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Abstract

This study considers a new subsidy design to support the purchase or production of
target products. Under the proposed design, subsidy payments are inversely related to
product prices. Compared to ‘flat’ subsidies, this design reduces producers’ market power
and the subsidy benefits passed on to them, improving the cost-effectiveness of government
spending (by up to 50% according to simulations based on an actual subsidy programme).
Additionally, this subsidy’s cost-effectiveness and incidence can be adjusted flexibly by
changing the policy parameters. Finally, the subsidy design can be modified to provide
larger payments to higher-quality products, thereby offsetting disincentives for quality
improvement.

Keywords: IR subsidy, cost-effectiveness, incidence, imperfect competition, supermodular
games
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1 Introduction

Many subsidy programmes in various countries aim to promote the purchase or production

of target goods for such reasons as positive externalities, merit-good characteristics, and

distributional concerns. These programmes partially offset the purchase or production costs of

these goods through financial incentives offered to consumers or producers, such as grants,

rebates, and tax credits or deductions. The target goods of these programmes may be,

for example, ‘green’ technologies (e.g. electric vehicles (EVs) and solar photovoltaic (PV)

*Department of Economics, University of Aberdeen, Edward Wright Building, Dunbar Street, Aberdeen, AB24
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panels), childcare and education (e.g. nurseries), healthcare (e.g. treatment, insurance, and

pharmaceuticals), and housing (e.g. purchases and rentals). Typically, the subsidy payment

for a unit of a good is either independent of its price (in the case of ‘flat’ or specific subsidies)

or proportional to its price (in the case of ad valorem subsidies).1 Some subsidies use a

mixture of the two forms (e.g. an ad valorem subsidy with a cap, as in reference pricing

for pharmaceuticals). This study proposes a new subsidy form to be used in programmes

supporting the purchase or production of target goods. The proposed form includes a

mechanism that can reduce producers’ incentives to set high prices and thus significantly

improve the cost-effectiveness of these programmes. As an illustration, simulations based on

an actual EV subsidy in the US indicate that switching from the current specific subsidy to

the proposed form would increase the market sales by up to 50%, holding total government

spending on the programme constant.

Under imperfect competition, the form of taxation and subsidisation (e.g. a specific or ad

valorem subsidy) has welfare implications.2 Many previous studies use theoretical models of

imperfect competition in a closed-economy context and analyse the relative efficiency and

cost-effectiveness of different policy designs.3 In the case of taxes, Suites and Musgrave (1953),

Delipalla and Keen (1992), Skeath and Trandel (1994), Anderson et al. (2001a), and Hamilton

(2009), among others, compare specific and ad valorem taxes and show that in most settings,

an ad valorem tax is welfare-superior to a specific tax that raises the same amount of revenue.

Myles (1996), Hamilton (1999), and Carbonnier (2014) examine more general tax schemes

that include specific and ad valorem taxes as special cases. A key determinant of the relative

efficiency and cost-effectiveness of different policy designs is how they affect the elasticity of

demand faced by producers. In the case of subsidies, Valido et al. (2014) and Liang et al. (2018)

contrast specific and ad valorem subsidies. In the policy designs that these studies analyse, the

tax or subsidy payment per unit of a product is constant or increasing in the product’s price.

From an economic policy perspective, the subsidy design that I consider is fundamentally

different in that the subsidy payment decreases with the product price.

1In effect, an income tax credit is a specific subsidy that is equivalent to the amount of the credit, and an
income tax deduction is an ad valorem subsidy at the marginal income tax rate.

2In contrast, under perfect competition, in which firms are price takers with no market power, the form of
taxation and subsidisation has no effects in equilibrium.

3Some studies investigate differences between the specific and ad valorem forms of import tariffs or export
subsidies in open-economy settings in which domestic and foreign producers are treated differently (e.g. Brander
and Spencer, 1984; Collie, 2006). This study focuses on a closed-economy setting in which producers are treated
equally regardless of nationality, so export subsidies are outside the scope of this study.



3

Table 1: National Subsidy for Residential Solar PV Installation in Japan

Fiscal Rebate Condition on
year (U/kW) pre-rebate price ppre (U/kW)

2009 0 if 700, 000 < ppre
70,000 if ppre ≤ 700, 000

2010 0 if 650, 000 < ppre
70,000 if ppre ≤ 650, 000

2011 0 if 600, 000 < ppre
48,000 if ppre ≤ 600, 000

2012 0 if 550, 000 < ppre
30,000 if 475, 000 < ppre ≤ 550, 000
35,000 if ppre ≤ 475, 000

2013 0 if 500, 000 < ppre
15,000 if 410, 000 < ppre ≤ 500, 000
20,000 if ppre ≤ 410, 000

This table shows the rebate rate per kilowatt (kW) of
residential solar PV capacity installation. This rebate rate
depends on the pre-rebate, per-kW transaction price of
the PV system installed by each household.

Source: Japan Photovoltaic Energy Association

This study is motivated by a subsidy programme in Japan that has a distinct feature relative to

standard specific or ad valorem subsidy schemes. In this national subsidy (rebate) programme

for installing residential solar PV systems, the rebate rate per unit of PV capacity decreases

with the pre-rebate, unit price of the system, thereby giving sellers and buyers an incentive to

trade at lower pre-rebate prices. Specifically, Table 1 shows that as the transaction price of a

solar PV system per kilowatt (kW) of capacity (including installation and other related costs)

falls, the buyer (i.e. the household) becomes eligible for a greater rebate per kW of capacity.

For example, in 2012, a household received no rebate if the pre-rebate, per-kW transaction

price of the installed system was above U550,000, a rebate of U30,000 per kW if this price was

between U475,001 and U550,000, and a rebate of U35,000 if this price was equal to or below

U475,000.4 The demand for each product discontinuously changes at each price threshold,

incentivising sellers to take advantage of this structure. Thus, policymakers expected that this

scheme could lower not only consumer prices (i.e. post-rebate out-of-pocket prices paid by

households) but also producer prices (i.e. pre-rebate transaction prices received by sellers).

4A UK subsidy scheme for electric and hybrid vehicles adopted a similar scheme in 2016 with a threshold at
the vehicle price of £60,000.
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Figure 1: Distribution of Residential Solar PV System Prices (2012)
Source: RTS Corporation and the Ministry of Economy, Trade and Industry of Japan

This makes a clear contrast with the case of specific and ad valorem subsidies because these

standard subsidies typically decrease the consumer prices but increase the producer prices. In

other words, this unique design was expected to ‘overshift’ the producer prices, leading to

larger reductions in the post-rebate consumer prices and faster diffusion of solar PV systems

than in the case of a specific or ad valorem subsidy.

Transaction data suggest that this subsidy design indeed worked well in lowering the pre-

rebate producer prices in addition to the post-rebate consumer prices. Figure 1 shows the

pre-rebate price distribution of installed residential solar PV systems for 2012. The solar PV

system prices are bunched in the bins just below the threshold prices (U475,000 and U550,000),

indicating that sellers had price-setting power, accounted for the subsidy rule, and traded

at lower prices than they would without this subsidy scheme. As the threshold prices were

reduced significantly in each year, the subsidy design, along with declining production costs,

kept providing downward pressure on the producer prices, further accelerating solar PV

diffusion. The subsidy programme was phased out in 2014 following the rapid expansion of

residential solar PV capacity.

Despite this thought-provoking observation, to the best of my knowledge, no previous study

uses an economics framework to analyse the effects of a subsidy that is inversely related to
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a target product’s price. This study therefore proposes and evaluates a new subsidy scheme

with this property. More specifically, I consider a subsidy that is offered for the purchase

or production of a good on the condition that the good’s price is below a government-set

threshold. Additionally, as the good’s price decreases, the per-unit subsidy payment increases

in proportion to the difference between the threshold and the price.5 In other words, the

government sets two policy parameters: the price threshold for subsidy eligibility and the

rate at which the subsidy payment increases as the price falls (i.e. pi and r in the following

sections). Based on a model of imperfect competition (i.e. Bertrand competition with product

differentiation) and the theory of supermodular games, I compare this inversely related (IR)

subsidy to the benchmark case of no subsidy and to the cases of the widely used specific and

ad valorem subsidies in terms of various Nash equilibrium (NE) characteristics (e.g. output,

price, producer and consumer surplus, and government spending).

From the government’s perspective, the proposed design has advantages in cost-effectiveness

and flexibility. First, the IR form is more cost-effective than the specific and ad valorem forms in

the sense that it requires less government spending to induce a target output level through

subsidisation. Equivalently, for a given subsidy budget, the IR form can realise more output

than the specific and ad valorem forms. The IR form is more cost-effective because it makes the

demand curve faced by producers more elastic. In effect, producers are partially compensated

for cutting prices, so a £1 reduction in the consumer price can be achieved with a smaller

reduction in the producer price. This means that the IR form increases the elasticity of demand

with respect to the producer price. Elastic demand erodes producers’ power to maintain high

prices, thereby making it easier for policymakers to induce lower prices and more sales.

Second, the use of two policy parameters in the IR form provides an additional advantage of

flexibility. In inducing a given output level, the government can also choose the two policy

parameters to adjust the share of the subsidy benefit that is passed on to producers (i.e.

incidence) and the subsidy budget required to achieve the target (i.e. cost-effectiveness). The

government can flexibly make this adjustment in accordance with the policy objectives and

market circumstances and within certain limits imposed by producers’ rational behaviour.

The model in Section 3 shows that, depending on the parameter values, a firm’s equilibrium

profit under the IR form can be higher or even lower than in the case of no subsidy. That is,

5Under the subsidy schedule in Table 1, the subsidy payment and hence demand are both discontinuous at the
threshold prices. For tractability, I consider a subsidy schedule that is continuous in the product price.
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in addition to increasing the supply and consumption of subsidised goods, the IR form can

be used to financially support producers in an emerging industry (e.g. EV manufacturers) or

to lower economic rents due to imperfect competition. Note that the specific and ad valorem

forms do not offer such flexibility because they each have just one policy parameter.

Counterfactual simulations based on actual market data reveal that the IR scheme has sub-

stantial impacts. I construct a hypothetical market using data from the 2017 US EV market,

in which buyers were eligible for a specific subsidy of $7,500 from the federal government.

I then use this constructed market to simulate the impacts of replacing the original specific

subsidy with an IR subsidy so that the market output (50,981 EVs) or total subsidy budget

($382 million) remains constant. The simulations suggest that to induce this output level, the

IR form requires up to $4,600 ($5,100) or, equivalently, 61% (68%) less government spending

per unit of output than the specific form does, where the two sets of estimates reflect different

production cost scenarios. Alternatively, keeping the subsidy budget the same as in the case of

the original specific subsidy, the IR form can induce up to 48% (50%) more sales.

Finally, the IR subsidy, like the widely used ad valorem tax, may disincentivise product quality

improvements. Both schemes make quality improvements more costly because increasing the

pre-subsidy (pre-tax) price to reflect the improved quality results in a lower subsidy (higher tax)

payment.6 I show that the IR subsidy can offset this disincentive if the price threshold increases

with product quality so that higher-quality products can receive larger subsidy payments. In

practice, this result implies that the IR form works better when enough information is available

about product characteristics. For example, such products include renewable and energy-

efficient technologies (e.g. solar PV systems and EVs) and pharmaceuticals, for which subsidy

payments are often quality dependent in existing specific or ad valorem subsidy programmes.

The rest of the paper is organised as follows. Section 2 builds a model of Bertrand competition

with product differentiation, defines the IR subsidy, and compares the outcomes under various

subsidy schemes. Section 3 further analyses the NEs under the IR subsidy, focusing on the roles

of the two IR subsidy parameters. Section 4 quantifies the impacts of the IR subsidy through

counterfactual simulations based on an actual EV subsidy programme in the US. Section 5

extends the model by incorporating product quality and discusses ways to supplement the IR

subsidy to offset disincentives for quality improvement. Section 6 concludes.

6See Keen (1998) for a detailed description of this issue in the case of ad valorem taxation.
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2 Theoretical Framework

2.1 Basic Setup

Consider a market with n firms (with n ≥ 2) in which firm i produces a differentiated product

with a constant marginal cost ci (with ci > 0). The demand qi for firm i’s product is given

by qi = Di(pi, p−i), where Di : [0, pmax]× [0, pmax]n−1 → R+ is a continuous function, pi is

product i’s price, p−i is a vector of the prices of the other n− 1 firms’ products, and pmax is

large enough to give zero demand for any product regardless of the other products’ prices.7

For each i, the demand function Di also satisfies the following properties. It is strictly

decreasing in pi (where Di > 0). It is also increasing in pj for all j 6= i and is strictly increasing

in pj where Di > 0 and Dj > 0, implying that the products are gross substitutes.8 In addition,

I make an assumption that is common in studying games with strategic complementarities

such as Bertrand competition with product differentiation (e.g. Milgrom and Roberts, 1990;

Vives, 2005; Amir, 2005): if pi ≥ p′i and p−i ≥ p′−i (i.e. pj ≥ p′j for all j 6= i), then

Di(pi, p−i)Di(p′i, p′−i) ≥ Di(pi, p′−i)Di(p′i, p−i), (1)

which means that log Di exhibits increasing differences in pi and p−i (where Di > 0):

log Di(pi, p−i)− log Di(p′i, p−i) ≥ log Di(pi, p′−i)− log Di(p′i, p′−i). (2)

If Di is twice continuously differentiable, then (2) is equivalent to the condition that for each

j 6= i,

∂2 log Di(pi, p−i)

∂pi∂pj
=

1
Di(pi, p−i)2 [Di(pi, p−i)

∂2Di(pi, p−i)

∂pi∂pj
− ∂Di(pi, p−i)

∂pi

∂Di(pi, p−i)

∂pj
] ≥ 0.

(3)

7The demand function qi = Di(pi, p−i) can be considered the result of the following optimisation problem of a
representative consumer with quasi-linear utility U(x, q1, · · · , qn) = x + u(q1, · · · , qn) (see Vives (1999, Ch. 3) for
more details):

max
x,q1,··· ,qn

x + u(q1, · · · , qn) s.t. x + ∑
i

piqi ≤ I,

where x is the numéraire good (i.e. the composite of all other goods besides the n firms’ products), and I is
income. An interior solution is characterised by ∂u(q1, · · · , qn)/∂qi = pi ∀i. Thus, the inverse demand function
for product i can be expressed as pi(q1, · · · , qn) = ∂u(q1, · · · , qn)/∂qi ∀i. Inverting the system of inverse demand
functions gives the demand function for each product i as qi = Di(p1, · · · , pn). Finally, with quasi-linear utility, the
representative consumer assumption is not restrictive.

8Throughout this paper, a (single-valued) function f is increasing (decreasing) if x > y implies f (x) ≥ (≤)
f (y). It is strictly increasing (decreasing) if x > y implies f (x) > (<) f (y).
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An intuitive economic implication of (3) is that the own-price elasticity of demand for product i

(i.e. −(∂Di/Di)/(∂pi/pi)) is decreasing in the price of another product j. That is, the demand

for product i becomes less own-price elastic as pj increases. This condition is satisfied by a

large class of demand functions, including linear, logit, CES, and translog demand functions,

among others (Milgrom and Roberts, 1990). Note that I make no assumption regarding the

concavity or convexity of Di or log Di.

I consider Bertrand competition without and with a subsidy. First, in the baseline case of no

subsidy, firm i’s profit is given by

πiN(pi, p−i)=(pi − ci)Di(pi, p−i). (4)

Next, suppose that the government offers a subsidy to consumers or producers for buying or

selling a unit of a target product. Importantly, this study’s results apply regardless of whether

consumers or producers are the direct recipients of the subsidy (physical neutrality; see e.g.

Weyl and Fabinger, 2013). Throughout this paper, pi refers to the consumer price, namely,

the effective post-subsidy price that a consumer pays out of pocket. Demand depends on the

consumer price. The producer price (i.e. the price received by firm i) is denoted by pp
i and

equals the sum of pi and the subsidy payment. If the government offers a specific subsidy of si

per unit of good i (where 0 < si < ci), then firm i’s profit is given by

πiS(pi, p−i; si)=(pi + si − ci)Di(pi, p−i). (5)

If the government offers an ad valorem subsidy of api per unit of good i (where 0 < a), then

firm i’s profit is given by

πiA(pi, p−i; a)=[(1 + a)pi − ci]Di(pi, p−i). (6)

The theory of supermodular games is useful for analysing Bertrand competition with product

differentiation (e.g. Milgrom and Roberts, 1990; Vives, 2005; Amir, 2005). It follows from
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(1) that log πiN , log πiS, and log πiA satisfy increasing differences in pi and p−i,9 making the

corresponding Bertrand competition a log-supermodular game. Thus, in each of these settings,

firm i’s best response correspondence is increasing in p−i, and at least one (pure-strategy)

NE exists.10 Moreover, if there are multiple NEs in one of these settings, then an NE exists

at which every product’s price is higher than its price at any other NE in this setting. This

coordinate-wise largest NE Pareto dominates other NEs in terms of each firm’s profit and thus

is the Pareto-best NE for the firms in this setting.

2.2 IR Subsidy

I now define the IR subsidy form proposed in this study. The government conditionally offers

a subsidy that is inversely related to the consumer price of the target product. No subsidy

is offered if the consumer price is greater than or equal to a certain threshold pi that is set

by the government (i.e. no subsidy is available if pi ≥ pi). If the price is below pi, then the

subsidy per unit of the good increases linearly as the price decreases. Specifically, if pi < pi,

then a subsidy of r(pi − pi) is provided per unit of the good traded (i.e. the producer price

is pp
i = pi + r(pi − pi)), where 0 < r < 1 and rpi < ci < pi.

11 Equivalently, in terms of the

producer price pp
i , the subsidy payment is given by rp(pi − pp

i ), where rp = r/(1− r).12 The

threshold pi may vary across i (e.g. Section 5 considers an extension in which pi depends on

9If pi ≥ p′i ≥ ci and p−i ≥ p′−i, then it follows from (1) that

πiN(pi, p−i)πiN(p′i , p′−i) = (pi − ci)(p′i − ci)Di(pi, p−i)Di(p′i , p′−i)

≥ (pi − ci)(p′i − ci)Di(pi, p′−i)Di(p′i , p−i)

= πiN(pi, p′−i)πiN(p′i , p−i).

Thus, log πiN satisfies increasing differences in pi and p−i (where πiN > 0):

log πiN(pi, p−i)− log πiN(pi, p′−i) ≥ log πiN(p′i , p−i)− log πiN(p′i , p′−i).

Analogously, log πiS and log πiA satisfy increasing differences in pi and p−i (where πiS > 0 and πiA > 0,
respectively).

10Throuout this study, I focus on pure-strategy NEs.
11These conditions set the range for the subsidy’s generosity. The condition r < 1 ensures dpp

i /dpi = 1− r > 0,
implying that the subsidy is not generous enough that the firm can lower the consumer price without reducing the
producer price (i.e. per-unit revenue). The condition ci < pi means that setting pi = ci is profitable, and rpi < ci
means that setting pi = 0 results in a loss.

12The subsidy payment r(pi − pi), which is defined in terms of the consumer price pi, can alternatively be
expressed in terms of the producer price pp

i as rp(pi − pp
i ). Here, the parameter rp differs from r, whereas pi is by

construction the same as in the pi-based definition given above. By rearranging pp
i − pi = r(pi − pi) = rp(pi − pp

i ),
I obtain rp = r/(1− r). Because the function g : (0, 1)→ (0, ∞) with g(r) = r/(1− r) is bijective (i.e. one-to-one
and onto), it does not matter whether the subsidy is defined in terms of the consumer or producer price.
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product i’s quality). Let the function πiU be defined by

πiU(pi, p−i; r, pi) = [pi + r(pi − pi)− ci]Di(pi, p−i), (7)

which is the profit when the subsidy of r(pi − pi) (which may be negative) is provided

unconditionally (i.e. whether or not pi is below the threshold pi). With the threshold in place,

firm i’s profit under the IR subsidy, denoted by πiI(pi, p−i; r, pi), equals either πiN(pi, p−i)

(firm i’s profit with no subsidy) or πiU(pi, p−i; r, pi):

πiI(pi, p−i; r, pi) =


πiN(pi, p−i) if pi ≥ pi,

πiU(pi, p−i; r, pi) if pi ≤ pi.
(8)

By definition, πiN(pi, p−i) = πiU(pi, p−i; r, pi) if pi = pi, so πiI(pi, p−i; r, pi) is continuous.

Because πiU(pi, p−i; r, pi) = [(1− r)pi + rpi − ci]Di(pi, p−i), the IR form can be viewed as a

combination of an ad valorem tax at a rate of r and a specific subsidy of rpi, subject to the

non-negativity constraint that the subsidy payment equals max{r(pi − pi), 0}. This constraint

ensures that the target product, which is mostly associated with social benefits such as positive

externalities, is not taxed even if it is priced highly; it does not make sense for the government

to impose a special tax on, for example, solar PV systems when it wants to accelerate their

diffusion. In this sense, the IR form is related to the model of Myles (1996) (or the more

generalised model of Hamilton (1999)), which analyses such a dual scheme within the context

of commodity taxation (i.e. for the case of r(pi − pi) < 0 or pi < pi without the non-negativity

constraint mentioned above).13

Leaving aside the non-negativity constraint, from an economic policy perspective, the dual

scheme operates fundamentally differently depending on whether it is used to calculate a tax

payment, −r(pi − pi) (which is positive for pi > pi), or a subsidy payment, r(pi − pi) (which

is positive for pi < pi). As a tax scheme, it exhibits the standard property, shared by almost

all tax and subsidy schemes, that the tax or subsidy payment is non-decreasing in pi. As a

subsidy scheme, however, it has the unique feature that the subsidy payment is decreasing in

pi, as in the motivating example of the solar PV subsidy described in Section 1.

13With respect to market structure, Myles (1996) and Hamilton (1999) consider homogeneous-product Cournot
frameworks with identical firms, whereas I use a differentiated-product Bertrand framework with heterogeneous
firms.
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As shown in Appendix A.1, log πiU and log πiI satisfy increasing differences in pi and p−i.

Thus, as in the previous settings, the Bertrand game under the IR subsidy has at least one

(pure-strategy) NE. In particular, it has a coordinate-wise largest NE, which is the Pareto-best

NE from the firms’ perspective.

The following proposition gives firm i’s maximum profit and best response correspondence

under the IR subsidy. The best response correspondences of all firms determine the NE(s)

mentioned above. The proposition states that a firm’s choice to opt in or out depends simply

on the relative sizes of maxpi πiN(pi, p−i) and maxpi πiU(pi, p−i; r, pi), where maximisation is

unconstrained by the subsidy (in)eligibility conditions shown in (8). Thus, the (in)eligibility

conditions can be ignored when determining maxpi πiI(pi, p−i; r, pi) because they are implied

by the sign of maxpi πiN(pi, p−i)−maxpi πiU(pi, p−i; r, pi) (see Lemma 1 in the Appendix).

Proposition 1. Given r, pi, and p−i, suppose that at least one of maxpi πiN(pi, p−i) and maxpi πiU(pi, p−i; r, pi)

is positive, and let Gi(p−i; r, pi)=maxpi πiN(pi, p−i)−maxpi πiU(pi, p−i; r, pi). The maximum profit

under the IR subsidy is as follows:

max
pi

πiI(pi, p−i; r, pi) =


maxpi πiN(pi, p−i) if Gi(p−i; r, pi) ≥ 0,

maxpi πiU(pi, p−i; r, pi) if Gi(p−i; r, pi) ≤ 0.
(9)

Let ψiN(p−i)= arg maxpi
πiN(pi, p−i) and ψiU(p−i; r, pi)= arg maxpi

πiU(pi, p−i; r, pi). Equation

(9) indicates that the best response correspondence ψiI under the IR subsidy is as follows:

ψiI(p−i; r, pi)= arg max
pi

πiI(pi, p−i; r, pi) =


ψiN(p−i) if Gi(p−i; r, pi) > 0,

ψiN(p−i) ∪ ψiU(p−i; r, pi) if Gi(p−i; r, pi) = 0,

ψiU(p−i; r, pi) if Gi(p−i; r, pi) < 0.

(10)

Proof. See the Appendix. �

As an illustration, I consider the case of a duopoly with linear demand Di(pi, pj) = αi −

βi pi + γi pj, where αi, βi, and γi are all positive.14 For this market, Figure 2 shows each

14It is straightforward to show that this demand system satisfies the conditions stated at the beginning of
Section 2.1, including the property of increasing differences.
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p2

p1

p2

p1

p1 = ψ1U(p2; r, p1)

p1 = ψ1N(p2)

k1

p1 = ψ1I(p2; r, p1) =

{
ψ1N(p2) if p2 ≥ k1,
ψ1U(p2; r, p1) if p2 ≤ k1.

p2 = ψ2U(p1; r, p2)

p2 = ψ2N(p1)

k2

p2 = ψ2I(p1; r, p2) =

{
ψ2N(p1) if p1 ≥ k2,
ψ2U(p1; r, p2) if p1 ≤ k2.

p∗2N

p∗1N

p∗2U

p∗1U

Figure 2: Duopolists’ Best Response Correspondences with an IR Subsidy

firm’s discontinuous best-response correspondence (10) and the resulting NEs. In this setting,

Gi(pj; r, pi) and pj − ki, where ki = {−αi + βi[pi + (pi − ci)(1− r)−0.5]}/γi, have the same

signs. Thus, as shown in Figure 2, firm i’s best response ψiI(pj; r, pi) switches between

ψiN(pj) =
γi

2βi
pj +

αi
2βi

+ ci
2 and ψiU(pj; r, pi) =

γi
2βi

pj +
αi

2βi
+

ci−rpi
2(1−r) at pj = ki. Intuitively, given

the strategic complementarity of Bertrand competition, if firm j sets a sufficiently high price,

firm i should set a price above pi even though it means losing eligibility for the subsidy. A

more generous subsidy scheme (i.e. a scheme with a larger r or pi) increases ki, extending the

range of pj in which firm i adopts the scheme.

The NEs of this game are the intersections of p1 = ψ1I(p2; r, p1) and p2 = ψ2I(p1; r, p2). Figure

2 contains two NEs: (p∗1N , p∗2N), at which both firms opt out, and (p∗1U , p∗2U), at which both

firms opt in. The former Pareto dominates the latter. With a different set of (r, pi), ψiU and

ki would shift, implying that an NE at which both opt in or opt out may not exist. Instead,

an NE at which one firm opts in and the other firm opts out may exist (at the intersection

of p1 = ψ1N(p2) and p2 = ψ2U(p1; r, p2) or that of p1 = ψ1U(p2; r, p1) and p2 = ψ2N(p1)). As

discussed above, the theory of supermodular games ensures that for a given set of parameters,

at least one of these four points is an intersection of p1 = ψ1I(p2; r, p1) and p2 = ψ2I(p1; r, p2)

and thus is an NE.
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2.3 Comparative Analysis of Subsidy Forms

This subsection analyses the effects of subsidy policy design on a firm’s best response and

NEs. For now, I disregard the subsidy eligibility threshold pi and consider πiU(pi, p−i), as

defined in (7), rather than πiI(pi, p−i), as defined in (8). That is, the following analysis shows

the possible outcomes if the subsidy payment of r(p− pi) (which may be negative) is provided

unconditionally without the eligibility threshold. For convenience, this unconditional rule

is termed as the UIR form.15 In Section 3, I focus on πiI(pi, p−i) and the full IR form by

accounting for the restriction imposed by the price threshold pi.

Given p−i and the subsidy policy parameters (i.e. si > 0, a > 0, r ∈ (0, 1), and pi ∈

(ci, ci/r)), let ψiN(p−i), ψiS(p−i; si), ψiA(p−i; a), and ψiU(p−i; r, pi) denote the best response

correspondences that maximise the respective profits πiN , πiS, πiA, and πiU . In the following

discussion, I focus on the non-trivial situations in which the maximum profits are positive.16

Let p∗N , p∗S(s), p∗A(a), and p∗U(r, p), where s=(s1, · · · , sn) and p=(p1, · · · , pn), denote the

coordinate-wise largest (and thus Pareto-best) NEs in the respective subsidy settings. The

theory of supermodular games ensures the existence of these NEs, as discussed at the end of

Section 2.1.

A well-known and intuitive result of applying Topkis’s (1978) monotonicity theorem to

Bertrand competition with product differentiation is that a reduction in a firm’s marginal

cost shifts down its best response correspondence and lowers the Pareto-best NE prices of

all products. Viewing a subsidy as a reduction in the effective marginal cost, we have the

following proposition regarding the impacts of the above subsidies.

Proposition 2. Providing a subsidy or increasing its generosity shifts down each firm’s best response

correspondence (points (i) and (ii) below) and lowers the prices of all products at the Pareto-best NE

(points (iii) and (iv) below).

(i) If piN ∈ ψiN(p−i), piS ∈ ψiS(p−i; si), piA ∈ ψiA(p−i; a), and piU ∈ ψiU(p−i; r, pi), then

piS ≤ piN , piA ≤ piN , and piU ≤ piN .

(ii) (a) ψiS(p−i; si), ψiA(p−i; a), and ψiU(p−i; r, pi) are strongly decreasing in si, a, r, and pi,

15Myles (1996) analyses the UIR form in the context of commodity taxation.
16Let pmin

i =min{ci − si, ci/(1 + a), (ci − rpi)/(1− r)} and pmin
−i be a vector containing pmin

j for all j 6= i. If

Di(ci, pmin
−i ) > 0 for each i, then firm i’s best response to p−i, where p−i ≥ pmin

−i , results in a positive profit in each
of these subsidy (or no-subsidy) settings.
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respectively.17

(b) If ψiS, ψiA, and ψiU are (single-valued) functions, then they are decreasing in si, a, r, and pi,

respectively.

(iii) p∗S(s) ≤ p∗N , p∗A(a) ≤ p∗N , and p∗U(r, p) ≤ p∗N .

(iv) p∗S(s), p∗A(a), and p∗U(r, p) are decreasing in s, a, r, and p, respectively.

Proof. See the Appendix. �

Next, I compare the effectiveness of the different subsidy forms in terms of the government

spending required to achieve a given target.18 Given an UIR scheme (r, pi),

πiU(pi, p−i; r, pi) = (1− r)
[

pi +
r(pi − ci)

1− r
− ci

]
Di(pi, p−i) = (1− r)πiS(pi, p−i;

r(pi − ci)

1− r
),

(11)

which implies that ψiU(p−i; r, pi) = ψiS(p−i; r(pi − ci)/(1− r)). Thus, under the UIR scheme,

the optimising firm sets its product’s price as if a specific subsidy of r(pi − ci)/(1− r) were

provided, whereas it actually receives r(pi − piU), where piU ∈ ψiU(p−i; r, pi). Because r(pi −

ci)/(1− r) > r(pi − piU),19 the UIR scheme (r, pi) can induce the same response as the specific

subsidy of si = r(pi − ci)/(1− r) can, but it requires a smaller subsidy payment than the

specific subsidy scheme does. In this sense, the UIR scheme is more cost-effective than the

specific scheme. Because the two schemes result in the same consumer price and thus the

same output, the difference between the two schemes in the aggregate subsidy expenditure

for product i is, by construction, equal to the difference in firm i’s profit. If the condition

si = r(pi − ci)/(1− r) holds for all i, then both the specific and UIR schemes lead to the same

NEs.

The difference in cost-effectiveness is due to the difference in the price elasticity of demand

that the firms face. Firm i faces the demand curve Di((pp
i − rpi)/(1− r), p−i) under the UIR

scheme (where pp
i is the producer price), whereas it faces Di(pp

i − si, p−i) under the specific

17A correspondence f is strongly decreasing (increasing) if x > x′ imply y ≤ (≥) y′ for any y ∈ f (x)
and y′ ∈ f (x′). For example, (ii) (a) means that if r > r′, then piU ≤ p′iU for any piU ∈ ψiU(p−i; r, pi) and
p′iU ∈ ψiU(p−i; r′, pi).

18Anderson et al. (2001a) use a similar approach to compare specific taxation with ad valorem taxation.
19The assumption πiU(piU , p−i; r, pi) > 0 implies

r(pi − ci)/(1− r)− r(pi − piU) = [piU + r(pi − piU)− ci]r/(1− r) > 0.
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scheme. The former demand curve is flatter (on the Di-pp
i plane) and more price sensitive

than the latter curve. More price-elastic demand induces a lower (producer) price, thereby

reducing the subsidy benefit passed on to the firm and the government’s cost of increasing the

production and sales of the target product through subsidisation.

The following proposition summarises these results and extends the comparison to the ad

valorem form and the UIR form with different values of r and pi.

Proposition 3. Consider four sets of subsidy policy parameters, (i) (s1, · · · , sn) (specific), (ii) a (ad

valorem), (iii) (r, p1, · · · , pn) (UIR), and (iv) (r′, p′1, · · · , p′n) (UIR’), such that

si =
aci

1 + a
=

r(pi − ci)

1− r
=

r′(p′i − ci)

1− r′
∀i (12)

and r > r′ (which together imply pi < p′i ∀i). The four policies result in the same best response

correspondence for each firm (i.e. ψiS(p−i; si) = ψiA(p−i; a) = ψiU(p−i; r, pi) = ψiU(p−i; r′, p′i)) and

thus the same set of NEs.

At a common NE, denoted by p̂, the four policies are ordered by the government’s subsidy expenditure

on each product i or, equivalently, by each firm i’s profit as UIR < UIR’ < specific < ad valorem.

More specifically, (13)–(15) below show the differences across the policies in the government’s subsidy

expenditure on product i (i.e. the leftmost expressions of (13)–(15)) or, equivalently, the differences in

firm i’s profit (i.e. the second to the left expressions of (13)–(15)):

[si − r(pi − p̂i)]D( p̂i, p̂−i) = πiS( p̂i, p̂−i; si)− πiU( p̂i, p̂−i; r, pi) = rπiS( p̂i, p̂−i; si) > 0, (13)

[r′(p′i − p̂i)− r(pi − p̂i)]D( p̂i, p̂−i) = πiU( p̂i, p̂−i; r′, p′i)− πiU( p̂i, p̂−i; r, pi)

= (r− r′)πiS( p̂i, p̂−i; si) > 0, (14)

(ap̂i − si)D( p̂i, p̂−i) = πiA( p̂i, p̂−i; a)− πiS( p̂i, p̂−i; si) = aπiS( p̂i, p̂−i; si) > 0. (15)

Proof. See the Appendix. �

Proposition 3 shows that if the firms opt in, the UIR form is more cost-effective than the

specific form, and, in turn, the specific form is more cost-effective than the ad valorem form,20

20Liang et al. (2018) show that the specific form is more cost-effective than the ad valorem form, using a
homogeneous-Cournot model of oligopolistic competition. Unlike the UIR form, the ad valorem form reduces the
elasticity of demand faced by a firm relative to the specific form, increasing the government’s cost of achieving a
target consumer price and output through subsidisation.
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where cost-effectiveness is defined as achieving a given policy target with lower government

spending (or, equivalently, with less of the subsidy benefit being passed on to the firms). The

proposition also states that cost-effectiveness increases with r (when r and pi co-move with

(12) satisfied).21

3 Further Analysis with the Eligibility Condition

Section 2.3 compared the subsidy forms with leaving aside the eligibility condition that the

product price must be below pi to receive a subsidy payment. In this section, I take this

condition back into consideration to further analyse the properties of the IR subsidy. As

discussed in Section 2.2, if the eligibility condition is in place but the IR subsidy scheme is not

sufficiently generous, a firm can choose to ignore the scheme and set pi above the threshold pi,

thereby subverting the government’s goal of increasing the target product’s sales. On the other

hand, by making the IR scheme less generous to firms, the government can achieve the policy

goal more cost-effectively. Then, to what extent can the government improve the IR subsidy’s

cost-effectiveness by lowering its generosity while keeping firms in the scheme? In this section,

I investigate this question by focusing on symmetrically differentiated Bertrand competition.

3.1 Symmetric Games

Consider identical firms that have a common marginal cost c and face a symmetrically

differentiated demand system (e.g. Weyl and Fabinger, 2013; Anderson et al., 2001b). These

firms also face common subsidy policy parameters (denoted by s, a, r, and p). The game is

therefore symmetric (i.e. unaffected by the permutation of the firms), and the subscript i can

be dropped from Di, πiX, ψiX (for X ∈ {N, S, A, U, I}), and so on. Additionally, I now assume

that log Di has strictly increasing differences in pi and p−i, that is, the inequality in (1) or (2)

holds strictly if pi > p′i and p−i > p′−i (i.e. pj ≥ p′j for all j 6= i and p−i 6= p′−i).

Under these assumptions, all NEs are symmetric (Vives, 1999, Ch. 2).22 Thus, to analyse NEs

21Because increasing r (with pi fixed) makes the subsidy more generous, it may seem counterintuitive that
increasing r improves the subsidy’s cost-effectiveness. However, in Proposition 3, increasing r simultaneously
reduces pi to meet (12). Altogether, these changes reduce the subsidy benefits that are passed on to the firms and
hence improve the subsidy’s cost-effectiveness.

22Suppose to the contrary that the best response map ΨX(p) ≡ ψX(p−1) × · · · × ψX(p−n) (for X ∈
{N, S, A, U, I}) has an asymmetric fixed point. Then, there exist (at least) two firms (denoted by 1 and 2)
such that p1 6= p2 at the fixed point. Without loss of generality, assume p1 < p2. Note that p1 ∈ ψX(p2, p3, · · · , pn)
and p2 ∈ ψX(p1, p3, · · · , pn). Because log Di has strictly increasing differences in pi and p−i, the best response
correspondence ψX is strongly increasing (i.e. every selection of ψX is increasing) in each argument (e.g. Vives,
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in a subsidy (or no-subsidy) setting, I focus on each firm’s best response when all of the other

firms set a common price p0, namely, ψX(p0, · · · , p0).23 An NE is where p0∈ψX(p0, · · · , p0).

For brevity, let D̃(pi, p0)=D(pi, p0, · · · , p0) and define π̃X, ψ̃X, and G̃ analogously. I assume

that D̃ is twice continuously differentiable and that the profit maximisation problems have

interior solutions with positive profits. As discussed in Section 2, for each X ∈ {N, S, A, U, I},

the set of NEs, where p∈ψ̃X(p), is non-empty and is denoted by EX (e.g. EN={p|p ∈ ψ̃N(p)}).

For clarity, the dependence of EX on subsidy policy parameters may be shown explicitly (e.g.

EI(r, p)={p|p ∈ ψ̃I(p; r, p)}). If EX contains multiple elements, then the largest element p∗X in

EX constitutes the (strictly) Pareto-best NE in EX in terms of πX (e.g. Milgrom and Roberts,

1990),24 which is the main focus of this section.

First, the following proposition summarises the results in Section 2.2 about EI (the set of NEs

under the IR subsidy) in the context of the symmetric game.

Proposition 4. Given an IR subsidy policy (r, p),

EI(r, p) = {p|p ∈ EN and G̃(p; r, p) ≥ 0} ∪ {p|p ∈ EU(r, p) and G̃(p; r, p) ≤ 0}. (16)

The firms opt out of the IR subsidy scheme at an NE in {p|p ∈ EN and G̃(p; r, p) ≥ 0} and opt in at

an NE in {p|p ∈ EU(r, p) and G̃(p; r, p) ≤ 0}.

Moreover, if EI(r, p) includes both an opt-out NE (denoted by pN) and an opt-in NE (denoted by pU),

then pU ≤ p ≤ pN (so pU < pN unless pU = p = pN), and π̃I(pU , pU ; r, p) ≤ π̃I(pN , pN ; r, p)

(with equality if and only if pU = p = pN).

Proof. See the Appendix. �

In other words, EI consists of a subset of EN for which the price (without the subsidy) is high

enough to induce the firms to opt out of the IR subsidy, and a subset of EU for which the firms

opt in to receive the IR subsidy. If an IR subsidy policy (r, p) can result in an opt-out NE (pN)

and an opt-in NE (pU), then except in the unlikely case of pU = p = pN , the price and the

2005, Lemma 1). Therefore, it follows from p1 < p2, p1 ∈ ψX(p2, p3, · · · , pn), and p2 ∈ ψX(p1, p3, · · · , pn) that
p1 ≥ p2, which is a clear contradiction.

23The dependence of ψX (for X ∈ {S, A, U, I}) on subsidy policy parameters may be suppressed in the following
for brevity. The same applies to ψ̃X , EX and p∗X that are defined next.

24Given two NEs p and p′ in EX such that p > p′, we have π̃X(p, p) ≥ π̃X(p′, p) > π̃X(p′, p′), where the last
inequality follows because demand is strictly increasing in other products’ prices.
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profit are always greater at the opt-out NE than at the opt-in NE, and thus the opt-out NE

strictly Pareto dominates the opt-in NE.

3.2 Characterising the NEs under the IR Subsidy

Suppose that the government uses a subsidy to induce each firm to lower the consumer price

from p∗N (the Pareto-best NE price with no subsidy policy) to a target price p̂. Equivalently, the

government aims to raise the output per firm from D̃(p∗N , p∗N) = D(p∗N , · · · , p∗N) to D̃( p̂, p̂) =

D( p̂, · · · , p̂).25 Note that if no externalities are associated with the consumption or production

of the good, inducing marginal cost pricing (p̂ = c) maximises social surplus (= consumer

surplus + producer surplus − government expenditure) by eliminating underproduction due

to imperfect competition. If positive externalities, which are often the reason for subsidisation

but are not considered explicitly in this study, are present, then the socially optimal p̂ is

lower than c. The following analysis is not about setting p̂ optimally, which requires explicitly

modelling externalities, but rather holds more generally for a given p̂ that is below p∗N .

Given a specific subsidy of s, the first-order condition (FOC) that is satisfied at the Pareto-best

NE p∗S ∈ ES is

p∗S +
D̃(p∗S, p∗S)
D̃1(p∗S, p∗S)

= c− s, (17)

where D̃1 is the partial derivative with respect to the first argument of the function D̃.26,27 The

government aims to induce the target p̂ with this specific subsidy (i.e. p̂ = p∗S). By (17), at this

NE p̂ = p∗S ∈ ES, each firm’s profit is π̃S( p̂, p̂; s) = −D̃( p̂, p̂)2/D̃1( p̂, p̂).

From Proposition 3 and (17), p̂ is also the Pareto-best NE in EU (i.e. p̂ = p∗U) if the subsidy

parameters r and p satisfy

r(p− c)
1− r

= s = c− p̂− D̃( p̂, p̂)
D̃1( p̂, p̂)

. (18)

This condition gives p as a function of r conditional on p̂, denoted by p(r; p̂), with dp/dr <

25I make the standard assumption that the own-price effect on the demand for each product dominates the
aggregate cross-price effect on the demand for it. This assumption implies that lowering the consumer price from
p∗N to p̂ increases the demand from D̃(p∗N , p∗N) to D̃( p̂, p̂), as is the policymaker’s objective.

26More precisely, D̃1(pi, p0) ≡ ∂D̃(pi, p0)/∂pi = ∂D(pi, p0, · · · , p0)/∂pi.
27Additionally, the second-order condition D̃(p∗S, p∗S)D̃11(p∗S, p∗S) ≤ 2[D̃1(p∗S, p∗S)]

2 needs to hold at this NE. This
condition limits the convexity of the demand curve at the optimum and corresponds to the usual condition under
Cournot competition that a firm’s marginal revenue curve should not be upward sloping at an optimum.
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0.28 At this NE p̂ = p∗U ∈ EU , the per-unit subsidy payment is r(p − p̂) = c − p̂ − (1 −

r)D̃( p̂, p̂)/D̃1( p̂, p̂), and each firm’s profit is π̃U( p̂, p̂; r, p(r; p̂)) = −(1− r)D̃( p̂, p̂)2/D̃1( p̂, p̂).

I now account for the eligibility threshold and investigate necessary conditions on r and p such

that an IR subsidy policy (r, p(r; p̂)) induces p̂ as an opt-in NE, particularly the Pareto-best

NE, in EI . First, consider an IR subsidy policy (r2, p(r2; p̂)) under which firm i is indifferent

between opting in and out when all of the other firms set pj = p∗N . That is, firm i is indifferent

between ψ̃U(p∗N ; r2, p(r2; p̂)) and p∗N∈ψ̃N(p∗N). Similarly, consider a policy (r3, p(r3; p̂)) under

which firm i is indifferent between opting in and out when all of the other firms set pj = p̂.

That is, firm i is indifferent between p̂∈ψ̃U( p̂; r3, p(r3; p̂)) and ψ̃N( p̂). In other words, the

two policies are endogenously determined through market interactions among the firms and

respectively satisfy

G̃(p∗N ; r2, p(r2; p̂)) = π̃N(p∗N , p∗N)−max
pi

π̃U(pi, p∗N ; r2, p(r2; p̂)) = 0,

G̃( p̂; r3, p(r3; p̂)) = max
pi

π̃N(pi, p̂)− π̃U( p̂, p̂; r3, p(r3; p̂)) = 0.
(19)

The next proposition shows that r2 and r3 are threshold values at which the characteristics of

EI change significantly.

Proposition 5. Given a government target p̂ such that p̂ < p∗N , if two policies (r2, p(r2; p̂)) and

(r3, p(r3; p̂)) are defined as stated above, then r2 ≤ r3. Moreover, depending on the value of r ∈ (0, 1),

the set of NEs, EI , under an IR subsidy policy (r, p(r; p̂)) has the following properties.

(i) If r < r2, then p̂ ∈ EI and pN /∈ EI for any pN ∈ EN (in particular, p∗N /∈ EI).

In other words, if r < r2, then the government target p̂ is induced as an NE under the IR subsidy

policy (r, p(r; p̂)), but any NE with no subsidy, particularly p∗N (the Pareto-best NE with no

subsidy), is not an NE with this IR subsidy.

(ii) If r2 ≤ r ≤ r3, then p̂ ∈ EI and p∗N ∈ EI .

(iii) If r3 < r, then p̂ /∈ EI and p∗N ∈ EI .

The Pareto-best NE in EI is p̂ in case (i) and p∗N in cases (ii) and (iii).

Proof. See the Appendix. �

28By (18), p = s/r− s + c = [c− p̂− D̃( p̂, p̂)/D̃1( p̂, p̂)]/r + p̂ + D̃( p̂, p̂)/D̃1( p̂, p̂), and dp/dr = −s/r2 < 0.
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Proposition 5 states that p̂ is an opt-in NE under the IR scheme if r ≤ r3. In particular, p̂ is the

Pareto-best NE if r < r2. As Proposition 3 shows, the IR form can achieve the target outcome

p̂ without passing on as much of the subsidy benefit to each firm as the specific form does:

{r[p(r; p̂)− p̂]− s}D̃( p̂, p̂) = π̃U( p̂, p̂; r, p(r; p̂))− π̃S( p̂, p̂; s) = r
D̃( p̂, p̂)2

D̃1( p̂, p̂)
< 0. (20)

The first expression is the difference in the total government outlay for each product under both

subsidy forms, and the second expression is the difference in each firm’s profit. Analogously,

increasing r (with p decreasing to satisfy (18)) has the same effect:

d{r[p(r; p̂)− p̂]D̃( p̂, p̂)}
dr

=
dπ̃U( p̂, p̂; r, p(r; p̂))

dr
=

D̃( p̂, p̂)2

D̃1( p̂, p̂)
< 0.

Given r ≤ r3, the next proposition compares a firm’s profit at this opt-in NE (p∗U = p̂ ∈ EI)

with its profit at the Pareto-best NE with no subsidy (p∗N ∈ EN), which is also the Pareto-best,

opt-out NE in EI if r ≥ r2 (by Proposition 5). The profit at the latter equilibrium is given by

π̃N(p∗N , p∗N) = −D̃(p∗N , p∗N)
2/D̃1(p∗N , p∗N). Let

r1=1− π̃N(p∗N , p∗N)
π̃S( p̂, p̂; s)

= 1− D̃(p∗N , p∗N)
2/D̃1(p∗N , p∗N)

D̃( p̂, p̂)2/D̃1( p̂, p̂)
. (21)

Proposition 6. If r1 and r2 are respectively defined by (21) and (19), then r1 < r2. Moreover, each

firm’s profit at an opt-in NE p̂ ∈ EI can be compared with the firm’s profit at p∗N ∈ EN (the Pareto-best

NE in the no-subsidy case) as follows:

π̃U( p̂, p̂; r, p(r; p̂))


> π̃N(p∗N , p∗N) if 0 < r < r1,

= π̃N(p∗N , p∗N) if r = r1,

< π̃N(p∗N , p∗N) if r1 < r ≤ r3.

(22)

In particular, if r1 < r < r2, then each firm’s profit is lower at p̂ ∈ EI , which is the Pareto-best NE in

EI by Proposition 5, than at p∗N ∈ EN .

Proof. See the Appendix.

�
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r0

πI

−D̃(p∗N , p∗N)2/D̃1(p∗N , p∗N)

(= π̃N(p∗N , p∗N))

r1 r2 r3 1

−D̃( p̂, p̂)2/D̃1( p̂, p̂)
(= π̃S( p̂, p̂; s))

π̃U( p̂, p̂; r, p(r; p̂)) = −(1− r)D̃( p̂, p̂)2/D̃1( p̂, p̂)

π̃N(p∗N , p∗N) = −D̃(p∗N , p∗N)2/D̃1(p∗N , p∗N)

Figure 3: NE Profits with Different IR Subsidies (Conditional on p̂)

According to Proposition 6, even an ungenerous IR subsidy policy (r, p(r; p̂)) with r ∈ (r1, r2)

that reduces the equilibrium profit below the no-subsidy level, π̃N(p∗N , p∗N), can still realise the

government target (p̂ and D̃( p̂, p̂)) as the Pareto-best, opt-in NE, thus significantly improving

the cost-effectiveness of subsidy spending relative to the specific subsidy. Such a policy

substantially increases the price sensitivity of demand that the firms face, thereby eroding their

market power. Consequently, the firms reduce the producer price (as well as the consumer

price) well below p∗N (‘overshifting’) and settle for lower equilibrium profits than in the

no-subsidy case despite the increase in sales from D̃(p∗N , p∗N) to D̃( p̂, p̂).

Figure 3 graphically summarises the characteristics of the IR subsidy described in this section.

The figure shows a firm’s profit at two potential NEs under the IR subsidy (p∗N and p̂) for

each value of r (with p determined by (18)), conditional on a government target p̂. Under the

IR scheme, the NE at which each firm i opts out by setting pi = p∗N and earns π̃N(p∗N , p∗N) =

−D̃(p∗N , p∗N)
2/D̃1(p∗N , p∗N) exists if and only if r ∈ [r2, 1). For r ∈ (0, r2), no opt-out NE exists

(i.e. pN /∈ EI for any pN ∈ EN , including p∗N).

Any pair of IR subsidy parameters (r, p) with r ∈ (0, r3] and p determined by (18) can realise

p∗U = p̂ as an NE in EI , at which each firm i opts in by setting pi = p̂. At this NE, each

firm earns π̃U( p̂, p̂; r, p(r; p̂)) = −(1− r)D̃( p̂, p̂)2/D̃1( p̂, p̂), and thus its profit decreases as r

increases (and p decreases according to (18)). Each firm’s profit is always lower at p∗U = p̂ ∈ EI

than at the Pareto-best NE under the specific subsidy (p∗S = p̂ ∈ ES), which gives each

firm π̃S( p̂, p̂; σS( p̂)) = −D̃( p̂, p̂)2/D̃1( p̂, p̂). Equivalently, p∗U = p̂ ∈ EI is realised with less
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government spending than p∗S = p̂ ∈ ES, as seen in (20). Moreover, for r ∈ (0, r1) (r ∈ (r1, r3]),

the opt-in profit (at p̂ ∈ EI) is higher (lower) than the opt-out profit π̃N(p∗N , p∗N).
29 In particular,

for r ∈ (r1, r2), the firms are better off if they collude, jointly opt out of the IR subsidy by

setting pi = p∗N for all i, and earn π̃N(p∗N , p∗N) per firm. However, pi = p∗N for all i is not an

NE in EI , so the firms opt in and earn a lower equilibrium profit of −(1− r)D̃( p̂, p̂)2/D̃1( p̂, p̂)

per firm. For r ∈ [r2, r3], both p̂ (opt-in) and p∗N (opt-out) are NEs under the IR scheme, but

p∗N ∈ EI gives each firm a higher profit than p̂ ∈ EI does (i.e. p∗N ∈ EI Pareto dominates p̂ ∈ EI

from the firms’ perspective).30

Figure 3 shows that the IR subsidy’s two policy variables (r and p) can be utilised to flexibly

control its incidence on producers and its cost-effectiveness, unlike the case of the specific and

ad valorem subsidies. When the government pursues the target outcome (p̂ and D̃( p̂, p̂)), it can

simultaneously adjust the IR subsidy’s benefit or burden on producers by changing r in the

range of (0, r2) (and p by (18)). In particular, with r ∈ (0, r1), the IR scheme increases both

consumer surplus and producer surplus at p̂ ∈ EI relative to the no-subsidy case (p∗N ∈ EN).

That is, both consumers and producers are subsidised. With r ∈ (r1, r2), consumers receive

the same benefits at p̂ ∈ EI as in the case with r ∈ (0, r1). However, with r ∈ (r1, r2), the IR

subsidy effectively functions as a tax on producers because their profits at p̂ ∈ EI are lower

than in the no-subsidy case (p∗N ∈ EN), and the lost profits are implicitly transferred to the

government as a reduction in the government budget required to induce p̂ ∈ EI . In contrast,

the specific and ad valorem forms offer no such flexibility because they each have only one

policy variable (s and a, respectively) and setting the variable simultaneously determines the

equilibrium output, profit, and government expenditure.

The IR form’s flexibility allows policymakers to adjust the incidence and cost-effectiveness of a

subsidy scheme in line with the policy objectives and market situations. For example, if the

target products require emerging, innovative technologies (e.g. EVs), producers may incur

significant fixed costs (e.g. R&D investment). Under these circumstances, the government

29In the case of a monopoly (n = 1), some changes must be made to Figure 3, and r1 serves as a threshold
as follows. The profit functions πU and πN are essentially the same as those shown in Figure 3: πN(p∗N) =

−D(p∗N)2/D1(p∗N) and πU( p̂) = −(1− r)D( p̂)2/D1( p̂). The monopolist sets the price at p̂ if r ∈ (0, r1), at p̂ or
p∗N if r = r1, and at p∗N if r ∈ (r1, 1). This result holds because the firm can opt out of the IR scheme and earn
−D(p∗N)2/D1(p∗N), and thus the IR scheme cannot make the firm worse off than πN(p∗N) = −D(p∗N)2/D1(p∗N).

30Additionally, (r, πI) = (1, 0) in Figure 3 corresponds to the corner (limit) solution that results from the dual
tax scheme analysed by Myles (1996), in which the enforceability of the tax eliminates the opt-out option and
leads to the Ramsey pricing outcome of transferring all economic rents from the firms to the government through
taxation.
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may want to support innovative producers by keeping r small (and p large) to offer producers

significantly higher profits than in the no-subsidy case. Conversely, if the target market is

relatively mature prior to government intervention and is served by a small number of firms

earning large economic rents owing to imperfect competition, the government can use the

IR form to induce more output and simultaneously reduce the oligopolists’ profits, thereby

substantially improving the cost-effectiveness of the subsidy.

4 Simulating the Impacts of the IR Subsidy

In this section, I illustrate the impact of the IR subsidy in a more empirical setting. I calibrate the

symmetrically differentiated Bertrand oligopoly model discussed in the last section, employing

actual data from the US EV market, in which buyers are eligible for a specific subsidy.31 I then

use the calibrated model to simulate the results of replacing the specific subsidy with other

forms.

4.1 Simulation Model

Following the previous sections, I consider a hypothetical market with a symmetrically

differentiated logit demand system:

D(pi, p−i) =
α exp(βpi)

1 + ∑n
j=1 α exp(βpj)

M ∀i,

where α > 0, β < 0, M is the market size, and an outside option that can substitute for the

n goods is included. This demand system satisfies the conditions given at the beginning of

Section 2 and ensures that EX is a singleton for X ∈ {N, S, A, U} (i.e. p∗X is a unique and

symmetric NE in each of these settings) (e.g. Anderson et al., 1992, Ch. 7). At each of these

NEs,

q∗X ≡ D̃(p∗X, p∗X) =
α exp(βp∗X)

1 + nα exp(βp∗X)
M. (23)

Thus, with this demand system, an IR subsidy results in at least one and at most two NEs

(either p∗N , p∗U , or both) depending on the parameter values.

I set the parameters α, β, n, M, and c to reflect an actual market environment, as outlined

31For previous studies on the effect of government incentives on EV adoption, see Li et al. (2017) and Springel
(forthcoming).
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below. I calibrate these parameters to US market data for model year 2017 for small or

midsize EVs with four to five seats.32 First, the sales data identify the eight best-selling

models in this market, which are produced by eight different manufacturers (BMW, Fiat, Ford,

General Motors, Kia, Mercedes, Nissan, and Volkswagen). These models account for almost

all of the sales in this category. Their aggregate sales are 50,981, and the (sales-weighted)

average price is $34,160 (for vehicles without options, namely, for low-quality and low-cost

vehicles) or $38,799 (for vehicles with options, if available, namely, for high-quality and high-

cost vehicles). Because EV buyers were eligible for a specific subsidy (more specifically, a

federal tax credit) of s =$7,500 in 2017, the (sales-weighted) average consumer price is $26,600

(= $34, 160− $7, 500) or $31,299 (= $38, 799− $7, 500).33 Thus, I set the parameters of the

logit model so that the resulting NE reflects these observed values (p∗S = $26, 660 or $31,299

and D̃(p∗S, p∗S) = 50, 981/n). A reasonable choice for the outside option in the case of these

eight EV models is all other hybrid and plug-in EVs, whose total sales are 500,096 (hence

M = 50, 981 + 500, 096). On the supply side, based on UBS Evidence Lab’s (2017) estimates

of the production costs of the Chevrolet Bolt (one of the eight models considered here) with

and without options, I set the marginal cost c equal to $27,315 (in the low-quality, low-cost

case) or $29,885 (for the high-quality, high-cost case). Lastly, I set n equal to 4.64, which is

the equivalent number of firms based on the observed market shares of the eight models.34

Substituting these values into (17) and (23) determines the demand parameters α and β.

I use two sets of parameter values to check the robustness of the results. One set corresponds

to the low-quality, low-cost case (c = $27, 315, α = 1.1688, and β = −0.1491× 10−3), and

the other set corresponds to the high-quality, high-cost case (c = $29, 885, α = 0.7902, and

β = −0.1145× 10−3).
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Table 2: Simulation Results

Simulation 1 Simulation 2
(sales neutral) (budget neutral)

Quality and cost: Low High Low High

No Subsidy
p∗N (consumer price = producer price; $) 34,071 [∗] 38,701 [0] Same as
nq∗N (market sales) 18,004 23,070 Simulation 1

Specific Subsidy (based on observed data)
p∗S (consumer price; $) 26,660 [1] 31,299 [2]

nq∗S (market sales) 50,981 [3] 50,981 [3]

s (subsidy/unit; $) 7,500 7,500
p∗S + s (producer price; $) 34,160 38,799 Same as
∆Consumer surplus (vs. no subsidy; mil. $) 236 [4] 261 [5] Simulation 1
∆Producer surplus (vs. no subsidy; mil. $) 227 251
Gov’t budget (s× nq∗S; mil. $) 382 [6] 382 [6]

∆Social surplus (vs. no subsidy; mil. $) 81 [7] 130 [8]

Ad Valorem Subsidy
p∗A (consumer price; $) 26,660 [1] 31,299 [2] 27,665 32,558
nq∗A (market sales) 50,981 [3] 50,981 [3] 44,462 44,694
a 0.38 0.34 0.31 0.26
ap∗A (subsidy/unit; $) 10,091 10,487 8,600 8,555
(1 + a)p∗A (producer price; $) 36,751 41,786 36,265 41,113
∆Consumer surplus (vs. no subsidy; mil. $) 236 [4] 261 [5] 188 201
∆Producer surplus (vs. no subsidy; mil. $) 359 403 276 298
Gov’t budget (ap∗A × nq∗A; mil. $) 514 535 382 [6] 382 [6]

∆Social surplus (vs. no subsidy; mil. $) 81 [7] 130 [8] 82 117

IR Subsidy with r = r0
p∗U (consumer price; $) 26,660 [1] 31,299 [2] 26,616 31,244
nq∗U (market sales) 50,981 [3] 50,981 [3] 51,287 51,274
r0 0.013 0.011 0.013 0.011
p0 ($) 597,258 703,269 595,346 701,188
r0(p0 − p∗U) (subsidy/unit; $) 7,411 7,402 7,455 7,457
p∗U + r0(p0 − p∗U) (producer price; $) 34,071 [∗] 38,701 [0] 34,071 [∗] 38,701 [0]

∆Consumer surplus (vs. no subsidy; mil. $) 236 [4] 261 [5] 238 264
∆Producer surplus (vs. no subsidy; mil. $) 223 246 225 249
Gov’t budget (r0(p0 − p∗U)× nq∗U ; mil. $) 378 377 382 [6] 382 [6]

∆Social surplus (vs. no subsidy; mil. $) 81 [7] 130 [8] 81 131

IR Subsidy with r = r1
p∗U (consumer price; $) 26,660 [1] 31,299 [2] 23,808 27,498
nq∗U (market sales) 50,981 [3] 50,981 [3] 74,345 74,987
r1 0.65 0.55 0.76 0.70
p1 ($) 31,328 35,960 30,547 34,796
r1(p1 − p∗U) (subsidy/unit; $) 3,041 2,575 5,143 5,099
p∗U + r1(p1 − p∗U) (producer price; $) 29,701 33,874 28,951 32,597
∆Consumer surplus (vs. no subsidy; mil. $) 236 [4] 261 [5] 413 498
∆Producer surplus (vs. no subsidy; mil. $) 0 [9] 0 [9] 0 [9] 0 [9]

Gov’t budget (r1(p1 − p∗U)× nq∗U ; mil. $) 155 131 382 [6] 382 [6]

∆Social surplus (vs. no subsidy; mil. $) 81 [7] 130 [8] 31 116

IR Subsidy with r = r2
p∗U (consumer price; $) 26,660 [1] 31,299 [2] 23,714 27,327
nq∗U (market sales) 50,981 [3] 50,981 [3] 75,251 76,263
r2 0.67 0.57 0.79 0.73
p2 ($) 31,037 35,519 30,180 34,221
r2(p2 − p∗U) (subsidy/unit; $) 2,925 2,410 5,081 5,014
p∗U + r2(p2 − p∗U) (producer price; $) 29,585 33,709 28,795 32,341
∆Consumer surplus (vs. no subsidy; mil. $) 236 [4] 261 [5] 420 511
∆Producer surplus (vs. no subsidy; mil. $) -6 -8 -10 -16
Gov’t budget (r2(p2 − p∗U)× nq∗U ; mil. $) 149 123 382 [6] 382 [6]

∆Social surplus (vs. no subsidy; mil. $) 81 [7] 130 [8] 27 113
Entries with a common superscript ([*], [0], [1], · · · or [9]) are equal by construction.
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4.2 Simulation Results

Using the demand and supply parameters described above, the following simulations derive

and compare the NEs in various policy settings (Table 2). Simulation 1, shown in the left

column, is sales neutral: the three subsidy schemes (specific, ad valorem, and IR) are all designed

to induce the equilibrium price and sales targeted by the government (i.e. p̂ = $26, 660

in the low-quality, low-cost case or p̂ = $31, 299 in the high-quality, high-cost case, and

q̂ ≡ D̃( p̂, p̂) = 50, 981/n). By construction, the specific subsidy scheme with s = $7, 500

achieves the target price and sales. With no subsidy, p∗N = $34, 071 and nq∗N = 18, 004 (the

market sales) in the low-quality, low-cost case, and p∗N = $38, 701 and nq∗N = 23, 070 in the

high-quality, high-cost case. Thus, relative to the no-subsidy case, the specific subsidy lowers

the consumer price by more than $7,400 and raises the producer price by less than $100,

increasing market sales by 183% (121%) (hereafter, the results for the low-quality, low-cost case

are shown first, and those for the high-quality, high-cost case are shown next in parentheses).

Consumer surplus and producer surplus (i.e. the firms’ aggregate profit) increase by similar

amounts ($236 million ($261 million) vs. $227 million ($251 million)).35 As a result, social

surplus (= consumer surplus + producer surplus − government expenditure) increases by

$81 million ($130 million).36

An ad valorem subsidy with a = s/(c− s) = 0.38 (0.34) induces the same ( p̂, q̂) (and hence

the same consumer and social surplus) as the specific subsidy of $7,500 does. As Proposition

3 indicates, the ad valorem subsidy needs an extra subsidy payment of $2,591 ($2,987) per

unit compared to the specific subsidy, increasing the producer price by the same amount

and producer surplus by $132 million ($152 million). Thus, the (global) incidence of subsidy

32The data set for vehicle sales and prices is constructed using the information available on the US Department of
Energy’s websites (www.fueleconomy.gov and afdc.energy.gov/data) and on EV-volumes.com (www.ev-volumes.
com).

33In this calibration, I assume that the tax credit is fully taken up. I also disregard other incentive schemes that
may have been available to EV buyers.

34That is, a market with 4.64 equal-sized firms gives the same Herfindahl-Hirschman Index as is observed in the
data. Simulations with an integer number of firms (i.e. n = 4 or n = 5) give very similar results (e.g. the difference
in the equilibrium consumer price relative to the case with n = 4.64 is at most 0.4%). Non-integer values are used
for n in calibrations by, for example, Bushnell (2007).

35With this logit model, the change in consumer surplus is given by

∆CS = −M
[

log(1 + nα exp(β p̂))− log(1 + nα exp(βp∗N))]/β.

36As discussed at the beginning of Section 3.2, this increase in social surplus results from correcting underpro-
duction due to imperfect competition. This study does not explicitly model any positive externalities associated
with the target product, and accounting for any such externalities would make the increase in social surplus even
larger.

www.fueleconomy.gov
afdc.energy.gov/data
www.ev-volumes.com
www.ev-volumes.com
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spending is more favourable to firms (less favourable to consumers) with the ad valorem form

than with the specific form.

For the IR subsidy, sales-neutral Simulation 1 shows the outcomes for three thresholds of r

that induce ( p̂, q̂) at the opt-in NE (p∗U = p̂). These thresholds are r1 and r2, which are defined

in Section 3.2, and r0, at which the producer prices at the opt-in NE and the NE under no

subsidy (p∗N) are equal. Although Table 2 reports the results for the three representative cases,

any r ∈ (0, r2) can induce ( p̂, q̂) as the Pareto-best (and unique in the logit case used here)

NE under the IR scheme. A smaller r leads to more profits and government spending in

equilibrium (see Figure 3). I examine r2 rather than r3 because for r ∈ [r2, r3], the opt-in NE

(p∗U = p̂) is Pareto dominated (from the firms’ perspective) by the opt-out NE (p∗N).

When r = r0 = 0.013 (0.011), the IR form results in a unique NE at which the producer price

equals that in the no-subsidy baseline (i.e. p̂ + r0(p0 − p̂) = p∗N). For r > r0, the equilibrium

producer price is below the no-subsidy equilibrium price (p∗N), or equivalently, the reduction

in the consumer price from the no-subsidy level is greater than the subsidy payment (i.e.

p∗N − p̂ > r(p− p̂)), meaning that the producer price overshifts from the no-subsidy baseline.

Conversely, the producer price undershifts if r < r0.

The results associated with r1 can be interpreted as follows. By construction, r = r1 results in

the same equilibrium profit as in the no-subsidy case. To induce a unique NE at which each

firm opts in and its equilibrium profit is at least as large as that with no subsidy, it must be

the case that r ≤ r1 and the subsidy payment per vehicle is not less than r1(p1 − p̂), where

p1=p(r1; p̂) is defined as in footnote 28. In Simulation 1, r1 is 0.65 (0.55), and r1(p1 − p̂) is

$3,041 ($2,575). In other words, given the constraint that no firm can be worse off than at

the no-subsidy NE, switching from the specific form to the IR form can reduce government

spending by up to 59% (66%) for the given policy target. Because r1 > r0, the producer price

overshifts: it is lower than p∗N by $4,370 ($4,827). Equivalently, a subsidy payment of just $3,041

($2,575) can lower the consumer price by $7,411 ($7,402).

The results associated with r2 can be interpreted similarly. To induce a unique NE at which

each firm opts in (with its equilibrium profit possibly being lower than that with no subsidy),

it must be the case that r < r2 and the subsidy payment per vehicle is greater than r2(p2 − p̂).

In Simulation 1, r2 is 0.67 (0.57), and r2(p2 − p̂) is $2,925 ($2,410). This subsidy payment is
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slightly lower than the payment with r = r1 because the equilibrium profit can now be lower

than at the no-subsidy NE (as is the case for r ∈ (r1, r2)). In other words, by switching from

the specific form to the IR form so that the firms have no incentive to opt out and the given

policy target is met, the government can reduce the subsidy budget by up to 61% (68%). As

expected, the producer price overshifts, and producer surplus is somewhat ($6 million ($8

million)) lower than at the no-subsidy NE.

Simulation 2, shown in the right column of Table 2, is budget neutral. As discussed above,

Simulation 1 determines the necessary subsidy payment to achieve the target price p̂ and

sales nq̂ = 50, 981 under each scheme. Budget-neutral Simulation 2 instead computes the

sales level that each scheme realises given a fixed subsidy budget of $382 million, which is, by

construction, the budget required for the specific subsidy of s = $7, 500 to induce nq̂ = 50, 981

($382 million = s× nq̂). Because the ad valorem form is less cost-effective than the specific form,

the ad valorem form attains 13% (12%) fewer sales with this budget than the specific form.

Conversely, for the given budget, the IR form induces more sales than the specific form. With

r = r0, which equalises the equilibrium producer prices between the cases of the IR subsidy

and no subsidy, the results are very similar to the corresponding results in Simulation 1.37 The

producer price overshifts (undershifts) if r >(<) r0 = 0.013 (0.011).

According to the simulation with r = r1 = 0.76 (0.70), if the IR scheme with the given budget

($382 million) results in a unique NE at which every firm opts in and earns at least the same

equilibrium profit as in the no-subsidy case, then it can induce up to 46% (47%) more sales

than the specific scheme (74,345 (74,987) vs. 50,981). Thus, under the IR scheme with the given

budget and r = r1, the consumer price ($23,808 ($27,498)) and the subsidy payment per unit

($5,143 ($5,099)) are both lower than under the specific scheme ($26,660 ($31,299) and $7,500,

respectively). Consequently, as for the (global) incidence of the subsidy, producer surplus

remains the same as in the no-subsidy NE (by construction), meaning that all of the subsidy

benefit is passed on to the consumers, whose surplus increases by $177 million ($237 million)

relative to the specific subsidy case.

Finally, according to the simulation with r = r2 = 0.79 (0.73), given the weaker constraint that

37The definition of r0 is slightly different from its definition in Simulation 1 because Simulation 2 is conditional
on the subsidy budget, whereas Simulation 1 is conditional on the target consumer price p̂. The same comment
applies to r1 and r2 that are to be discussed next.
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the opt-in NE is a unique NE of the game, the IR scheme with the budget of $382 million

and with r marginally less than r2 can further extend the equilibrium sales to be 48% (50%)

greater than under the specific subsidy. Thus, the consumer price and the per-unit subsidy

payment are even lower, and consumer surplus is even higher, than in the previous case with

r = r1. Overshifting is now observed even in terms of producer surplus, as it is $10 million

($16 million) lower than at the no-subsidy NE and the NE with r = r1.

Counterintuitive as it may seem at first, it is not surprising that the equilibrium social surplus

in the budget neutral simulation is larger under the specific or ad valorem subsidy than under

the IR subsidy with r = r1 or r = r2. Social surplus in Table 2 equals (consumer surplus)

+ (producer surplus) − (government outlay), meaning that externalities are not explicitly

considered (as mentioned at the beginning of Section 3.2). Social surplus (without accounting

for externalities) is maximised when the consumer price equals the marginal cost c = $27,315

($29,885), which eliminates underproduction due to imperfect competition. A consumer price

below c (as in the cases of r = r1 and r = r2 in Simulation 2) is justified by the positive

externalities associated with the sales or consumption of a subsidised good (e.g. reduced

pollutant emissions, R&D spillovers and so on in the case of EVs). If these externalities are

accounted for, positive externalities above $2,159 ($593) per unit of the good make the IR form

with r = r1 preferable to the specific form in terms of social surplus (inclusive of externalities).

Note that $2,159 ($593) is much less than the subsidy payment of $5,143 ($5,099) under the IR

scheme with r = r1.

Overall, the simulations find that the IR form has substantial impacts, as the theoretical

framework in the previous sections suggests. It reduces the government expenditure needed

to induce a target sales level (nq̂ = 50, 981) by up to 61% (68%) compared to the specific form.

Alternatively, for a given subsidy budget ($382 million), the IR form can induce up to 48%

(50%) more sales than the specific form. At the same time, the government can flexibly affect

the IR scheme’s incidence and cost-effectiveness through its choice of policy variables. When

r ≈ 0, the IR subsidy is (almost) equivalent to the specific subsidy (as shown in Figure 3) and

can increase producer surplus by up to $227 million ($251 million) relative to the case of no

subsidy. As r increases, producer surplus decreases, cost-effectiveness improves, and a larger

share of the subsidy benefit is passed on to consumers. Moreover, as r approaches r2, the IR

scheme starts to function as implicit taxation on firms by reducing producer surplus by up
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to $10 million ($16 million) relative to the no-subsidy level (according to Simulation 2). The

incidence and cost-effectiveness of the subsidy programme can vary flexibly within this range.

5 Extension: Product Quality

The simple IR form discussed thus far may deter product quality improvements by implicitly

making them more costly. This is because the per-unit subsidy payment decreases if a firm

improves a product’s quality and raises its (pre-subsidy) price to reflect the incremental

cost. Note that widely used ad valorem taxation provides the same disincentive because it

levies additional tax payments on better-quality products that are more costly and thus more

expensive (before the tax) (Keen, 1998). These policies increase the (producer) price elasticity

of demand and induce firms to reduce the product prices, allowing the government to attain a

policy target more efficiently or cost-effectively. However, firms are also incentivised to lower

product qualities as an easy way to reduce the costs and prices and thus increase (decrease)

the subsidy (tax) payments. This issue is shared by the generalised tax forms of Myles (1996),

Hamilton (1999), and Carbonnier (2014), which are designed to make the demand faced by a

monopolist or oligopolist more elastic, although product quality is outside the scope of these

studies. This section considers how the IR subsidy can be adjusted to address the issue of

product quality. In short, the disincentive can be curbed by increasing the threshold pi as

quality improves.

I introduce product quality into the cost and demand structures of the model in Section 2

with maintaining its basic framework. In this section, I do not assume identical firms and a

symmetrically differentiated demand system. The following model considers one-dimensional

quality for the sake of simplicity, but similar results can be obtained with multidimensional

quality, as discussed in Appendix B. Let the unit production cost of good i depend on its quality

wi ∈ R+: ci = ci(wi), with c′i(wi) > 0 and c′′i (wi) > 0. The demand functions can be derived by

adding wi to the setup in Section 2 (footnote 7). Suppose that one unit of good i with quality wi

increases a representative consumer’s utility by f (wi), where f ′(wi) > 0 and f ′′(wi) < 0. Then,

the representative consumer’s utility attributed to quality (aggregated over the n products) is

∑n
i=1 f (wi)qi. Adding this sum to U(x, q1, · · · , qn) = x + u(q1, · · · , qn) in footnote 7 allows the

total utility to be expressed as U(x, q1, · · · , qn, w1, · · · , wn) = x + u(q1, · · · , qn) + ∑n
i=1 f (wi)qi.
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Given {wi, pi}i∈{1,··· ,n}, the consumer solves the following utility maximisation problem:

max
x,q1,··· ,qn

x + u(q1, · · · , qn) +
n

∑
i=1

f (wi)qi s.t. x + ∑
i

piqi ≤ I.

Assuming an interior solution, the FOCs are ∂u(q1, · · · , qn)/∂qi = pi − f (wi) ∀i. There-

fore, the demand for each good depends on {pi − f (wi)}i∈{1,··· ,n}, that is, qi = Di(p1 −

f (w1), · · · , pn − f (wn)) for each i (note that qi = Di(p1, · · · , pn) in Section 2). In other words,

pi = ∂u(q1, · · · , qn)/∂qi + f (wi); therefore, f (wi) is considered the premium attached to

product i’s quality or, equivalently, the consumer’s willingness to pay (WTP) for quality.

[No Subsidy]

First, consider the baseline case of no subsidy. Given the qualities and prices of the other

products (denoted by w−i and p−i), firm i sets wi and pi simultaneously to maximise its profit

πiN(wi, pi, w−i, p−i) = [pi − ci(wi)]Di(hi, h−i), where hi = pi − f (wi) and h−i is a vector of the

hj’s for all j 6= i. Assuming an interior solution that gives a positive profit, the following FOCs

are satisfied for each i:

∂πiN

∂wi
= −c′i(wi)Di(hi, h−i)− [pi − ci(wi)]

∂Di(hi, h−i)

∂hi
f ′(wi) = 0, (24)

∂πiN

∂pi
= Di(hi, h−i) + [pi − ci(wi)]

∂Di(hi, h−i)

∂hi
= 0. (25)

Substituting (25) into (24) shows that the optimal quality, denoted by wiN , satisfies

f ′(wiN) = c′i(wiN). (26)

The optimal quality wiN , which is uniquely determined because f ′′(·)− c′′i (·) < 0, equates the

marginal price (= marginal utility) with the marginal cost of quality improvement to maximise

the net value of quality f (·) − ci(·). However, maximising f (·) − ci(·) is not necessary or

sufficient for the social optimum if product quality is associated with positive externalities,

which are typically the reason for subsidisation but are not explicitly modelled here. Given

{wiN , ci(wiN)}i∈{1,··· ,n}, the discussion in Section 2 implies that an NE exists, at which (25) is

satisfied for each i.

[IR Subsidy]
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Suppose that each firm’s threshold pi is determined by the government as a function of wi,

that is, pi = p(wi).38 Assuming that the subsidy scheme is sufficiently generous, I focus

on an NE at which all firms opt in and thus πiI = πiU . As above, firm i maximises its

profit πiU(wi, pi, w−i, p−i) = [(1− r)pi + rp(wi)− ci(wi)]Di(hi, h−i) with respect to wi and pi.

Assuming an interior solution that provides a positive profit, the following FOCs are satisfied

for each i:

∂πiU

∂wi
= [rp′(wi)− c′i(wi)]Di(hi, h−i)− [(1− r)pi + rp(wi)− ci(wi)]

∂Di(hi, h−i)

∂hi
f ′(wi) = 0.

(27)

∂πiU

∂pi
= (1− r)Di(hi, h−i) + [(1− r)pi + rp(wi)− ci(wi)]

∂Di(hi, h−i)

∂hi
= 0. (28)

Substituting (28) into (27) shows that the optimal quality, denoted by wiU , satisfies

(1− r) f ′(wiU) = c′i(wiU)− rp′(wiU), (29)

where I assume for simplicity that wiU is uniquely determined.39 Equation (29) shows that

the policymaker can affect the realised quality by adjusting the gradient p′(·). For example,

(26) and (29) imply that if pi is constant (i.e. p′(·) = 0), as in the previous sections, then the

optimal product quality is lower than that in the no-subsidy case (wiU < wiN). As another

example, increasing pi linearly with wi (i.e. p′(·) = v > 0) improves wiU relative to the

previous case with a constant pi. Furthermore, in principle, setting p′(·) = f ′(·) makes (26)

and (29) equivalent, resulting in the same optimal quality with or without the IR subsidy

(wiU = wiN).

Given {wiU , ci(wiU)}i∈{1,··· ,n}, the discussion in Section 2 implies that an NE exists, at which

(28) is satisfied for each i. Importantly, the gradient p′(·) appears in (29), but the level p(·) does

not. Thus, regardless of (29), the policymaker can choose the level of p(·) and influence the

NE prices through (28). In this sense, the previous results without product quality remain

valid when the IR form is supplemented with a quality-dependent eligibility threshold p(·) as

above.

Following the same steps, it is straightforward to show the effects of the specific and ad
38Ito and Sallee (2018) and Barwick et al. (2021) provide general discussions on attribute-based policy design.
39Assume, for example, that p(·) is linear or, more generally, that r and p(·) are set so that (1− r) f (·)− ci(·) +

rp(·) is strictly concave.



33

valorem forms on quality. A specific subsidy maintains the same equilibrium quality as in the

no-subsidy baseline because it does not distort the effective cost of quality improvement. An

ad valorem subsidy, by contrast, lowers the effective cost of quality improvement, leading to a

better equilibrium quality than in the no-subsidy case.

Based on these results, I consider a few examples in which the IR form can be applied. First,

many countries use various subsidy programmes to promote the diffusion of green durable

goods, such as renewable-energy technologies, low-emission vehicles, energy-efficient home

appliances, and energy-saving building renovations (e.g. the solar PV and EV subsidies

discussed in this study). In many cases, information about energy, environmental, and

other attributes of these products is available, enabling policymakers to set pi as a function

of these attributes (see Appendix B for an extension of this section’s model to the case of

multidimensional attributes). Often, economic, engineering, or scientific estimates are also

available about WTP for or positive externalities of these products’ attributes, providing useful

benchmarks for linking pi with these attributes. In fact, many specific or ad valorem subsidy

schemes for these products link subsidy payments to product quality (e.g. US federal tax

credits for plug-in hybrid vehicles increase with battery capacity). When the IR form is actually

implemented, the low dimensionality of product attributes is helpful for keeping the schedule

p(·) simple and manageable. In this regard, the IR form can be more suited for solar PV

systems than for EVs because solar PV systems have much fewer attributes and their primary

function (i.e. solar electricity generation) is the reason for subsidisation.

Second, actual pharmaceutical drug regulations and subsidies are similar to the quality-

adjusted IR form discussed in this section. In many countries, the consumer price for a

pharmaceutical drug is set below the unregulated level through negotiations between health

authorities and pharmaceutical firms. In return, the drug is eligible for a government subsidy.

The regulated price and subsidy rate depend on certain factors, such as product quality and

characteristics (e.g. clinical effectiveness), production costs, and the prices of similar drugs

(Organisation for Economic Cooperation and Development, 2008; Paris and Belloni, 2013).

Constructing theoretical models of the negotiation process, Johnston and Zeckhauser (1991)

and Wright (2004) suggest that the government can take advantage of its bargaining with

pharmaceutical firms and inter-firm strategic interactions to induce lower drug prices (i.e.

higher consumer surplus) and flexibly adjust producer surplus at the same time, two features
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that the IR form can also achieve.40

In addition, many countries adopt reference pricing policies to contain fast-growing public

spending on drugs (e.g. Acosta et al., 2014). Under these policies, drugs are clustered based

on chemical, pharmacological, or therapeutic equivalence criteria, and a reference price is

set for each cluster. The subsidy payment for a drug increases linearly with its price but is

capped at the reference price of the corresponding cluster, providing downward pressure on

the drug’s price when it is above the reference price. This design is similar to the quality-

adjusted IR subsidy in that the subsidy rule changes at the threshold price and the threshold

depends on product quality. Under reference pricing, however, the subsidy payment is non-

decreasing in the product price, unlike under the IR subsidy. Altogether, these observations

about government-firm bargaining and reference pricing indicate similarities to the IR subsidy

design, suggesting the possibility of applying this design in pharmaceutical drug regulations

and subsidies by, for example, letting pi vary across clusters and remain constant within each

cluster.

6 Conclusion

This study is motivated by the unique structure of a Japanese subsidy programme in which

the rebate payment for buying a target product increases as the product price decreases.

Interestingly, transaction data suggest that this design helped to lower not only the post-rebate

consumer prices but also the pre-rebate producer prices (‘overshifting’), thereby boosting sales

further. To the best of my knowledge, this type of subsidy design has not been previously

studied in the literature. In this study, I provide a theoretical foundation for this policy design

by considering a new subsidy form (termed the IR subsidy).

Using a model of imperfect competition (Bertrand competition with product differentiation),

I find that the IR form has two unique features relative to the widely used specific and ad

valorem forms (Sections 2 and 3). First, it is more cost-effective than the other forms in the sense

that it can induce a given level of output or sales with less government spending. Equivalently,

it can induce more output or sales with a given government budget. Second, in achieving a

given output level, policymakers can also flexibly adjust the cost-effectiveness and incidence of

40Wright (2004) points out that, in practice, governments do not exploit the second function well during
negotiations, because they often simply benchmark subsidy levels (and thus firm profitability) against foreign
markets.
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the policy to suit its objectives and the market circumstances. The key mechanism is that the

IR form increases the elasticity of demand faced by producers, providing them an incentive to

lower producer prices (in addition to consumer prices).

Simulations based on the US EV market demonstrate the substantial magnitude of these

advantages (Section 4). For a fixed government budget ($382 million), the IR form can induce

up to 48% (50%) more sales than the specific form (the two estimates reflect different scenarios

about product quality). Depending on the government’s choice of policy parameters, the IR

subsidy scheme with this budget can flexibly adjust producer surplus to be between $227

million ($251 million) higher and $10 million ($16 million) lower than in the no-subsidy case.

An issue with the IR form is that it may disincentivise producers from making quality

improvements. By extending the theoretical model to include product quality, Section 5

presents a simple way to offset this disincentive: making the price threshold for subsidy

eligibility increasing in quality and thus rewarding higher-quality products with larger subsidy

payments. This type of quality-adjusted IR subsidy can be applied to, for example, green

technologies (e.g. solar PV systems and EVs) and pharmaceutical drugs.
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A Proofs

A.1 log πiI has increasing differences in pi and p−i (where πiI > 0)

Proof. Consider pi, p′i, p−i, and p′−i such that pi ≥ p′i ≥ (ci − rpi)/(1− r) and p−i ≥ p′−i (i.e.

pj ≥ p′j for all j 6= i). Let ∆=πiI(pi, p−i)πiI(p′i, p′−i)− πiI(p′i, p−i)πiI(pi, p′−i). As in footnote 9,

to prove that log πiI satisfies increasing differences in pi and p−i (where πiI > 0), it suffices to

show that ∆ ≥ 0.

(i) If p′i ≥ pi, then pi ≥ p′i ≥ pi > ci > (ci − rpi)/(1− r). From (8) and footnote 9,

∆ = πiN(pi, p−i)πiN(p′i, p′−i)− πiN(p′i, p−i)πiN(pi, p′−i) ≥ 0.

(ii) If pi ≥ pi, then pi ≥ pi ≥ p′i ≥ (ci − rpi)/(1− r). From (8) and (1),

∆ = πiU(pi, p−i; r, p)πiU(p′i, p′−i; r, p)− πiU(p′i, p−i; r, p)πiU(pi, p′−i; r, p)

= [pi + r(pi − pi)− ci]Di(pi, p−i)[p′i + r(pi − p′i)− ci]Di(p′i, p′−i)

− [p′i + r(pi − p′i)− ci]Di(p′i, p−i)[pi + r(pi − pi)− ci]Di(pi, p′−i)

= [pi + r(pi − pi)− ci][p′i + r(pi − p′i)− ci][Di(pi, p−i)Di(p′i, p′−i)− Di(p′i, p−i)Di(pi, p′−i)]

≥ 0.41

(iii) If pi > pi > p′i, then it follows from (8), (1), pi > pi > ci, and pi > p′i ≥ (ci − rpi)/(1− r)

that

∆ = πiN(pi, p−i)πiU(p′i, p′−i; r, p)− πiU(p′i, p−i; r, p)πiN(pi, p′−i)

= (pi − ci)Di(pi, p−i)[p′i + r(pi − p′i)− ci]Di(p′i, p′−i)

− [p′i + r(pi − p′i)− ci]Di(p′i, p−i)(pi − ci)Di(pi, p′−i)

= (pi − ci)[p′i + r(pi − p′i)− ci][Di(pi, p−i)Di(p′i, p′−i)− Di(p′i, p−i)Di(pi, p′−i)]

≥ 0.

Cases (i)–(iii) imply that if pi ≥ p′i ≥ (ci − rpi)/(1− r) and p−i ≥ p′−i, then ∆ ≥ 0.

�
41This also implies that log πiU satisfies increasing differences in pi and p−i (where πiU > 0).
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A.2 Proof of Proposition 1

Let piN ∈ ψiN(p−i) and piU ∈ ψiU(p−i) (I suppress the dependence on r and pi in this proof

for brevity of notation). By definition, Gi(p−i) = πiN(piN , p−i)− πiU(piU , p−i). First, I state

and prove Lemma 1, which is used in the following proofs of Propositions 1 and 4.

Lemma 1. If Gi(p−i) > 0 or if Gi(p−i) = 0 and Di(piN , p−i) > 0, then piN ≥ pi. If Gi(p−i) < 0

or if Gi(p−i) = 0 and Di(piU , p−i) > 0, then piU ≤ pi.

Proof. If piN < pi, then

πiU(piU , p−i) ≥ πiU(piN , p−i)

= [(1− r)piN + rpi − ci]Di(piN , p−i)

= (piN − ci)Di(piN , p−i) + r(pi − piN)Di(piN , p−i)

= πiN(piN , p−i) + r(pi − piN)Di(piN , p−i)

≥ πiN(piN , p−i)

Thus, Gi(p−i) ≤ 0 (with strict inequality if Di(piN , p−i) > 0). Therefore, if Gi(p−i) > 0 or if

Gi(p−i) = 0 and Di(piN , p−i) > 0, then piN ≥ pi.

Similarly, if piU > pi, then

πiN(piN , p−i) ≥ πiN(piU , p−i)

= (piU − ci)Di(piU , p−i)

≥ (piU − ci)Di(piU , p−i) + r(pi − piU)Di(piU , p−i)

= [(1− r)piU + rpi − ci]Di(piU , p−i)

= πiU(piU , p−i),

Thus, Gi(p−i) ≥ 0 (with strict inequality if Di(piU , p−i) > 0). Therefore, if Gi(p−i) < 0 or if

Gi(p−i) = 0 and Di(piU , p−i) > 0, then piU ≤ pi.

�

Next, I give a proof of Proposition 1.
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Proof. By the definition of πiI(pi, p−i) in (8),

max
pi

πiI(pi, p−i) ≤ max{max
pi

πiN(pi, p−i), max
pi

πiU(pi, p−i)}

=max{πiN(piN , p−i), πiU(piU , p−i)}.
(A.1)

(i) Suppose that πiN(piN , p−i) > πiU(piU , p−i) or, equivalently, Gi(p−i) > 0. By (A.1),

max
pi

πiI(pi, p−i) ≤ πiN(piN , p−i).

In addition, because piN ≥ pi by Lemma 1, it follows from (8) that

πiI(piN , p−i) = πiN(piN , p−i).

Thus, maxpi πiI(pi, p−i) = πiI(piN , p−i) = πiN(piN , p−i), which is greater than πiU(piU , p−i),

and thus ψiI(p−i) = ψiN(p−i).

(ii) Similarly, suppose that πiN(piN , p−i) < πiU(piU , p−i) or, equivalently, Gi(p−i) < 0. By (A.1),

maxpi πiI(pi, p−i) ≤ πiU(piU , p−i). In addition, because piU ≤ pi by Lemma 1, it follows from

(8) that πiI(piU , p−i) = πiU(piU , p−i). Thus, maxpi πiI(pi, p−i) = πiI(piU , p−i) = πiU(piU , p−i),

which is greater than πiN(piN , p−i), and thus ψiI(p−i) = ψiU(p−i).

(iii) Finally, suppose that πiN(piN , p−i) = πiU(piU , p−i) > 0. This implies that Gi(p−i) = 0,

Di(piN , p−i) > 0, and Di(piU , p−i) > 0. By (A.1), maxpi πiI(pi, p−i) ≤ πiN(piN , p−i) =

πiU(piU , p−i). In addition, because piN ≥ pi and piU ≤ pi by Lemma 1, it follows from (8) that

πiI(piN , p−i) = πiN(piN , p−i) and πiI(piU , p−i) = πiU(piU , p−i). As a result, maxpi πiI(pi, p−i) =

πiI(piN , p−i) = πiN(piN , p−i), and maxpi πiI(pi, p−i) = πiI(piU , p−i) = πiU(piU , p−i). Thus,

ψiI(p−i) = ψiN(p−i) ∪ ψiU(p−i).

�
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A.3 Proof of Proposition 2

Proof. Let the function Fi be defined by Fi(pi, p−i, xi) = (pi − xi)Di(pi, p−i) and the correspon-

dence ψi be given by

ψi(p−i, xi) = arg max
pi∈[xi ,pmax]

log Fi(pi, p−i, xi) = arg max
pi∈[0,pmax]

Fi(pi, p−i, xi). (A.2)

Note that ψiN(p−i) = ψi(p−i, ci) by (4), ψiS(p−i; si) = ψi(p−i, ci − si) by (5), ψiA(p−i; a) =

ψi(p−i, ci/(1 + a)) by (6), and ψiU(p−i; r, pi) = ψi(p−i, (ci − rpi)/(1− r)) by (7).

For each p−i, log Fi(pi, p−i, xi) has strictly increasing differences in pi and xi (where Fi > 0)

because given pi > p′i and xi > x′i ,

Fi(pi, p−i,xi)Fi(p′i, p−i,x′i) = (pi − xi)(p′i − x′i)Di(pi, p−i)Di(p′i, p−i)

> (pi − x′i)(p′i − xi)Di(pi, p−i)Di(p′i, p−i)

= Fi(pi, p−i,x′i)Fi(p′i, p−i,xi),

where the inequality holds because

(pi − xi)(p′i − x′i) > (pi − xi)(p′i − x′i) + (xi − x′i)(p′i − pi) = (pi − x′i)(p′i − xi).

Thus, ψi(p−i, xi) is strongly increasing in xi (i.e. if xi > x′i , then pi ≥ p′i for any pi ∈ ψi(p−i, xi)

and p′i ∈ ψi(p−i, x′i)) (e.g. Vives, 1999, Ch. 2; Amir, 2005). Hence, (i) holds because ci − si < ci,

ci/(1 + a) < ci, and (ci − rpi)/(1− r) < ci. Likewise, (ii) holds because ci − si, ci/(1 + a), and

(ci − rpi)/(1− r) are strictly decreasing in si, a, r, and pi, respectively.42

Following footnote 9, for each xi, log Fi(pi, p−i, xi) has increasing differences in pi and p−i

(where Fi > 0). Thus, the game characterised by (A.2) for each i is a log-supermodular game.

Additionally, log Fi(pi, p−i, xi) has (strictly) increasing differences in pi and xi, as shown above.

Hence, the coordinate-wise largest fixed point of this game conditional on x=(x1, · · · , xn),

denoted by p∗(x), is increasing in x (e.g. Milgrom and Roberts, 1990). Therefore, (iii) and (iv)

hold because of the properties of ci − si, ci/(1 + a), and (ci − rpi)/(1− r) stated above.

42Because r < 1 and ci < pi,
∂

ci−rpi
1−r
∂r

=
ci − pi
(1− r)2 < 0.
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�

A.4 Proof of Proposition 3

Proof. If (12) is satisfied, then (11) and an analogous equation for πiA imply that ψiS(p−i; si) =

ψiA(p−i; a) = ψiU(p−i; r, pi) = ψiU(p−i; r′, p′i) for all i. Hence, the four policies result in the

same set of NEs. Similarly, if (12) satisfied, then (13)–(15) follow from the definitions of πiS,

πiU , and πiA.

�

A.5 Proof of Proposition 4

Proof. Equation (16) follows from Proposition 1. Lemma 1 and pN ∈ EI ∩ EN imply that

p ≤ pN , and Lemma 1 and pU ∈ EI ∩ EU imply that pU ≤ p. Thus, pU ≤ p ≤ pN . The

result for π̃I holds because the demand for product i and hence firm i’s profit are both strictly

increasing in the other products’ prices (see footnote 24).

�

A.6 Proof of Proposition 5

First, I state and prove Lemma 2, which is used in the following proof of Proposition 5.

Lemma 2. Given r and p, if there exists some p̌ such that G̃( p̌; r, p) = 0, then

G̃(p0; r, p)


≤ 0 for all p0 < p̌,

= 0 for p0 = p̌,

≥ 0 for all p0 > p̌.

(A.3)

Proof. By the envelope theorem, dπ̃N(pN , p0)/dp0 = (pN − c)D̃2(pN , p0), where pN∈ψ̃N(p0)

and D̃2 represents the partial derivative with respect to the second argument of D̃, and



44

dπ̃U(pU , p0; r, p)/dp0 = [(1− r)pU + rp− c]D̃2(pU , p0). Thus,

dG̃(p0; r, p)
dp0

= (pN − c)D̃2(pN , p0)− [(1− r)pU + rp− c]D̃2(pU , p0)

= (pN − c)D̃(pN , p0)
D̃2(pN , p0)

D̃(pN , p0)
− [(1− r)pU + rp− c]D̃(pU , p0)

D̃2(pU , p0)

D̃(pU , p0)

≥
{
(pN − c)D̃(pN , p0)− [(1− r)pU + rp− c]D̃(pU , p0)

} D̃2(pN , p0)

D̃(pN , p0)

= G̃(p0; r, p)
D̃2(pN , p0)

D̃(pN , p0)
,

(A.4)

where the inequality holds because 0 < D̃2(pU , p0)/D̃(pU , p0) ≤ D̃2(pN , p0)/D̃(pN , p0) owing

to the property of increasing differences of log D in pi and p−i.43 By (A.4),

dG̃(p0; r, p)
dp0


> 0 if G̃(p0; r, p) > 0,

≥ 0 if G̃(p0; r, p) = 0,

which implies that (A.3) holds.

�

Next, I give a proof of Proposition 5.

Proof. When all of the other firms set a common price p0, the best response pU∈ψ̃U(p0; r, p) is

characterised by the FOC (1− r)D̃(pU , p0) + [(1− r)pU + rp− c]D̃1(pU , p0) = 0. Substituting

(18) into the FOC gives

D̃(pU , p0) +
[
pU − p̂− D̃( p̂, p̂)

D̃1( p̂, p̂)

]
D̃1(pU , p0) = 0. (A.5)

By applying the envelope theorem to π̃U(pU , p0; r, p(r; p̂)) = [(1− r)pU + rp − c]D̃(pU , p0)

43If p−ij denotes the vector of the consumer prices of all goods other than i and j,

∂
D̃2(pi ,p0)
D̃(pi ,p0)

∂pi
=

1
D̃(pi, p0)2

[
D̃(pi, p0)D̃12(pi, p0)− D̃1(pi, p0)D̃2(pi, p0)

]
=

n− 1
D(pi, p−i)2

[
D(pi, p−i)×

∂2D(pi, p−i)

∂pi∂pj
− ∂D(pi, p−i)

∂pi
× ∂D(pi, p−i)

∂pj

]∣∣∣∣
p−i=(p0,··· ,p0)

≥ 0,

where the inequality follows from (3). In addition, pU ≤ pN by Proposition 2. Thus, D̃2(pU , p0)/D̃(pU , p0) ≤
D̃2(pN , p0)/D̃(pN , p0).
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and noting that rp = c + (r− 1)
[
p̂ + D̃( p̂, p̂)/D̃1( p̂, p̂)

]
by (18),

dπ̃U(pU , p0; r, p(r; p̂))
dr

=
[
− pU + p̂ +

D̃( p̂, p̂)
D̃1( p̂, p̂)

]
D̃(pU , p0)

=
D̃(pU , p0)2

D̃1(pU , p0)

< 0,

where the second line follows from (A.5). Thus,

dG̃(p0; r, p(r; p̂))
dr

= −dπ̃U(pU , p0; r, p(r; p̂))
dr

> 0. (A.6)

Because G̃( p̂; r3, p(r3; p̂)) = 0 and p̂ < p∗N , Lemma 2 implies that G̃(p∗N ; r3, p(r3; p̂)) ≥ 0. Hence,

(A.6), G̃(p∗N ; r2, p(r2; p̂)) = 0, and G̃(p∗N ; r3, p(r3; p̂)) ≥ 0 imply that r2 ≤ r3.

Next, (A.6) and G̃(p∗N ; r2, p(r2; p̂)) = 0 imply that G̃(p∗N ; r, p(r; p̂)) < 0 for all r < r2 and that

G(p∗N ; r, p(r; p̂)) > 0 for all r > r2. Thus, Proposition 4 implies that p∗N /∈ EI for all r < r2 and

that p∗N ∈ EI for all r ≥ r2. In addition, because pN < p∗N for any other pN ∈ EN , Lemma 2

and G̃(p∗N ; r2, p(r2; p̂)) = 0 imply that G̃(pN ; r2, p(r2; p̂)) ≤ 0. Therefore, G̃(pN ; r, p(r; p̂)) < 0

for all r < r2 by (A.6), and thus pN /∈ EI for all r < r2.

Similarly, (A.6) and G̃( p̂; r3, p(r3; p̂)) = 0 imply that G̃( p̂; r, p(r; p̂)) < 0 for all r < r3 and that

G( p̂; r, p(r; p̂)) > 0 for all r > r3. Thus, Proposition 4 implies that p̂ ∈ EI for all r ≤ r3 and that

p̂ /∈ EI for all r > r3.

Hence, statements (i)-(iii) hold. Given statements (i)-(iii), the statement about the Pareto-best

NE in EI follows from Proposition 4.

�

A.7 Proof of Proposition 6

Proof. Note that π̃U( p̂, p̂; r, p(r; p̂)) = −(1− r)D̃( p̂, p̂)2/D̃1( p̂, p̂). By the definition of r1,

π̃N(p∗N , p∗N) = π̃U( p̂, p̂; r1, p(r1; p̂)) = −(1− r1)D̃( p̂, p̂)2/D̃1( p̂, p̂). (A.7)
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When r = r2, both p∗N and p∗U = p̂ are in EI (Proposition 5). Because p̂ < p∗N , Proposition 4

means that

π̃N(p∗N , p∗N) > π̃U( p̂, p̂; r2, p(r2; p̂)) = −(1− r2)D̃( p̂, p̂)2/D̃1( p̂, p̂). (A.8)

By (A.7) and (A.8), 1− r2 < 1− r1, so r1 < r2. Thus, (22) holds because π̃U( p̂, p̂; r, p(r; p̂))

decreases with r (given p̂).

�

B Multidimensional Quality

This appendix extends the model in Section 5 to the case of multidimensional quality. Overall,

I can incorporate multiple product attributes in analogous steps and obtain similar results.

The unit production cost of good i depends on its K-dimensional attributes wi ∈ RK
+ and is

expressed as ci(wi). The function ci : RK
+ → R+ is such that ∂ci(wi)/∂wk

i > 0 ∀wi for each

attribute k ∈ {1, · · ·K} and ∇2ci(wi) is positive definite for all wi, implying that ci(·) is strictly

convex. For the demand side, one unit of good i with quality wi increases a representative

consumer’s utility by f (wi), where the function f : RK
+ → R+ is such that ∂ f (wi)/∂wk

i > 0

for each k and ∇2 f (wi) is negative definite for all wi, implying that f (·) is strictly concave.

Following the same steps as in the one-dimensional case, the demand for good i is given

by qi = Di(p1 − f (w1), · · · , pn − f (wn)), and f (wi) is considered the premium attached to

product i’s quality or, equivalently, the consumer’s willingness to pay (WTP) for quality.

[No Subsidy]

In the baseline case of no subsidy, given the qualities and prices of the other products,

firm i sets wi and pi simultaneously to maximise its profit πiN(wi, pi, {wj, pj}j 6=i) = [pi −

ci(wi)]Di(hi, h−i), where hi = pi − f (wi) and h−i is a vector of the hj’s for all j 6= i. Assuming

an interior solution that gives a positive profit, the following FOCs are satisfied for each i:

∂πiN

∂wk
i
= −∂ci(wi)

∂wk
i

Di(hi, h−i)− [pi − ci(wi)]
∂Di(hi, h−i)

∂hi

∂ f (wi)

∂wk
i

= 0 ∀k, (B.1)

∂πiN

∂pi
= Di(hi, h−i) + [pi − ci(wi)]

∂Di(hi, h−i)

∂hi
= 0. (B.2)
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Substituting (B.2) into (B.1) shows that the optimal quality, denoted by wiN , satisfies

∇ f (wiN)−∇ci(wiN) = 0. (B.3)

The optimal quality wiN is uniquely determined because f (·)− ci(·) is strictly concave. Given

{wiN , ci(wiN)}i∈{1,··· ,n}, the discussion in Section 2 implies that an NE exists, at which (B.2) is

satisfied for each i.

[IR Subsidy]

Suppose that each firm’s threshold pi is determined by the government as a function of wi,

that is, pi = p(wi). Assuming that the subsidy scheme is sufficiently generous, I focus on

an NE at which all firms opt in and thus πiI = πiU . As above, firm i maximises its profit

πiU(wi, pi, {wj, pj}j 6=i) = [(1− r)pi + rp(wi) − ci(wi)]Di(hi, h−i) with respect to wi and pi.

Assuming an interior solution that provides a positive profit, the following FOCs are satisfied

for each i:

∂πiU

∂wk
i
= [r

∂p(wi)

∂wk
i
− ∂ci(wi)

∂wk
i

]Di(hi, h−i)− [(1− r)pi + rp(wi)− ci(wi)]
∂Di(hi, h−i)

∂hi

∂ f (wi)

∂wk
i

= 0 ∀k,

(B.4)

∂πiU

∂pi
= (1− r)Di(hi, h−i) + [(1− r)pi + rp(wi)− ci(wi)]

∂Di(hi, h−i)

∂hi
= 0. (B.5)

Substituting (B.5) into (B.4) shows that the optimal quality, denoted by wiU , satisfies

(1− r)∇ f (wiU)−∇ci(wiU) + r∇p(wiU) = 0, (B.6)

where I assume for simplicity that wiU is uniquely determined.44 Equation (B.6) shows that

the policymaker can affect the realised quality by adjusting the gradient ∇p(·). For example,

(B.3) and (B.6) imply that if pi is constant (i.e. ∇p(·) = 0), then the optimal product quality

(denoted by w̃iU) is lower than that in the no-subsidy case in terms of WTP and the unit

production cost: f (w̃iU) < f (wiN) and ci(w̃iU) < ci(wiN).45 Alternatively, in principle, setting

44Assume, for example, that p(·) is linear or, more generally, that r and p(·) are set so that (1− r) f (·)− ci(·) +
rp(·) is strictly concave.

45It follows from (B.3) and (B.6) with ∇p(·) = 0 that wiN 6= w̃iU . Because wiN is a unique maximiser of
f (wi)− ci(wi),

f (wiN)− ci(wiN) > f (w̃iU)− ci(w̃iU). (B.7)
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∇p(·) = ∇ f (·) makes (B.3) and (B.6) equivalent, resulting in the same optimal quality with or

without the IR subsidy (wiU = wiN).

As another illustration, consider p(·) that is linear in each argument (and non-constant)

(i.e. ∇p(·) = v 6= 0). This linear schedule induces the optimal quality wiU such that

p(wiU) > p(w̃iU), which means that wiU lies above the hyperplane through w̃iU that is

perpendicular to v (i.e. v · (wiU − w̃iU) > 0).46 In addition, if the policymaker aims to improve

a particular attribute k (because of, for example, its positive externalities), increasing vk (the

kth element of v) raises its equilibrium quality (i.e. ∂wk
iU/∂vk > 0).47

Given {wiU , ci(wiU)}i∈{1,··· ,n}, the discussion in Section 2 implies that an NE exists, at which

(B.5) is satisfied for each i.

Similarly, because w̃iU is a unique maximiser of (1− r) f (wi)− ci(wi),

(1− r) f (w̃iU)− ci(w̃iU) > (1− r) f (wiN)− ci(wiN). (B.8)

With (B.7) and (B.8), (1− r) f (w̃iU)− ci(w̃iU) > f (w̃iU)− ci(w̃iU)− r f (wiN), so f (w̃iU) < f (wiN). With (B.8),
ci(w̃iU)− ci(wiN) < (1− r)[ f (w̃iU)− f (wiN)] < 0, so ci(w̃iU) < ci(wiN).

46More generally, given a (possibly nonlinear) schedule p(wi) (with ∇p(w̃iU) 6= 0), the optimal quality wiU
satisfies p(wiU) > p(w̃iU), ∇p(w̃iU) · (wiU − w̃iU) > 0, and ∇p(wiU) · (wiU − w̃iU) > 0.

47Given r, the optimal quality wiU is determined by the FOC (B.6) with ∇p(wi) = v. By the implicit function
theorem, wiU is expressed as a function of v (let wiU=g(v)), and ∇g(v) = −r[(1− r)∇2 f (wiU)−∇2ci(wiU)]−1.
Because ∇2 f (wiU) is negative definite and ∇2ci(wiU) is positive definite, ∇g(v) is positive definite. Therefore, the
diagonal elements of ∇g(v) are positive (that is, ∂wk

iU/∂vk > 0).


