1'], [Y_2'] \in H_3(Y_1' \cup Y_2', \emptyset; \mathbb{Z}).
\]
Note that since \(Y_1', Y_2' \) are small perturbations and \(Y_1, Y_2 \) are disjoint we have \((Y_1 \cup Y_2) \cap (Y_1' \cup Y_2') = \emptyset \). This is independent of the choices of \(C \) and \(Y_1', Y_2' \).

In \cite[Prop.s 3.3 & 3.4]{17} the first author shows that if \((Y_1, s_1), (Y_2, s_2), (Y_3, s_3)\) are disjoint flagged submanifolds with \([Y_1] = [Y_2] = [Y_3] \in H_3(X; \mathbb{Z})\) then
\[
D((Y_1, s_1), (Y_3, s_3)) \equiv D((Y_1, s_1), (Y_2, s_2)) + D((Y_2, s_2), (Y_3, s_3)) \mod 2,
\]
and if \((Y', s')\) is any small deformation of \((Y, s)\) with \(Y, Y' \) disjoint then
\[
D((Y, s), (Y', s')) \equiv 0 \mod 2.
\]

Definition 3.2. A flag structure on \(X \) is a map
\[
F : \{\text{flagged submanifolds } (Y, s) \text{ in } X\} \longrightarrow \{\pm 1\},
\]
satisfying:
Flag structures restrict to open subsets in the obvious way.

\[F(Y_1, s_1), (Y_2, s_2) \] are disjoint flagged submanifolds in \(X \) with \(Y_1 = Y_2 \) in \(H_3(X; \mathbb{Z}) \) then

\[F(Y_2, s_2) = F(Y_1, s_1) \cdot (-1)^{D((Y_1, s_1), (Y_2, s_2))}. \]

This is a well-behaved condition by (3.2)–(3.3).

(iii) If \((Y_1, s_1), (Y_2, s_2) \) are disjoint flagged submanifolds then

\[F(Y_1 \cup Y_2, s_2) = F(Y_1, s_1) \cdot F(Y_2, s_2). \]

Flag structures restrict to open subsets in the obvious way.

Here is \[17\] Prop. 3.6:

Proposition 3.3. Let \(X \) be an oriented 7-manifold. Then:

(a) There exists a flag structure \(F \) on \(X \).

(b) If \(F, F' \) are flag structures on \(X \) then there exists a unique group morphism \(H_3(X; \mathbb{Z}) \to \{ \pm 1 \} \), denoted \(F'/F \), such that

\[F'(Y, s) = F(Y, s) \cdot (F'/F)[Y] \quad \text{for all } (Y, s). \]

(c) Let \(F \) be a flag structure on \(X \) and \(\epsilon : H_3(X; \mathbb{Z}) \to \{ \pm 1 \} \) a morphism, and define \(F' \) by \[3.4\] with \(F'/F = \epsilon \). Then \(F' \) is a flag structure on \(X \).

Thus the set of flag structures on \(X \) is a torsor for \(\text{Hom}(H_3(X; \mathbb{Z}), \mathbb{Z}_2) \).

Example 3.4. Every oriented 7-manifold \(X \) with \(H_3(X; \mathbb{Z}) = 0 \) has a unique flag structure. More generally, a basis \(\{ Y_i \} \) of the image of \(H_3(X; \mathbb{Z}) \to H_3(X; \mathbb{Z}) \) for submanifolds \(Y_i \subset X \) with chosen normal sections \(s_i \) induce a unique flag structure \(F \) with \(F(Y_i, s_i) = 1 \). For example, \(S^7 \) has a unique flag structure \(F_{S^7} \), and \(Y^3 \times S^4 \) has a preferred flag structure \(F \) with \(F(Y \times \{ x \}, Y \times v) = 1 \) for any \(x \in S^4 \) and \(0 \neq v \in T_x S^4 \).

Definition 3.5. Let \(\psi : X' \to X \) be an orientation-preserving diffeomorphism and \(F \) a flag structure on \(X \). The pullback flag structure on \(X' \) is \((\psi^*F)(Y', s') := F(\psi(Y'), d\psi \circ s')\). The pushforward flag structure is defined to be the pullback along \(\psi^{-1} \).

When \(X' = X \) we can compare a flag structure to its pullback along \(\psi \):

Proposition 3.6. Let \(X \) be an oriented 7-manifold and \(Y \subset X \) a compact oriented 3-submanifold. Suppose \(\psi : X \to X \) is an orientation-preserving diffeomorphism with \(\psi|_Y = \text{id}_Y \). Then

\[(F/\psi^*F)[Y] = (-1)^{[Y \times S^1] \bullet [Y \times S^1]} \]

for any flag structure \(F \) on \(X \), where \([Y \times S^1] \bullet [Y \times S^1]\) is the self-intersection of \(Y \times S^1 \) in the mapping torus \(X_\psi \).

Proof. Pick a non-vanishing normal section \(s : Y \to N_Y \). For \(y \in Y \) and \(t \in [0, 1] \) define \(\Gamma(y, t) := (1 - t)s(y) + t \cdot d\psi \circ s(y) \). By Proposition 3.3(b), Definition 3.2(i) and (3.1)

\[(F/\psi^*F)[Y] = F(Y, s) \cdot F(Y, d\psi \circ s)^{-1} = (-1)^{d(s, d\psi \circ s)} = (-1)^{Y \bullet \text{Im}(\Gamma)}. \]

The normal bundle of \(Y \times S^1 \) in \(X_\psi \) is the mapping torus of \(d\psi : N_Y \to N_Y \), so we can regard \(\Gamma \) as a normal section of \(Y \times S^1 \) in \(X_\psi \) by \(\Gamma(y, t) := [\Gamma(y, t), t] \). There being no intersection points at \(t = 0, 1 \) we have \(Y \bullet \text{Im}(\Gamma) = (Y \times S^1) \bullet \text{Im}(\Gamma) \). Finally, by taking \(s \) to zero \(\Gamma \) is homologous to \(Y \times S^1 \) in \(X_\psi \).
4. Canonical orientations

This section proves our main result Theorem 1.2 following the outline in §1.

4(A). The construction of orientations \(o_{Y,P,ℓ,Ψ}^E(E) \).

4(A)(i). Stably trivial bundles. We first extend \(o_{p}^{\text{flat}}(\mathbb{C}^m) \in \text{Or}_{\mathbb{C}^m} \) from Definition 2.13 to stably trivial bundles.

Definition 4.1. Let \(E \rightarrow X \) be a stably trivial SU\((m)\)-bundle over a compact spin 7-manifold. Then we find a SU\((m + k)\)-isomorphism \(Φ: E \oplus \mathbb{C}^k \rightarrow \mathbb{C}^{m+k} \) over \(\text{id}_X \). Using \((2.3) \) and Or\((Φ)\) we can identify Or\(E\) with \(\mathbb{Z}_2 \). That is, there exists a unique \(o^{\text{flat}}(E) \in \text{Or}_E \) satisfying

\[
(4.1) \quad \text{Or}(Φ)(o^{\text{flat}}(E) \cdot o^{\text{flat}}(\mathbb{C}^k)) = o^{\text{flat}}(\mathbb{C}^{m+k}),
\]

using the product notation defined after Proposition 2.14.

Proposition 4.2. These orientations have the following properties:

(i) (Well-defined.) The definition of \(o^{\text{flat}}(E) \) is independent of \(k, Φ \).

(ii) (Families.) Let \(P \) be compact Hausdorff and \(E \rightarrow X \times P \) stably trivial. Then \(p \mapsto o^{\text{flat}}(E|_{X \times \{p\}}) \) is a continuous section of the double cover \(\text{Or}_E \).

(iii) (Functoriality.) Let \(E_1 \) and \(E_2 \) be a SU\((m_1)\)- and SU\((m_2)\)-bundle over \(X \), both stably trivial. Let \(ℓ_1, ℓ_2 \in \mathbb{N} \) and let \(Ψ: E_1 \oplus \mathbb{C}^{ℓ_1} \rightarrow E_2 \oplus \mathbb{C}^{ℓ_2} \) be a SU-isomorphism. Then \(\text{Or}(Ψ)(o^{\text{flat}}(E_1 \oplus \mathbb{C}^{ℓ_1})) = o^{\text{flat}}(E_2 \oplus \mathbb{C}^{ℓ_2}) \).

(iv) (Stability.) \(o^{\text{flat}}(E \oplus \mathbb{C}^k) = o^{\text{flat}}(E) \cdot o^{\text{flat}}(\mathbb{C}^k) \).

(v) (Direct sums.) Let \(E_1, E_2 \rightarrow X \) be SU\((m_1)\)- and SU\((m_2)\)-bundles, both stably trivial. Then \(o^{\text{flat}}(E_1 \oplus E_2) = o^{\text{flat}}(E_1) \cdot o^{\text{flat}}(E_2) \).

Proof. (i) Given \(ℓ \in \mathbb{N} \) and \(Φ: E \oplus \mathbb{C}^k \rightarrow \mathbb{C}^{m+k} \) we use the properties of Proposition 2.14 and find

\[
o^{\text{flat}}(\mathbb{C}^{m+k+ℓ}) = o^{\text{flat}}(\mathbb{C}^{m+k}) \cdot o^{\text{flat}}(\mathbb{C}^ℓ)
\]

(unital)

\[
= \text{Or}(Φ)(o^{\text{flat}}(E) \cdot o^{\text{flat}}(\mathbb{C}^k)) \cdot o^{\text{flat}}(\mathbb{C}^ℓ)
\]

(by (4.1))

\[
= \text{Or}(Φ \oplus \text{id}_{\mathbb{C}^ℓ})(o^{\text{flat}}(E) \cdot o^{\text{flat}}(\mathbb{C}^k)) \cdot o^{\text{flat}}(\mathbb{C}^ℓ)
\]

(by (2.5))

\[
= \text{Or}(Φ \oplus \text{id}_{\mathbb{C}^ℓ})[o^{\text{flat}}(E) \cdot (o^{\text{flat}}(\mathbb{C}^k) \cdot o^{\text{flat}}(\mathbb{C}^ℓ))]
\]

(assoc.)

\[
= \text{Or}(Φ \oplus \text{id}_{\mathbb{C}^ℓ})(o^{\text{flat}}(E) \cdot o^{\text{flat}}(\mathbb{C}^{k+ℓ}))
\]

(unital).

This proves independence of \(k \). The independence of \(Φ \) follows from Proposition 2.19. Once \(o^{\text{flat}} \) is well-defined, (iii)–(iv) are clear.

(ii) We know already that Or\((Φ)\) and \(λ \) are continuous maps of double covers over \(P \) and that \(o^{\text{flat}}(\mathbb{C}^k) \) and \(o^{\text{flat}}(\mathbb{C}^{m+k}) \) are continuous sections.
(v) Let $\Phi_2: \mathbb{C}^m \oplus \mathbb{C}^{k_1} \to \mathbb{C}^{m_1+k_1}$ be $\text{SU}(m_1+k_1)$-isomorphisms. Then
\[
\phi_{\text{flat}}(\mathbb{C}^{m_1+k_1}) = \phi_{\text{flat}}(\mathbb{C}^{m_2+k_2}) \quad \text{unital}
\]
\[
= \text{Or}(\Phi_1) \left(\phi_{\text{flat}}(E_1) \cdot \phi_{\text{flat}}(\mathbb{C}^{k_1}) \right) \cdot \text{Or}(\Phi_2) \left(\phi_{\text{flat}}(E_2) \cdot \phi_{\text{flat}}(\mathbb{C}^{k_2}) \right) \quad \text{by (4.1)}
\]
\[
= \text{Or}(\Phi_1 \oplus \Phi_2) \left(\phi_{\text{flat}}(E_1) \cdot \phi_{\text{flat}}(\mathbb{C}^{k_1}) \cdot \phi_{\text{flat}}(E_2) \cdot \phi_{\text{flat}}(\mathbb{C}^{k_2}) \right) \quad \text{by (2.5)}
\]
\[
= \text{Or}(\Phi_1 \oplus \Phi_2) \text{Or}(\text{id}_{E_1} \oplus \text{flip} \oplus \text{id}_{E_2})
\]
\[
\left(\phi_{\text{flat}}(E_1) \cdot \phi_{\text{flat}}(E_2) \cdot \phi_{\text{flat}}(\mathbb{C}^{k_1}) \right) \quad \text{comm.}
\]
On the other hand, by using the trivialization $(\Phi_1 \oplus \Phi_2) \circ (\text{id}_{E_1} \oplus \text{flip} \oplus \text{id}_{E_2})$ of $E_1 \oplus E_2 \oplus \mathbb{C}^{k_1+k_2}$ in the definition (4.1), we have
\[
\text{Or}(\Phi_1 \oplus \Phi_2) \circ (\text{id}_{E_1} \oplus \text{flip} \oplus \text{id}_{E_2}) \left(\phi_{\text{flat}}(E_1 \oplus E_2) \cdot \phi_{\text{flat}}(\mathbb{C}^{k_1+k_2}) \right)
\]
\[
= \phi_{\text{flat}}(\mathbb{C}^{m_1+m_2+k_1+k_2}).
\]
The last two equations and unitality imply the result. \hfill \Box

Example 4.3. Since $\pi_0(\text{SU}(m)) = 0$ for $m \geq 4$, every $\text{SU}(m)$-bundle E over S^7 is stably trivial.

4(A)(ii). Trivializing $\text{SU}(m)$-bundles outside codimension 4. We now explain how to trivialize a $\text{SU}(m)$-bundle $E \to X$ outside a submanifold $Y \subset X$ of codimension 4. One might expect this on general grounds, as $\pi_i(\text{BSU}(m)) = 0$ for $i < 4$, but the construction may be of independent interest.

Construction 4.4. Let X be a compact, oriented manifold of dimension n, with $n \leq 11$, and $E \to X$ be a rank m complex vector bundle with $\text{SU}(m)$-structure, for $m \geq 1$. Write $\mathbb{C}^{m-1} = X \times \mathbb{C}^{m-1}$ for the trivial vector bundle over X with fibre \mathbb{C}^{m-1}, and $\text{Hom}(\mathbb{C}^{m-1}, E) \to X$ for the bundle of complex vector bundle morphisms over X, and $\text{Hom}(\mathbb{C}^{m-1}, E)$ for the determinantal variety of homomorphisms $s: \mathbb{C}^{m-1} \to E_x$ of rank $m-1-k$ for $k = 0, \ldots, m-1$, which is a submanifold of $\text{Hom}(\mathbb{C}^{m-1}, E)$ of real codimension $2k(k+1)$.

A morphism $s: \mathbb{C}^{m-1} \to E$ is a section $s: X \to \text{Hom}(\mathbb{C}^{m-1}, E)$. We call s generic if it is transverse to each $\text{Hom}(\mathbb{C}^{m-1}, E)$. This is an open dense condition on such s. If s is generic then $s^{-1}(\text{Hom}(\mathbb{C}^{m-1}, E))$ is a submanifold of X of dimension $n-2k(k+1)$, and so is empty if $k \geq 2$ as $n \leq 11$.

Write $Y = s^{-1}(\text{Hom}(\mathbb{C}^{m-1}, E))$, the degeneracy locus of s. Then Y is an embedded submanifold of X of dimension $n-4$. It is closed in X, as the closure lies in the union of $s^{-1}(\text{Hom}(\mathbb{C}^{m-1}, E))$ for $k \geq 1$, but these are empty for $k > 1$. It is oriented as X is, and the fibres of $\text{Hom}(\mathbb{C}^{m-1}, E) \to X$ and $\text{Hom}(\mathbb{C}^{m-1}, E) \to X$ are complex manifolds and so oriented.

As $X \setminus Y = s^{-1}(\text{Hom}(\mathbb{C}^{m-1}, E))$, we see that $s|_{X \setminus Y} : \mathbb{C}^{m-1}|_{X \setminus Y} \to E|_{X \setminus Y}$ is injective. Let $s^*|_{X \setminus Y} : E|_{X \setminus Y} \to \mathbb{C}^{m-1}|_{X \setminus Y}$ be its Hermitian adjoint, with respect to the Hermitian metrics on E and \mathbb{C}^{m-1}. Then $s^* \circ s|_{X \setminus Y} : \mathbb{C}^{m-1}|_{X \setminus Y} \to \mathbb{C}^{m-1}|_{X \setminus Y}$ is invertible with positive eigenvalues, and thus has an inverse square root $(s^* \circ s)|^{-1/2}|_{X \setminus Y} : \mathbb{C}^{m-1}|_{X \setminus Y} \to \mathbb{C}^{m-1}|_{X \setminus Y}$. Consider
\[
s|_{X \setminus Y} \circ (s^* \circ s)|^{-1/2}|_{X \setminus Y} : \mathbb{C}^{m-1}|_{X \setminus Y} \to E|_{X \setminus Y}.
\]
This is an injective linear map of complex vector bundles which is isometric for the Hermitian metrics on \(\mathbb{C}^{m-1}|_{\mathbb{C}^m_X \setminus \mathbb{C}^m_Y} \) and \(\mathbb{C}^{m-1}|_{\mathbb{C}^m_X \setminus \mathbb{C}^m_Y} \).

As \(E \) has a SU\((m)\)-structure, there is a unique isomorphism of SU\((m)\)-bundles \(\rho : \mathbb{C}^m|_{\mathbb{C}^m_X \setminus \mathbb{C}^m_Y} \to E|_{\mathbb{C}^m_X \setminus \mathbb{C}^m_Y} \), such that \(\rho|_{\mathbb{C}^{m-1}|_{\mathbb{C}^m_X \setminus \mathbb{C}^m_Y}} = s|_{\mathbb{C}^m_X \setminus \mathbb{C}^m_Y} \circ (s^* \circ s)|_{\mathbb{C}^m_X \setminus \mathbb{C}^m_Y}^{-1/2} \), regarding \(\mathbb{C}^{m-1} \) as a vector subbundle of \(\mathbb{C}^m = \mathbb{C}^{m-1} \oplus \mathbb{C}^1 \).

Thus, for any SU\((m)\)-bundle \(E \to X \) we can find a codimension 4 submanifold \(Y \subset X \) and a SU\((m)\)-framing \(\rho : \mathbb{C}^m|_{\mathbb{C}^m_X \setminus \mathbb{C}^m_Y} \to E|_{\mathbb{C}^m_X \setminus \mathbb{C}^m_Y} \) of \(E \) outside \(Y \).

From the definition of Chern classes in terms of degeneracy cycles in Griffiths and Harris [13, p. 412-3], we see that the homology class \(\frac{1}{i(\iota)} \in H^4(\mathbb{C}^m_X \setminus \mathbb{C}^m_Y, Y) \) is Poincaré dual to the second Chern class \(c_2(E) \) of \(E \).

4(A)(iii). Two embedding theorems. We will need the following variation on Whitney’s Embedding Theorem:

Theorem 4.5 (Haefliger [14, p. 47]). Let \(Y \) be a compact 3-manifold. Then:

1. There is an embedding \(Y \to S^7 \).
2. Any two embeddings \(Y \to S^7 \) are isotopic through embeddings.

Wall has shown the following:

Theorem 4.6 (Wall [31, p. 567]). Let \(Z \) be a compact connected 4-manifold with non-empty boundary. Then there exists an embedding \(Z \to S^7 \).

4(A)(iv). Definition of the orientations of SU\((m)\)-bundle \(E \).

Definition 4.7. Suppose \(X \) is a compact, oriented, spin 7-manifold with flag structure \(F \), and \(E \to X \) is a rank \(m \) complex vector bundle with SU\((m)\)-structure. After making some arbitrary choices, we will define an orientation \(o_E^{Y,\rho,\iota,\psi}(E) \).

As in Construction 4.4, choose a generic morphism \(s : \mathbb{C}^{m-1} \to E \), and from this construct a compact, oriented 3-submanifold \(Y \subset X \) and a SU\((m)\)-framing \(\rho : \mathbb{C}^m|_{\mathbb{C}^m_X \setminus \mathbb{C}^m_Y} \to E|_{\mathbb{C}^m_X \setminus \mathbb{C}^m_Y} \) of \(E \) outside \(Y \). By Theorem 4.5(i) we may choose an embedding \(\iota : Y \to S^7 \). Set \(Y' = \iota(Y) \), a 3-submanifold of \(S^7 \). Write \(N_Y, N_{Y'} \) for the normal bundles of \(Y, Y' \) in \(X, S^7 \).

We claim that we may choose an isomorphism \(\Psi : N_Y \to \iota^*(N_{Y'}) \) of vector bundles on \(Y \), which identifies the orientations and spin structures on the total spaces of \(N_Y, N_{Y'} \), induced by the orientations and spin structures on \(X, S^7 \). Here when we say that \(\Psi \) identifies the spin structures, we mean that it has a lift \(\hat{\Psi} \) to the spin bundles of \(N_Y, N_{Y'} \).

To see this, choose a spin structure on the oriented 3-manifold \(Y \) and transport it along \(\iota \) to \(Y' \). Using the spin structures on \(X, S^7 \) we get, by 2-out-of-3 [25 Prop. 1.15], spin structures \(P_{\text{Spin}}(N_Y) \to Y \) and \(P_{\text{Spin}}(N_{Y'}) \to Y' \) on \(N_Y, N_{Y'} \). As \(\dim Y = \dim Y' = 3 \) and Spin(4) is 2-connected, these are trivial principal bundles, and therefore we may choose an oriented, spin isomorphism \(\Psi \) between the normal bundles \(N_Y, N_{Y'} \).

Choose tubular neighbourhoods \(U \subset X \) and \(U' \subset S^7 \) of \(Y, Y' \) in \(X, S^7 \), identified with open \(\epsilon \)-balls in \(N_Y, N_{Y'} \), for small \(\epsilon > 0 \). Then \(\Psi \) induces a diffeomorphism \(\psi : U \to U' \) identifying orientations and spin structures on \(U, U' \), with \(\psi|_Y = \iota \) and \(d\psi|_{N_Y} = \Psi \). As in Construction 4.4 [Y] \(\in H^3(U; \mathbb{Z}) \) is Poincaré dual to \(c_2(E|_U, \rho|_{U \setminus Y}) \in H^4_{\text{cpt}}(U; \mathbb{Z}) \).
Define a rank m complex vector bundle $E' \to S^7$ with $SU(m)$-structure by $E'|_{S^7 \setminus V'} \cong \mathbb{C}^m$ and $E'|_{U'} \cong \psi(E|_{U'})$, identified over $U' \setminus Y'$ by $(\psi|_{U' \setminus Y'})_*$. Write \(\Xi: E|_{U'} \to \psi^*(E'|_{U'}) \) for the natural isomorphism and \(\rho' = \Xi \circ \rho \circ \psi^{-1} \) for the natural $SU(m)$-framing $\mathbb{C}^m|_{S^7 \setminus V'} \cong E'|_{S^7 \setminus V'}$. Then Theorem 2.15 gives a canonical excision isomorphism $\text{Or}(\psi, \Xi, \rho, \rho'): \text{Or}_E \to \text{Or}_{E'}$ in (2.4).

By Example 4.3, $E' \to S^7$ is stably trivial, so Definition 4.1 gives an orientation $o_{\text{flat}}(E') \in \text{Or}_{E'}$. As in (1.9), define $o_{Y, \rho, \iota, \Psi}^E(E) \in \text{Or}_E$ by

\[
o_{Y, \rho, \iota, \Psi}^E(E) = (F|_U/\psi^*(F_{S^7}|_U))[Y] \cdot \text{Or}(\psi, \Xi, \rho, \rho')^{-1}(o_{\text{flat}}(E')),
\]

where F_{S^7} is the unique flag structure on S^7, and $F|_U/\psi^*(F_{S^7}|_U)$ is as in Proposition 3.3(b) for the flag structures $F|_U$ and $\psi^*(F_{S^7}|_U)$ on U.

4(A)(v). Uniqueness of orientations, if they exist. Uniqueness of orientations, subject to our axioms, is explained in the outline of the proof in (11A).

4(B). $o_{Y, \rho, \iota, \Psi}^E(E)$ is independent of choices. We will prove the orientation $o_{Y, \rho, \iota, \Psi}^E(E)$ in Definition 4.7 depends only on X, F and $E \to X$, and not on the other arbitrary choices.

4(B)(i). $o_{Y, \rho, \iota, \Psi}^E(E)$ is independent of U, U', ψ for fixed Y, ρ, ι, Ψ. In the situation of Definition 4.7, let $X, F, E, Y, \rho, \iota, \Psi$ be fixed, and let U_0, U'_0, ψ_0 and U_1, U'_1, ψ_1 be alternative choices for U, U', ψ. Then by properties of tubular neighbourhoods we can find families U_t, U'_t and $\psi_t : U_t \to U'_t$ depending smoothly on $t \in [0, 1]$ and interpolating between U_0, U'_0, ψ_0 and U_1, U'_1, ψ_1. For each $t \in [0, 1]$ we get an orientation $o_{Y, \rho, \iota, \Psi}^E(E)_t$ in Definition 4.7 defined using U_t, U'_t, ψ_t. The families property Theorem 2.15(ii) of excision isomorphisms implies that $o_{Y, \rho, \iota, \Psi}^E(E)_t$ depends continuously on t, and so is constant. Hence $o_{Y, \rho, \iota, \Psi}^E(E)$ is independent of the choice of U, U', ψ.

4(B)(ii). $o_{Y, \rho, \iota, \Psi}^E(E)$ is independent of Ψ for fixed Y, ρ, ι. We will need the following:

Proposition 4.8. Let Y be a compact n-manifold, $N \to Y$ be a rank $2k$ real vector bundle with an orientation and spin structure on its fibres, and $\Phi : N \to N$ be an orientation and spin-preserving automorphism of N covering $\text{id}_Y : Y \to Y$. Suppose $E \to N$ is a rank m complex vector bundle with $U(m)$-structure for $2m > n + 2k$ with a framing ρ outside a compact subset of N. Then there exists a $U(m)$-isomorphism $\Theta : E \to \Phi^*(E)$ over id_N with $\Theta \circ \rho = \Phi^*(\rho)$ outside a compact subset of N.

When $n = 3$ and $2k = 4$, the same holds with $SU(m)$ in place of $U(m)$.

Proof. By Atiyah, Bott, and Shapiro [1] Th. 12.3(ii)], the spin structure on N determines a Thom isomorphism $\text{Thom} : K^0(Y) \to K^0_{\text{cpt}}(N)$, a form of Bott periodicity. By naturality we have a commutative diagram

\[
\begin{array}{ccc}
K^0(Y) & \xrightarrow{\text{Thom}} & K^0_{\text{cpt}}(N) \\
| id_Y^* | & \downarrow \Phi^* & | id_N^* | \\
K^0(Y) & \xrightarrow{\text{Thom}} & K^0_{\text{cpt}}(N).
\end{array}
\]

Since the horizontal maps are isomorphisms we see that $\Phi^* = \text{id}$. Thus we have $[E, \rho] = [\Phi^*(E), \Phi^*(\rho)]$ in $K^0_{\text{cpt}}(N)$. As we are in the stable range $2m \geq k$, the K-theory class determines the bundle up to isomorphism, so Θ exists as claimed.
For the second part, every Spin(4)-bundle over a compact 3-manifold Y is trivializable, and $\Omega^3BSU \simeq \Omega^4BU$ means that stably there is no difference between unitary and special unitary bundles on $N \cup\{\infty\} \cong Y^+ \wedge S^4$.

Proposition 4.9. $o^E_{Y,\rho,\iota,\psi}(E)$ is independent of Ψ.

Proof. In the situation of Definition 4.7 let $X, F, E, Y, \rho, \iota, Y'$ be fixed, and let $\Psi_0, \Psi_1 : N_Y \to \iota^*(N_{Y'})$ be alternative choices for Ψ. Using the same tubular neighbourhoods U, U' for Y, Y' in X, S^7, which do not affect $o^E_{Y,\rho,\iota,\psi}(E)$ by (4.4) these induce diffeomorphisms $\psi_0, \psi_1 : U \to U'$. Let $E_0', E_1' \to S^7$ be the corresponding $SU(m)$-bundles, with $SU(m)$-framings ρ_0', ρ_1' over $S^7 \setminus Y'$.

Pick a spin structure on $Y \cong Y'$, which determines spin structures on the fibres $N_Y, N_{Y'}$, by 2-out-of-3 for spin structures, where Ψ_0, Ψ_1 preserve these spin structures. Write $\phi = \Psi_1^{-1} \circ \Psi_0 : N_Y \to N_Y$, so that ϕ preserves orientations and spin structures on the fibres of N_Y.

Write $S(N_Y + \mathbb{R})$ for the sphere bundle of the vector bundle $N_Y + \mathbb{R} \to Y$, so that $S(N_Y + \mathbb{R}) \to Y$ is a S^4-bundle, containing N_Y as an open set, and obtained by adding a point at infinity to each fibre \mathbb{R}^4 of $N_Y \to Y$, making the fibres $\mathbb{R}^4 \cup \{\infty\} = S^4$. Then $S(N_Y + \mathbb{R})$ is a compact, oriented, spin 7-manifold, and Y embeds in $S(N_Y + \mathbb{R})$ as the zero section of N_Y. Write $\hat{\phi} : S(N_Y + \mathbb{R}) \to S(N_Y + \mathbb{R})$ for the diffeomorphism induced by $\phi : N_Y \to N_Y$.

As U is a tubular neighbourhood of Y in X it is diffeomorphic to the bundle of open ϵ-balls in N_Y, so we can regard U as an open neighbourhood of Y in N_Y and $S(N_Y + \mathbb{R})$, or, $E \to S(N_Y + \mathbb{R})$ for the rank m complex vector bundle with $SU(m)$-structure given by $E|_U \cong E|_U$ (identifying the open subsets U in X and $S(N_Y + \mathbb{R})$), and $E|_{S(N_Y + \mathbb{R}) \setminus Y} \cong \mathbb{C}^m|_{S(N_Y + \mathbb{R}) \setminus Y}$, identified over $U \setminus Y$ by $\rho|_{U \setminus Y}$.

Write $\tilde{\rho} : \mathbb{C}^m|_{S(N_Y + \mathbb{R}) \setminus Y} \to \tilde{E}|_{S(N_Y + \mathbb{R}) \setminus Y}$ for the obvious $SU(m)$-framing. Then $c_2(E)$ is Poincaré dual to $[Y] \in H_3(S(N_Y + \mathbb{R}); \mathbb{Z})$.

After stabilizing by \mathbb{C}^l for $l \geq 0$ with $2(m + l) \geq 7$, using Proposition 4.8 on $N_Y \subset S(N_Y + \mathbb{R})$ we obtain an isomorphism of $SU(m + l)$-bundles

$$\Theta : E \oplus \mathbb{C}^l \longrightarrow \tilde{\phi}^*(E) \oplus \mathbb{C}^l \cong \tilde{\phi}^*(\tilde{E}) \oplus \mathbb{C}^l,$$

compatible outside a compact subset of $N_Y \subset S(N_Y + \mathbb{R})$ with the $SU(m + l)$-framings induced by $\tilde{\rho}$. Thus Theorem 2.15 gives an isomorphism

$$(4.3) \quad \text{Or}(\tilde{\phi}, \Theta, \emptyset, \emptyset) : \text{Or}_{E \oplus \mathbb{C}^l} \longrightarrow \text{Or}_{E \oplus \mathbb{C}^l}.$$

Let \tilde{F} be the unique flag structure on $S(N_Y + \mathbb{R})$ with $\tilde{F}|_U = F|_U$, regarding U as an open subset of both $S(N_Y + \mathbb{R})$ and X. Then combining Propositions 2.19 and 3.6 and Example 2.20 we find that $\text{Or}(\tilde{\phi}, \Theta, \emptyset, \emptyset)$ in (4.3) is multiplication by the sign

$$(4.4) \quad (\tilde{F} \circ \tilde{\phi}^* \tilde{F})[Y] \circ \text{Or}_{E \oplus \mathbb{C}^l} \longrightarrow \text{Or}_{E \oplus \mathbb{C}^l}.$$

since identifying subsets U of X and $S(N_Y + \mathbb{R})$ identifies $\tilde{\phi}|_U$ with $\psi_1^{-1} \circ \psi_0$.

By functoriality of excision there is a commutative diagram

\[
\begin{array}{ccc}
\text{Or}_{E \oplus C^l} & \xrightarrow{\text{Or}(\text{id}_{U}, \text{id}_{E \oplus C^l}(U), \rho \oplus \text{id}_{C^l})} & \text{Or}_{E \oplus C^l} \\
\text{Or}((\psi^{-1}_1 \circ \phi_1(U, \rho \oplus \text{id}_{C^l}), \rho \oplus \text{id}_{C^l})) & \xrightarrow{\text{Or}(\text{id}_{U}, \text{id}_{E \oplus C^l}(U), \rho \oplus \text{id}_{C^l})} & \text{Or}_{E \oplus C^l},
\end{array}
\]

which implies that \(\text{Or}((\psi^{-1}_1 \circ \phi_1(U, \rho \oplus \text{id}_{C^l}), \rho \oplus \text{id}_{C^l}))\) is multiplication by \([4.4]\). Similarly, we have a commutative diagram

\[
\begin{array}{ccc}
\text{Or}_{E \oplus C^l} & \xrightarrow{\text{Or}(\text{id}_{U}, \text{id}_{E \oplus C^l}(U), \rho \oplus \text{id}_{C^l})} & \text{Or}_{E \oplus C^l} \\
\text{Or}((\psi^{-1}_1 \circ \phi_1(U, \rho \oplus \text{id}_{C^l}), \rho \oplus \text{id}_{C^l})) & \xrightarrow{\text{Or}(\text{id}_{U}, \text{id}_{E \oplus C^l}(U), \rho \oplus \text{id}_{C^l})} & \text{Or}_{E \oplus C^l},
\end{array}
\]

which implies that \(\text{Or}((\psi_i, \Xi_i \oplus \text{id}_{C^l}(U), \rho \oplus \text{id}_{C^l}, \rho' \oplus \text{id}_{C^l}))\) for \(i = 0, 1\) differ by a factor \([4.4]\). And for \(i = 0, 1\) we have commutative diagrams

\[
\begin{array}{ccc}
\text{Or}_{E \oplus C^l} & \xrightarrow{\text{Or}((\psi_i, \Xi_i \oplus \text{id}_{C^l}, \rho \oplus \text{id}_{C^l}, \rho' \oplus \text{id}_{C^l}))} & \text{Or}_{E \oplus C^l} \\
\lambda_{E \oplus C^l \otimes (\otimes_{S^2} \text{flat}(C^l))} & \xrightarrow{\text{Or}((\psi_i, \Xi_i \oplus \text{id}_{C^l}, \rho \oplus \text{id}_{C^l}, \rho' \oplus \text{id}_{C^l}))} & \text{Or}_{E \oplus C^l},
\end{array}
\]

so that that \(\text{Or}((\psi_i, \Xi_i, \rho, \rho')\) for \(i = 0, 1\) also differ by a factor \([4.4]\). Hence

\[
\text{Or}_{Y, \rho, \psi}(E) = (F|_U/\psi^*_0(F|_U))|Y| \cdot \text{Or}(\psi_0, \Xi_0, \rho, \rho')^{-1}(\text{flat}(E))
\]

\[
= (F|_U/\psi^*_0(F|_U))|Y| \cdot (F|_U/(\psi^{-1}_1 \circ \phi_0)^*(F|_U)|Y|.
\]

\[
\text{Or}((\psi_1, \Xi_1, \rho, \rho')^{-1}(\text{flat}(E)) = \text{Or}_{Y, \rho, \psi}(E),
\]

using \([4.2]\) in the first and fourth steps, that \(\text{Or}((\psi_i, \Xi_i, \rho, \rho')\) for \(i = 0, 1\) differ by \([4.4]\) in the second, and functoriality of \(F'/F\) in Proposition \([3.3]\) in the third. This completes the proof.

4(B)(iii). \(\text{Or}_{Y, \rho, \psi}(E)\) is independent of \(\iota: Y \to S^2\) for fixed \(Y, \rho\). In a similar way to \(4(B)(\text{iv})\) this is immediate from Theorem \([4.5]\) ii) and the families property Theorem \([2.15]\) ii) of excision isomorphisms.

4(B)(iv). \(\text{Or}_{Y, \rho, \psi}(E)\) is independent of \(s, Y, \rho\).

Proposition 4.10. \(\text{Or}_{Y, \rho, \psi}(E)\) is independent of \(s, Y, \rho\).

Proof. In Definition \([4.7]\) let \(s_0, s_1 : S^{m-1} \to E\) be alternative generic choices for \(s\), and let \(Y_0, \rho_0, \iota_0, \psi_0, \ldots\) and \(Y_1, \rho_1, \iota_1, \psi_1, \ldots\) be subsequent choices, so we have orientations \(\text{Or}_{Y_0, \rho_0, \psi_0}(E)\) and \(\text{Or}_{Y_1, \rho_1, \psi_1}(E)\) in \(\text{Or}_E\).

Choose a generic morphism \(\tilde{s} : S^{m-1} \times [0, 1] \to E \times [0, 1]\) over \(X \times [0, 1]\) with \(\tilde{s}|_{X \times \{0\}} = s_i\) for \(i = 0, 1\), and let \(Z\) be the degeneracy locus of \(\tilde{s}\). Then as in Construction \([4.4]\) \(Z \subset X \times [0, 1]\) is a compact embedded 4-submanifold with boundary \(\partial Z = \{Y_0 \times \{0\}\} \cup \{Y_1 \times \{1\}\}\).

By genericness, \(Z\) intersects the hypersurface \(X \times \{t\}\) in \(X \times [0, 1]\) for \(t \in [0, 1]\) transversely, except at finitely many points \((x_i, t_i)\) for \(i = 1, \ldots, k\), with \(0 < t_1 < \ldots < t_k < 1\).
\[
\cdots < t_k < 1. \text{ Also the projection } \pi_X | Z : Z \to X \text{ is an immersion except at finitely many points } (\tilde{x}_j, \tilde{t}_j) \text{ for } j = 1, \ldots, l, \text{ where } \{t_1, \ldots, t_k\} \cap \{\tilde{t}_1, \ldots, \tilde{t}_l\} = \emptyset.
\]

Define \(Y_t = \{ y \in X : (y, t) \in Z \} \) for each \(t \in [0, 1] \). If \(t \in [0, 1] \setminus \{t_1, \ldots, t_k\} \) then \(X \times \{t\} \) intersects \(Z \) transversely, so \(Y_t \) is a compact embedded 3-submanifold of \(X \), which depends smoothly on \(t \). But when \(t = t_i \), \(Y_{t_i} \) is generally singular at \(x_{t_i} \), and the topology of \(Y_t \) changes by a surgery as \(t \) crosses \(t_i \) in \([0, 1]\).

For \(t \in [0, 1] \setminus \{t_1, \ldots, t_k\} \) we have an orientation \(oY_t, \rho_t, \Psi_t(E) \) from Definition \ref{def:orientation} with \(s_t = \tilde{s}|_{X \times \{t\}} \) and \(Y_t \) in place of \(s \) and \(Y \), where \(\text{4}(B)(\text{i}) \) and \(\text{4}(B)(\text{iii}) \) imply these are independent of the additional choices \(t_t, \Psi_t \), \ldots, \(\tilde{t}_j \). Locally \(t \) we can make these additional choices depend smoothly on \(t \). Hence Theorem \ref{thm:orientation}(\text{ii}) implies that for \(t \) in each connected component of \([0, 1] \setminus \{t_1, \ldots, t_k\} \) this \(oY_{t_i}, \rho_{t_i}, \Psi_{t_i}(E) \) depends continuously on \(t \), and hence constant. Thus, to show that \(oY_{t_i}, \rho_{t_i}, \Psi_{t_i}(E) \) it suffices to prove that

\[
\forall i = 1, \ldots, k, \quad \text{for } \epsilon > 0 \text{ small.}
\]

Since \(\{t_1, \ldots, t_k\} \cap \{\tilde{t}_1, \ldots, \tilde{t}_l\} = \emptyset \), then \([t_i - \epsilon, t_i + \epsilon] \) contains no \(\tilde{t}_j \) for \(j = 1, \ldots, l \), so that \(\pi_X |_{Z \cap (X \times [t_i - \epsilon, t_i + \epsilon])} \to X \) is an immersion. As it is injective on \(Y_{t_i} \), which is compact, making \(\epsilon \) smaller we can suppose this is an embedding, so that \(W_i = \pi_X(Z \cap (X \times [t_i - \epsilon, t_i + \epsilon])) \) is an embedded 4-submanifold in \(X \) with boundary \(\partial W_i = Y_{t_i - \epsilon} \cup Y_{t_i + \epsilon} \). As the bordism \(W_i \) involves only a single surgery at \((x_{t_i}, t_i) \), each connected component of \(W_i \) must have nonempty boundary.

By Theorem \ref{thm:orientation} there exists an embedding \(j : W_i \hookrightarrow S^7 \). Since \(X \) and \(S^7 \) are both oriented and the normal bundles of \(W_i \) in \(X \) and \(S^7 \) are (noncanonically) isomorphic. Hence we can choose open tubular neighbourhoods \(V \) of \(W_i \) in \(X \) and \(V' \) of \(W_i' = j(W_i) \) in \(S^7 \) and a spin diffeomorphism \(\chi : V \to V' \).

Let \(U_{t_i, \pm \epsilon} \) be tubular neighbourhoods of \(Y_{t_i, \pm \epsilon} \) in \(V \). By \(\text{4}(B)(\text{i}) \) and \(\text{4}(B)(\text{iii}) \) we are free to define \(oY_{t_i, \pm \epsilon}, \rho_{t_i, \pm \epsilon}, \Psi_{t_i, \pm \epsilon}(E) \) using \(\rho_{t_i, \pm \epsilon} = \chi |_{Y_{t_i, \pm \epsilon}}, U_{t_i, \pm \epsilon}, U'_{t_i, \pm \epsilon} = \xi(U_{t_i, \pm \epsilon}) \) and \(\psi_{t_i, \pm \epsilon} = \chi |_{U_{t_i, \pm \epsilon}} \). Then we have

\[
\begin{align*}
oY_{t_i, \pm \epsilon}, \rho_{t_i, \pm \epsilon}, \psi_{t_i, \pm \epsilon}(E) & = (F[U_{t_i, \pm \epsilon}/\psi_{t_i, \pm \epsilon}(F_{S^7} | U_{t_i, \pm \epsilon}^r)][Y] \cdot \\
 & \text{Or}(\psi_{t_i, \pm \epsilon}, \Xi_{t_i, \pm \epsilon}, \rho_{t_i, \pm \epsilon}, \rho_{t_i, \pm \epsilon}^r)^{-1}(o_{\text{flat}}(E_{t_i, \pm \epsilon}^r)) \\
 & = (F[V/\chi^*(F_{S^7}|V')])[Y] \cdot \\
 & \text{Or}(\chi, \Xi_{t_i, \pm \epsilon}, \rho_{t_i, \pm \epsilon}, \rho_{t_i, \pm \epsilon}^r|x_{W_i}, \rho_{t_i, \pm \epsilon}|S^7|W_i')^{-1}(o_{\text{flat}}(E_{t_i, \pm \epsilon}^r)) \\
 & = (F[V/\chi^*(F_{S^7}|V')])[Y] \cdot \\
 & \text{Or}(\chi, \Xi_{t_i, \pm \epsilon}, \rho_{t_i, \pm \epsilon}, \rho_{t_i, \pm \epsilon}^r|x_{W_i}, \rho_{t_i, \pm \epsilon}|S^7|W_i')^{-1}(o_{\text{flat}}(E_{t_i, \pm \epsilon}^r)) \\
 & = (F[U_{t_i, \pm \epsilon}/\psi_{t_i, \pm \epsilon}(F_{S^7}|U_{t_i, \pm \epsilon}^r)][Y] \cdot \\
 & \text{Or}(\psi_{t_i, \pm \epsilon}, \Xi_{t_i, \pm \epsilon}, \rho_{t_i, \pm \epsilon}, \rho_{t_i, \pm \epsilon}^r)^{-1}(o_{\text{flat}}(E_{t_i, \pm \epsilon}^r)) \\
 & = oY_{t_i, \pm \epsilon}, \rho_{t_i, \pm \epsilon}, \Psi_{t_i, \pm \epsilon}(E).
\end{align*}
\]

Here the first and fifth steps come from \(\text{4}(2) \). In the second and fourth steps we use \(\psi_{t_i, \pm \epsilon} = \chi |_{U_{t_i, \pm \epsilon}} \), expanding the open sets \(U_{t_i, \pm \epsilon}, U'_{t_i, \pm \epsilon} \) to \(V, V' \), and shrinking the domains \(X \setminus Y_{t_i, \pm \epsilon}, S^7 \setminus Y'_{t_i, \pm \epsilon} \) of \(\rho_{t_i, \pm \epsilon}, \rho_{t_i, \pm \epsilon}^r \) to \(X \setminus W_i, S^7 \setminus W_i' \).
In the third step, with E, V, χ fixed, we deform the $\SU(m)$-framing $\rho_t|_{X\setminus W_t} : \mathbb{C}^m|_{X\setminus W_t} \to \mathbb{C}^m/W_t$ defined using s_t smoothly over $t \in [t_i - \epsilon, t_i + \epsilon]$, and hence also smoothly deforming the data $E_t', \Xi_t, \rho_t'|_{S^1|W_t'}$ constructed using $\rho_t|_{X\setminus W_t}$. Theorem 2.15(ii) implies that the corresponding family of orientations deforms continuously in $t \in [t_i - \epsilon, t_i + \epsilon]$, so has the same value at $t_i \pm \epsilon$. This proves equation (1.5), and the proposition.

4(B). The orientations $o^F(E)$ are well-defined. We have seen above in Sections 4(B)(i) and (B)(iv) that $o^F_{\rho, i, \psi}(E)$ in Definition 4.7 depends only on X, F, E, and not on the additional choices $s, Y, \rho, i, \Psi, U, U'$, ψ. Thus we can now define canonical orientations $o^F(E) = o^F_{Y, \rho, i, \psi}(E) \in \Or_Y$ for all X, F and $\SU(m)$-bundles $E \to X$, as in the first part of Theorem 1.2.

4(C). Verification of the axioms. Axiom (1.5) in Theorem 1.2(a) is obvious.

Proposition 4.11. Let $E_1, E_2 \to X$ be $\SU(m_1)$- and $\SU(m_2)$-bundles. Then under (1.2) we have $o^F(E_1 \oplus E_2) = o^F(E_1) \cdot o^F(E_2)$, proving Theorem 1.2(b).

Proof. In the situation of Definition 4.7, pick generic $s_k : \mathbb{C}^{m_k - 1} \to E_k$ for $k = 1, 2$, and let $Y_k, \rho_k, i_k, Y_k', \psi_k, U_k, \Psi_k, U_k', \rho_k$ be the subsequent choices. By genericity we may assume that $Y_1 \cap Y_2 = \emptyset$ and $Y_1'^{\prime} \cap Y_2' = \emptyset$, and making the tubular neighbourhoods smaller we can take $U_1 \cap U_2 = \emptyset$ and $U_1' \cap U_2' = \emptyset$.

As in 4(B) we have $o^F(E_k) = o^F_{Y_k, \rho_k, i_k, \psi_k}(E_k)$ for $k = 1, 2$. Also we may write $o^F(E_1 \oplus E_2) = o^F_{Y_1 \oplus Y_2, \rho, i, \psi}(E_1 \oplus E_2)$, where $Y = Y_1 \cup Y_2$, $\rho = \rho_1|_{X\setminus Y} \oplus \rho_2|_{X\setminus Y}$, $i = i_1 \cup i_2$, $\psi = \psi_1 \cup \psi_2$, $U' = U_1' \cup U_2'$, and $o^F_{Y, \rho, i, \psi}(E_1 \oplus E_2)$ is defined using $U = U_1 \cup U_2$, $\psi = \psi_1 \cup \psi_2$, $U' = U_1' \cup U_2'$, $E' = E_1 \oplus E_2'$, and $o^F_{Y, \rho, i, \psi}(E_1 \oplus E_2)$ is defined using $U = U_1 \cup U_2$, $\psi = \psi_1 \cup \psi_2$, $U' = U_1' \cup U_2'$, $E' = E_1 \oplus E_2'$.

Proposition 4.2(v) gives

$$o^\sflat(E') = o^\sflat(E_1') \cdot o^\sflat(E_2').$$

By applying $\Or(\psi, \Psi, \rho, \rho')$ to this equation and using compatibility of excision with λ and with restriction we find that

$$\Or(\psi, \Psi, \rho, \rho')(o^\sflat(E')) = \Or(\psi_1, \Psi_1, \rho_1, \rho_1')(o^\sflat(E_1')) \cdot \Or(\psi_2, \Psi_2, \rho_2, \rho_2')(o^\sflat(E_2')).$$

The proposition then follows from (1.2) by multiplying this equation by

$$(F|_{U_1}(F_{S^1}|U'))|_{Y_1 \cup Y_2} = (F|_{U_1}|(\psi_1)(F_{S^1}|U_1'))|_{Y_1} \cdot (F|_{U_2}/(\psi_2)(F_{S^1}|U_2'))|_{Y_2}.\]$$

Proposition 4.12. The excision axiom (1.7) in Theorem 1.2(c) holds.

Proof. Work in the set up of Theorem 1.2(c). Suppose that $\Phi \circ \rho^+|_{U^+ \setminus \hat{K}^+} = \phi^*\rho^-|_{U^+ \setminus \hat{K}^+}$ holds for $K^+ \subset U^+$ compact. Enlarging K^+ within U^+ to \tilde{K}^+ which is the closure of an open subset of U^+, we can choose a smooth morphism $s^+ : \mathbb{C}^{m-1} \to E^+$ on X^+ with $s^+|_{X^+ \setminus \hat{K}^+} = \rho^+|_{\mathbb{C}^{m-1} \setminus X^+ \setminus \hat{K}^+}$, such that s^+ is generic in the interior of \tilde{K}^+.

As in Definition 4.7 let Y^+ be the degeneracy locus of s^+, and construct a $\SU(m)$-framing $\tilde{\rho}^+ : \mathbb{C}^m|_{X^+ \setminus Y^+} \to E^+|_{X^+ \setminus Y^+}$ from $s^+|_{X^+ \setminus Y^+}$. This satisfies $\tilde{\rho}^+|_{X^+ \setminus \hat{K}^+} = \rho^+|_{\mathbb{C}^{m-1} \setminus X^+ \setminus \hat{K}^+}$, Choose an embedding

$$\tilde{\rho}^+ \mid_{X^+ \setminus \hat{K}^+} = \rho^+ \mid_{\mathbb{C}^{m-1} \setminus X^+ \setminus \hat{K}^+}.$$
for every \(p \in SU(4.7) \), this proves (1.7).

This completes the proof of the first part of Theorem 1.2, on \(SU(4) \).

Extension to \(U(m) \)-bundles. Clearly the canonical orientations \(o^F(E) \) for \(U(m) \)-bundles \(E \to X \) are well-defined. They also satisfy Theorem 1.2(a)–(c) and (ii), since mapping the \(U(m) \)-bundle \(E \) to the \(SU(m+1) \)-bundle \(E = E \oplus \Lambda^m E^* \) commutes with all the operations in (a)–(c) and (ii).

References

D. Joyce, The Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, U.K.
E-mail: joyce@maths.ox.ac.uk.

M. Upmeier, Department of Mathematics, University of Aberdeen, Fraser Noble Building, Elphinstone Rd, Aberdeen, AB24 3UE, U.K.
E-mail: markus.upmeier@abdn.ac.uk.