
 1

Wireless Communications and Mobile Computing

Semantic Mobile Computing within the Internet of Things and Web of Things 2021

Cooperative Multi-agent Attentional Communication for Large-scale

Task Space

Qijie Zou,1 Youkun Hu,1 Dewei Yi,2 Bing Gao,1 and Jing Qin1

 1 Department of Information Engineering Faculty, Dalian University of China, 116622, China.
 2 Department of Computing Science, University of Aberdeen, Aberdeen AB24 3UE, UK.

Correspondence should be addressed to Youkun Hu; huyoukun163@163.com

Abstract

With the rapid development of mobile robots, they have begun to be widely used in industrial manufac-

turing, logistics scheduling, intelligent medical and other fields. For large-scale task space, the communi-

cation between multi-agent is the key to affect cooperation productivity, and agents can coordinate more

effectively with the help of dynamic communication. However, the traditional communication mechanism

uses simple message aggregation and broadcast, and in some cases lacks the distinction of the importance

of information. Multi-agent deep reinforcement learning (MDRL) is valid to solve the problem of infor-

mational coordination strategies. However, how different messages affect each agent's decision-making

process remains a challenging task for large-scale task. To solve this problem, we propose IMANet (Im-

port Message Attention Network), It divides the decision-making process into two sub-stages: communi-

cation and action, where communication is considered to be part of the environment. First, an attention

mechanism based on query vectors is introduced. The correlation between the query vector agent's own

information and the current state information of other agents is estimated, and then the results are used to

distinguish the importance of information from other agents. Second, LSTM network is used as the unit

controller for each agent, and individual rewards are used to guide the agent training after communication.

Finally, IMANet is evaluated on tasks on challenging multi-agent platforms, Predator and Prey (PP) and

Traffic junction. The results show that IMANet can improve the efficiency of learning and training, espe-

cially when applied to large-scale task space, with a success rate 12% higher than CommNet in baseline

experiments.

1. Introduction

Multi-agent system is very practical in distributed

control, remote scheduling, and modeling analysis

[1]. Compared with a single agent, it can complete

tasks more effectively and has better robustness,

reliability, and scalability. Communication is the

basis for maintaining the efficiency and organizat-

ion of multi-agent systems [2]. In the DEC-

POMDP (Decentralized Partially Observable Mar-

kov Decision Process) environment, through com-

munication [3], agents can exchange their observa-

tions to better discover the current global state and

understand the actions and intentions of other

agents. However, traditional pre-defined commu-

nication protocols and broadcast messages cannot

allow multi-agent to effectively "learn to com-

municate" in a large-scale task. Reinforcement

learning (RL) is mainly to study how agents

choose actions by perceiving local and global

states, and constantly interact with the dynamic en-

vironment in order to find optimal policy that max-

imize cumulative rewards [4, 5].

The reinforcement learning problem in multi-

agent scenarios is more complex than in single-

agent scenarios. Because the agent interacts with

 2

the environment at the same time and treats other

agents as part of the environment, the agent usually

faces the dimensionality disaster (grows exponen-

tially with the number of agents, so the multi-agent

system dimension is very large and computation-

ally complex) [6], credit assignment (identify the

impact of the agent’s behavior on this global return)

and other issues [7]. As the number of agents in-

creases, the task space is extended to large-scale

and cooperative information is augmented. Deep

learning is an efficient representation learning that

can discover the key information in the original

message [8]. The main reason is that the neural net-

work can process the input high-dimensional data

and extract useful expressions [9,10]. The main ad-

vantage of deep reinforcement learning (DRL) is

that it can extend RL to high-dimensional state and

action spaces [11].

In recent years, multi-agent deep reinforce-

ment learning (MDRL)[12], a combination of deep

learning (DL) and multi-agent reinforcement

learning (MARL), has been successful in many

complex environments. Such as StarCraft [13],

particle environment [14]. However, these tasks

either assume that the environment is completely

observable, or there is a lack of communication be-

tween agents.

In this paper, we will investigate how to use

Deep MARL's approach for effective communication

learning in a partially observable distributed envi-

ronment.

In the centralized training paradigm, as the

number of agents increases, the linear growth of

the input dimension and the exponential growth of

the output space make, the centralized training

method using the traditional central controller

makes the algorithm not easily scalable to large-

scale tasks, the convergence of the algorithm be-

comes poor or even unable to converge, and the

problem of poor scalability. In the communication

process, broadcast communication is a common

setting for the study of "learning communications"

between agents, but this does not allow selective

attention to the observations and actions of other

agents, does not provide useful information to

agents in the decision-making process, and leads

to unstable learning processes. These problems are

caused by the inability of traditional reinforcement

learning methods to learn cooperative strategies

through effective communication in DEC-

POMDP conditions [15]. To this end, we propose

the IMANet method for multi-agent deep rein-

forcement learning.

The main contributions of this paper are as

follows:

(1) We use a query vector-based attention

mechanism in the IMANet communication

structure to identify the messages contained

in more favorable specific agents. In this al-

gorithm, the local observations of each

agent are encoded and attention is directed

to different agents according to the magni-

tude of the attention weights, generating dy-

namically changing communication vectors

to coordinate policies. The problem of ina-

bility to judge and distinguish the im-

portance of messages is solved to make the

learning process more efficient and stable.

(2) Using a single individual LSTM network as
a controller for each agent [16], individual

observations and communication vectors
from the agents themselves are processed.

Our independent control model selectively

outputs important information, thus alleviat-
ing the problems associated with dimen-

sional explosion, which makes it possible
for agents to learn coordination strategies in
large-scale spaces.

2. Notation and Background

2.1 Technical Background

Dec-POMDP is a multi-agent extension of par-

tially observable Markov decision process. First,

our approach requires the introduction of the nec-

essary notation, and then three common reinforce-

ment learning framework structures are introduced.

Decentralized Partially Observable Markov

Decision Processes (Dec-POMDPs).We consider

a fully cooperative multi-agent setting that can be

formulated as DEC-POMDP [17]. It is formally

defined as a tuple N,S,A,T,R,O,Z, , Where N is

the number of agents, S is the state space;

1 2 N×A ...A A A=  is the action space of all agents,

and jA is the set of local action ja that agent j can

take;  : 0,1T S A S  → is the state transition

probability. 1 2(, ,...,)NR r r r= is the set of rewards,

 3

Where: jr ：S A S  → is the reward function of

an agent j ;  1,..., NO O O= is the set of joint obser-

vation o ; :Z S A O → is observation function;

 0,1  is the discount factor. The set of action

policies is  1 2, ,..., N   = , each policy is rep-

resented by a neural network and its parameter set

 1 2= , ,... N    .

A policy (| ;)t t j

j ja h  is the probability of

taking action
t

ja when encountering history
t

jh un-

der the policy parameters j . The agent's action
t

ja depends on the encountered history
t

jh . We

generally omit the parameter j in policy

(| ;)t t j

j ja h  for brevity, and denote the policy as

(|)t t

j ja h . We use
t

jh to denote the history of in-

dividual observations jo , individual rewards jr ,

and individual actions ja encountered by the agent

j following policy  at the time t and is defined

as  0 0 0 0 1 1 1, , , ,..., , ,t t t t

j j j j j j j jh s o r a r a s− − −= . Sequence

 0 0

j jh s= denotes the history at time 0t = , con-

tains only the star state
0

js of the agent j . The re-

turn of an agent j that interacts with the environ-

ment to produce a history
t

jh is written as

()
0

T
t t t

j j

t

R h r
=

= .

2.2 Multi-agent reinforcement learning archi-

tecture

Three architectures of multi-agent reinforcement

learning: Decentralization: Without a central con-

troller, the agent makes independent decisions

based on its own policy network. Fully cen-tral-

ized: The central controller makes decisions for all

agents. Centralized training and decentralized

execution: The central controller is used only by

the training process. Each agent makes a decision

on its own policy network by its own observations.

Decentralization. All agents are independent

individuals, and they do not communicate with

each other. As shown in Figure 1. Each agent in-

dependently interacts with the environment to ob-

tain individual observation
io and individual re-

wards
ir . Each agent deploys its own policy net-

work and trains its own policy network inde-

pendently, exactly the same as the reinforcement

learning of a single agent. After the training, each

agent utilizes its own policy network to make a de-

cision, and the observed
io is the input of the pol-

icy network and the probability distribution

(| ;)i i ia o  is the output. To produce a discrete

action
ia , we sample from this distribution:

(| ;)i i ia o  , and then execute the action
ia .

Regardless of training or execution, there is no

communication between agents. The essence of

such decentralization is single-agent reinforce-

ment learning, rather than true multi-agent rein-

forcement learning. Although this decentralized

structure can well deal with the problems caused

by the growth of the number of agents, the effect

of single-agent reinforcement learning for multi-

agent reinforcement learning does not usually

work. The single-agent algorithm assumes that

these functions are stable, and in a multi-agent sce-

nario, it will face the problem of environmental in-

stability. The reason is that the influence between

them should not be ignored.

Environment

...

1
a 2

a
n

a
11

, ro 22
, ro

nn
ro ,

);|(
111

 oa);|(222  oa);|(
n nn

oa 

1
Agent

2
Agent

n
Agent

Figure 1:Decentralized architecture.

Fully centralized. There are n agents inter-

acting with the environment, and each agent will

change the environment, thereby affecting other

agents. As shown in Figure 2. There is no policy

network on the agent, so the agent cannot make de-

cisions by itself, and all have to be commanded by

the central controller.

During training, the agent reports its observa-

tion io and reward ir to the central government.

The policy network is in the center, and the center

transmits the decision ia to the agent i . The agent

 4

performs actions in accordance with the instruc-

tions of the center , and interacts with the environ-

ment to do it in the center. The central controller

uses all observation o , reward r , and action a to

train the policy network. Even after the training is

completed, the central controller is needed when it

comes to decision-making.

N policy networks are trained on the central

controller, and their network structures are the

same, but the parameters may be different. Use i

to denote the parameters of the i-th agent. The in-

put of the policy network is all the observations
1 no o of the agent. The i-th policy network de-

termines the action ia of the agent i , and the de-

cision can only be made by the central government.

This is because the policy network needs to use the

observations of all agents. An agent only knows its

own observation io , it does not have enough infor-

mation to make a decision, so the policy network

cannot be deployed on the agent, and can only stay

on the central controller. In the execution, all

agents report their observations to the central gov-

ernment, then the central government determine

each agent what to do. The center transmits 1 na a

to the corresponding agent.

Central controller

forooa ini),;,...|(1  all

ni ,...2,1=

Environment

...

1a
11 , ro 2a

22 , ro na
nn ro ,

nnn roa ,,111 ,, roa 22 ,, ro2a

1Agent 2Agent nAgent

Figure 2: Fully centralized architecture.

The advantage of centralization is to know the

overall information, which can help all agents

make better decisions. But centralization also has

disadvantages. The execution speed is slow. The

agent itself has no decision-making power, and all

decisions are made by the central government. The

agent reports all its observations to the central gov-

ernment, and the central government collects

global information before making decisions. The

biggest problem faced by this centralized structure

is the huge input and output space. With the in-

crease in the number of agents, the input dimen-

sion increases linearly, and the space exponential

of the output joint policies increases.

Centralized Training Decentralized Exe-

cution (CTDE). In the traditional CTDE architec-

ture, each agent has its own policy network and the

team has a central controller during training, which

helps the agent train the policy network. After

training, there is no need for a central controller,

and each agent interacts with the environment in-

dependently. The agent has own policy network to

act based on your own local observations. There

are many different models of CTDE, which are

popular nowadays (such as MAAC proposed by

Sha et al [18], COMA proposed by Foerster et al

[19].).

3. Related Work

Recently, the direct communication method of em-

bedding communication channels in deep neural

networks (direct communication:The use of spe-

cific communication channels can selectively

complete the information exchange between vari-

ous agents [20].)For learning communication pro-

tocols, it has been proven to be very effective [21-23].

Under normal circumstances, the continuous trans-

mission between agents through the network forms

a Communication channel, which makes the

agents consider local information and global infor-

mation at the same time during the learning pro-

cess. The protocol can be optimized at the same

time as the network is optimized.

Learning an effective multi-agent communi-

cation protocol is mainly divided into the follow-

ing two aspects.

3.1 Broadcast partial observations of each

agent to all agents

Sukhbaatar proposed the CommNet algorithm.

CommNet is just a single network designed for all

agents [24]. It solves the Dec-POMDP problem. It

follows the centralized training and decentralized

execution method. This single-network communi-

cation channel cannot be easily extended to a

large-scale agent environment. Due to continuous

communication, the controller can learn through

 5

backpropagation. However, the information trans-

mission method adopted by this algorithm is to

broadcast communication content to all agents,

which will also cause waste of bandwidth re-

sources. Aiming at the problem of channel occu-

pation when broadcasting a message to each agent

within the communication range. Kim proposed

SchedNet [25], a learning method for multi-agent

deep reinforcement learning. This method intro-

duces the CSMA protocol, which is a contention-

type access medium. When the agent sends a mes-

sage to the channel, it monitors whether the chan-

nel is occupied at this time, and stops sending if it

is occupied. When a conflict occurs, it will stop

sending the message, wait for a suitable time, and

send it randomly. This method also alleviates the

message loss problem caused by the agent through

broadcast communication. The Message-Dropout

MADDPG uses the message dropout technology

in multi-agent reinforcement learning in order to

allocate communication resources reasonably [26].

This method uses a centralized training decentral-

ized execution framework under fully or partially

observable conditions, discards the received mes-

sage with a certain probability in the training phase,

and compensates by multiplying the weight of the

discarded block unit by the correction probability

this influence. This method is also robust against

communication errors.

3.2 Selective and targeted communication

through the use of attention mechanism

As it is difficult for multi-agents to distinguish be-

tween valuable information and shared infor-

mation, Lu proposed the ATOC based on the actor-

critic framework [27]. In this algorithm, the local

observation value of each agent is coded. The at-

tention unit is used to determine which agents to

communicate with (screening agents for infor-

mation sharing), and a two-way LSTM network is

used as the communication channel between com-

munication groups. Agents in this communication

group exchange information with each other in the

communication channel. The attention module is

an RNN network and will face the problem of van-

ishing gradients. Without a centralized controller,

decentralized agents cannot learn effective and de-

centralized cooperation policies in a complex en-

vironment. Wang proposed a new attention-based

communication neural network (CommAttn) [28].

CommAttn can use the display communication

method to automatically learn and explore the co-

operation policies in the problem, by modeling the

interaction between agents and introducing the at-

tention mechanism. Calculate the relevance of the

received message, and determine whether commu-

nication between agents is required, so that the

agent can decide who to communicate with. The

learned communication model of the system is

more able to adapt to the dynamically changing en-

vironment. Facebook AI Research proposed a col-

laborative multi-agent deep reinforcement learn-

ing method, namely TarMAC [29]. Allow targeted

communication between agents. The purpose is sim-

ilar to ATOC's attentional mechanism. It not only de-

termines who to send the message to, but also the

part of the observation that is most relevant to the

goals of other multi-agents. This targeted commu-

nication behavior is achieved through a signature-

based attention mechanism: Together with the

message, the sender broadcasts a key that encodes

the attributes of the multi-agent targeted by the

message and is used by the receiver to measure the

relevance of the message. To cope with how to se-

lect important messages and how to process im-

portant messages efficiently. Mao proposed a DRL

method called Double Attentional Actor-Critic

Message Processor (DAACMP) [30], which em-

beds a first class attention mechanism in the actor

part, where the importance of a message is posi-

tively related to the distance between two agents,

the Actor Attention is able to pay attention to the

messages of nearby agents adaptively. Embedding

the second type of attention mechanism in the

Critic part, where the joint action policies of team-

mates are modeled using Q-values, and similar

joint actions are grouped and processed instead of

processing the action policy of individual agent,

the Critic Attention has a more sophisticated abil-

ity to process all important messages.

In the above method, using the method of

multi-agent deep reinforcement learning with di-

rect communication, there will be an obvious in-

formation transmission process between the agents,

and the communication objects can be selected to

reduce the problem of the explosion of the joint ac-

tion space or by optimizing the communication

content. This method allows the agent to pay atten-

 6

tion to more important messages when sending in-

formation, reduce the bandwidth occupation in the

communication channel, and improve calculation

efficiency.

The IMANet method in this article can be

seen as an extension of the CommNet. The

CommNet algorithm is to chain the messages to-

gether and broadcast them, IMANet adds an atten-

tion vector to learn the importance weight of each

message from other agents, obtain their weighted

sum and use it to perform operations. You can se-

lectively conduct partial interactions and deter-

mine which multi-agents provide shared infor-

mation that can improve performance and make

the training process more stable. And because

CommNet uses a central controller for centralized

training, the scalability is poor, so we have an in-

dependent controller.

4. IMANet method

4.1 Basic description

We first introduce the necessary assumptions for

our approach, and then describe in detail our multi-

agent communication architecture.

Hypothesis 1 The decision-making process is

divided into two sub-phases: communication sub-

phase and action sub-phase.

Hypothesis 2 During training, the current

content of the agent's communication is related to

the agent's own encounter history and the encoun-

ter histories of other agents (i.e., the hidden layer

states in the next section).

Hypothesis 3 Each agent's policy depends

only on its own hidden layer state.

4.2 IMANet architecture

We propose a new deep MARL framework with

targeted communication, called IMANet, whose

overall architecture is depicted in Figure 3. IMA-

Net consists of the following three levels of control

structure.

. ..

t

io 1

t

io +

t

jo t

ko

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

t

i
c 1

t

i
c
+

t

j
c

t

k
c

t

k
w

1

t

i
w

+

t

i
w t

j
w

s
ws

w
s

w
s

w

Soft-Attention

t

kh
t

jh
1

t

ih+

t

ih

k
Agent

1iAgent + jAgent

t

ir
t

ia 1

t

ir+ 1

t

ia +

t

jr
t

ja t

kat

kr

Environment

Environment

iAgent

1t +

t

u o
tanh

tanh









ts

th

tf tu to 1th + 1th +

tc

1ts + 1ts +

f

1ts +

()toe

(a) (b) (c)

Figure 3: An overview of our IMANet model (a) Optimize the individual rewards of each agent based on the observation re-

sults.(b) The produce of communication vectors for each agent in a single communication step. (c) The module view of the

LSTM unit..

NC (NO Communication) is an independent

control that uses LSTM network structure, where

each agent is controlled by an independent LSTM.

IMANet without communication is exactly NC.

For the j-th agent, its policy is defined as equation

(1)-(3).

1 ((), ,)t t t t

j j j js LSTM e o h s+ = (1)

1 ((), ,)t t t t

j j j jh LSTM e o h s+ = (2)

()t t

j ja h=

 (3)

Where t

jo is the observation of the agent j at

a time t , (.)e is the encoder function parameterized by

the fully connected neural network, and  is the ac-

 7

tion policy of the agent. In addition, t

jh and t

js re-

spectively represent the hidden layer state and

memory cell state of the agent j at a time t . Use

the same LSTM model for all agents and share

their parameters. All agents share a unit, which has

a higher utilization rate of samples, shared param-

eters reduce model complexity.

IMANet extends this independent controller

model NC, a vector tc containing communication

is introduced, which allows agents to obtain local

information observed by other agents through ex-

change to observe the global state of the system.

As in hypothesis 1, the IMANet model divides the

decision-making into two sub-phases: communication

and action, as shown in Figure 4. Before choosing an

action, use the method based on the attention

mechanism to decide which important information

to pay attention to.
current

state
Next state

Next stage
Communication

substage
Action substage

Decide which

action to perform

Decide which agent

messages to focus on T stage

current

state

Figure 4: Decision sub-stage.

The policy for the j-th agent in the IMANet

network is defined as equation (4)-(6).

1 ((), , ,)t t t t t

j j j j js LSTM e o c h s+ = (4)

1 ((), , ,)t t t t t

j j j j jh LSTM e o c h s+ = (5)

 = ()t t

j ja h (6)

According to Figure 3(c), the candidate

memory cells 1t

js + and the gate values functions

u , f , and o are defined as equation (7)-(10).

1 tanh([, (),])t t t t

j s j j j ss w h e o c b+ = + (7)

 ([, (),])t t t

u u j j j uw h e o c b = + (8)

 ([, (),])t t t

f f j j j fw h e o c b = + (9)

 ([, (),])t t t

o o j j j ow h e o c b = + (10)

Among them, since the same LSTM model is

used for each agent, that is, the update gate u ,

which determines what information we want to

store in the cell state, has parameters uw and ub .

The forget gate f , which determines what infor-

mation we want to discard from the cell state, has

parameters fw and fb . The next tanh layer cre-

ates a candidate vector
1t

js +
, which will be added

to the cell state. In the next step, we will combine

these two vectors to create the update value, which

includes parameters sw and sb . Finally, the output

gate o , where we need to decide what we want to

output, will be based on our cell state, which in-

cludes parameters ow and ob . That is, all the pa-

rameters are in the four w and b . represents the

sigmoid function, which makes the gate value very

close to 0 or 1. At each time step, Through an ac-

tivation function tanh , the current input ()t

je o ,
t

jc

and the
t

jh passed down from the previous state

are spliced and trained to obtain
1t

js +
. Here, tanh is

used because
1t

js +
 is used as input data instead of a

gate signal. The three gate values above the update

gate u , the forget gate f and the output gate o

allow the values flowing through the network to be

adjusted.

The update gate and the forget gate are used

to update the value of the state
1t

js +
 , the state value

is defined as equation (11).

1 1t t t

j u j f js s s+ +=   +  (11)

Specifically, f is used as a forgetting gate to

control which information of the previous state t

js

should be retained and which should be forgotten.

as an update gate u , select and memorize the in-

puts coding observations ()t

je o and communica-

tion vectors t

jc at this stage, and record more im-

portant contents. Adding the results of the above

two, it means that part of the information of the

current state t

jh is deleted and some information of

the new input 1t

js + is added to obtain the next state

1t

js + .

The output gate is used to update the hidden

layer state function 1t

jh + , the hidden layer state is

defined as equation (12).

 8

1 1

0 tanht t

j jh s+ +=   (12)

The 1t

js + obtained in the previous stage is

scaled by an activation function tanh and con-

trolled by the output gate o . This stage will de-

termine which states will be used as the output of

the current hidden layer state 1t

jh + .

Training. We use the reinforcement learning

method based on Policy gradient to train the action

policy. IMANet uses independent controllers to

train different agents for guidance, executed in a

decentralised manner, as each agent only needs its

local state vector and the weighted sum of incom-

ing messages to act, As shown in Figure 5 .

LSTM
Other agents

...
Communication

Channle

t

jc

t

jh
t

jh
t

ja

j
agent

kagent1iagent+iagent

t

ih 1

t

ih+
t

kh

 Figure 5: IMANet controller model.

Each controller trains only one agent and the

system has n agents. As shown in Figure 3(a), the

agent j interacts with the environment at time t to

obtain individual observations t

jo , individual ac-

tions t

ja and individual rewards t

jr from the envi-

ronment. For training, the agent j needs an inde-

pendent controller. As shown in Figure 5, for agent

j at time t , the attention unit performs a purpose-

ful fusion based on the received hidden layer state

()t t

i nh h i j of other agent to generate a com-

munication vector t

jc . The hidden layer state t

jh

of agent j and the communication vector t

jc con-

taining the encounter histories of other agents are

sent to the independent controller of agent

j .Through a communication mechanism, the dif-

ferent agents can exchange information about their

observations, actions and intentions to stabilize

their training process. After training, the agent j

makes its own decisions based on its own hidden

layer state(encounter history) t

jh . And the policy

network outputs a probability distribution

(|)t t

j ja h .

The overall performance measure of the pol-

icy  , is denoted as ()J  . It is defined as equa-

tion (13).

 () () ()t t t t

j j j jJ E R h p h R dh = =  (13)

where ()t

jp h is the probability of the exist-

ence of each sequence t

jh given the parameter j

of the policy .

To optimize the policy  , we want to update

the parameter
j along the gradient of J to an

optimal , it is defined as equation (14).

 ()1t t

j j J   + = +  (14)

where  is the learning rate, the policy are

updated by ascent with the following gradient, the

policy gradient is defined as equation (15).

() () ()

() ()

t
j

t
j

t t t

j j j
h

t t t

j j j
h

J p h R h dh

p h R h dh

 



 =

= 




 (15)

Communication. Establishing effective col-

laboration policies requires targeted communica-

tion, that is, the ability to send specific messages

to agents. We use the attention mechanism based

on query vector in the communication structure to

identify more beneficial specific agent messages

and realize the fusion of messages, leading to spe-

cific communication links according to the size of

the attention weight. The attention model based on

query vector is shown in Figure 6.



Softmax

t

jC

t
iw 1

t

iw
+

t

kw

t

ke1

t

ie+

t

ie

t

ih 1

t

ih+
t

kh

Figure 6: Attention model for query vector.

 9

As shown in Figure 3(b) and Figure 6, in the

attention model. The communication vector t

jC is

defined as equation (16)-(18).

t t t

j i i

i j

C w h


= (16)

 (,)t t t

i j ie Score h h= (17)

1

exp()

exp()

t
t i
i T

t

n

n

e
w

e
=

=


 (18)

In the communication process, we try to un-

derstand the content of the communication re-

ceived by agent j from other agents. t

jC is the

communication vector of the agent j at time t .

The score function((,)t t

j iScore h h) is used to calcu-

late the hidden layer state t

jh at the current mo-

ment as the query vector, and do the inner product

operation with the hidden layer vectors

()t t

i nh h i j passed by other agents at the cur-

rent moment, respectively, to get the weighting co-

efficient w t

i of the similarity size, and the size of

the coefficient reflects the importance of the con-

tent at the same time. The attention mechanism

module is a simple LSTM network. The commu-

nication vector at the current moment can be ob-

tained through the weighted addition of the hidden

layer. At this time, the agent focuses on more im-

portant information. Take the agent's own local ob-

servation and state coding as input, and use the

communication vector generated by the query vec-

tor attention mechanism, that is, the state infor-

mation observed by other agents as additional in-

put, and the fused state of the hidden layer is output

to guide the cooperation policies  .

5. Experiment

5.1 Experimental Setup

5.1.1 Experiment environment settings. We

evaluated IMANet, CommNet, and NC in the

traffic junction task (Sukhbaatar et al., 2016) and

Predator and Prey task [31]. CommNet is a

communication method that uses broadcast. The

detailed experimental environment will be

described in detail in the following subsections.

The experimental hardware environment uses

Intel(R) Core(TM) i7-7700 CPU+GeForce GTX

1650+16GB; the software environment for the

experiments uses PYTorch+Gym [32]; the agent

updates the policy according to their respective

reward functions. Using the RMSProp approach,

the configuration of learning rate hyperparameters

is done automatically by the algorithm, and

RMSProp can be targeted to provide different

learning rates for each parameter, this method was

proposed by Geoff Hinton [33]. thus improving the

problem of fading learning rate.

We use a learning rate of 0.001, set the hidden

size to 128 units, do 10 weight updates every round,

and conduct 1000 rounds of experiments in a

Predator and Prey task and traffic junction task.

Use LSTM to realize the attention unit.

5.1.2 Scenarios. Predator and Prey: In the grid

map of different sizes, there are n agents as

predators to capture a static prey, and each predator

has the same size of perception area. When the

prey is caught, a positive reward is given. Until the

end of this round, that is, other agents have reached

the position of the prey, as shown in Figure 7.

moving Predator

Range of
perception

Fixed prey

Figure 7: predator-prey environments’ Visualizations.

Figure 7 shows the red circle representing the

predator and the red arrow representing the

direction in which the predator is moving. Each

predator can take five actions: up, down, left, right,

and stop. The green circle represents fixed prey.

The yellow 3×3 square represents the perception

range of the agent.

 10

Traffic junction: In the task of traffic

junction, the total number of cars is fixed at, cars

avoiding collisions while passing through the

intersection. The cars randomly follow one of the

possible routes to reach the grid destination and are

again added back to the environment with a

different route assignment. We set up two one-way

roads on a 7 × 7 grid, as shown in Figure 8(a), and

the four connected junctions of two-way roads in

15×15 grid, as shown in Figure 8(b).

Car arrivals

Car exiting

(a)

Visual range

(b)

Figure 8: Easy and difficult versions of traffic junction task:

(a) 7 × 7 grid of traffic junction task; (b) 15 × 15 grid of

traffic junction task.

Figure 8 shows different colored circles rep-

resenting cars controlled by agents, while different

colored dashed lines represent possible routes. The

cars take a probability from entering the arrivals

point and the car can take two actions: braking and

forward. When the car reaches the target position

on the edge of the grid, it will be removed. One or

more road intersections exist in different maps, so

the diverse routes are optional. It is considered a

collision that two cars occupy the same position at

the same time, and the agents will be penalized, but

will not affect the simulation. The identification of

each car, its current location and the assigned route

are encoded in a one-hot binary vector set, each car

is finitely perceived as a grid of area 2×2 and can

communicate with other cars under certain

conditions.

5.1.3 Metrics. We will evaluate our method and

baseline algorithm in terms of the following

indicators.

In the Predator and Prey task：

(1) Maximum allowable steps taken maxT :

 max finishT kT= (19)

where finishT is the average time period from

the start of the movement of the first predator to

the location of the last predator to reach the prey,

Select k values according to different map sizes

and number of agents.

(2) Success rate :

 /successn n = (20)

where  is the ratio of the number of

successful events to the number of test events. An

event is considered successful if all predators cap-

ture prey before the maximum allowed step taken

maxT .

(3) Agent density agent :

agent

agent

n

W H
 =


 (21)

where agent denotes the sparsity of the envi-

ronment, agentn is the number of agents in the map,

and HW  is the size of the map.

(4) Average step taken steps takenT − :

 total
steps taken

agent

T
T

n
− = (22)

where steps takenT − denotes the average step

taken of each agent to reach the goal, totalT is the

number of steps to complete the epoch, and agentn

is the sum of the number of agents.

 11

(5) Average reward averager :

1

1 n

average i

iagent

r r
n =

=  (23)

where averager denotes the average of rewards

obtained by each agent at each epoch, ir is the in-

dividual reward of agent i , and agentn denotes the

number of agents.

In the Predator and Prey environment, the re-

ward function for agent i is set as follows:

() (1)i i penalty i t successr t r n r = −  +   (24)

Where i indicates whether the agent i has

captured the prey, and it is set to 1 or 0. 1 indicates

that the agent i has captured the prey at a time t ,

otherwise it is 0. penaltyr represents the penalty

value at a time step, equal to -0.05, which can en-

courage the agent to actively explore the environ-

ment. tn represents the number of agents that cap-

tured the prey at a time t . successr represents the re-

ward value for catching the prey, which is equal to

0.05.

In the traffic junction task：

(1) Maximum allowable steps taken maxT :

max finishT kT= (25)

 where finishT is the average time period

from the start of the movement of the first car to

the arrival of the last one at the target position at

the edge of the grid. Selecting k values according

to different size of tasks.

(2) Success rate :

 /successn n = (26)

where  is the ratio of the number of suc-

cessful events to the number of test events. The
simulation ends after the Maximum allowable

steps taken maxT . No collision is classified as a suc-

cess, and if one or more collisions occur, it is clas-
sified as a failure.

In the traffic junction environment, the reward

function for agent i is set as follows:

() t

i coll i time ir t r d r = +

 (27)

where collr denotes the penalty incurred when

two cars collide, 10collr = − .
t

id is the number of

times car i collides at time t , but the collision

does not affect the car's route. The actions the car

can take at each time step are braking and moving

forward. i is the number of steps that car i has

elapsed from the time it starts to the moment t ,

0.01time i ir  = − .

5.2 Ablation Experiment

IMANet is attentional communication model, we

conduct ablation experiments on the structure of

the attention unit, and NC is a simplified version

of IMANet without communication. NC has to

train an independent policy network for each agent.

In order to verify the influence of independent

controllers in IMANet on the increase in the

number of agents and the advantages of

communication. We increase the number of agents

on a map of the same size and the density of agents

increases accordingly. We can test this by

performing it in three different Predator and Prey

environments with sparse, normal and crowded

agent densities agent . With the success rate  and

average reward averager ， we can evaluate the

performance of the IMANet and NC. The success

rate  is shown in Table 1 and the average reward

value averager is shown in Figure 9.

Scene setting: Sparse scene task with

6agentn = and 0.06agent = , normal scene task with

8agentn = and 0.08agent = , and Crowded scene

task with 10agentn = and 0.1agent = . Set the

maximum allowable steps taken
40max =T

.

TABLE 1: Success rate in three density levels of Predator-

Prey environment in cooperative setting.

Predatory-Prey (Success Rate)

Agent Den-

sity

（ agentn ）

10×10, 6

agents, sparse

10×10, 8

agents,normal

10×10, 10

agents,crowded

NC 83.3±0.9% 83.4±0.8% 81.3±0.5%

IMANet 90.3±0.8% 86.8±0.8% 82.7±0.8%

 12

(a)

(b)

Figure 9: The average rewards ()averager against the change of

agent density setup: (a) Average rewards ()averager of IMA-

Net; (b) Average rewards ()averager of NC.

As shown in Table 1. NC has success rates 

of 83.3±0.9% and 81.3±0.5% on Sparse and Crowded

respectively, In the same size map environment, as

the number of agents increases, the independent

controller structure we use to guide each agent

training effectively improves the dimensional

explosion problem. As the number of agents

increases on the same size map, independent

controllers can help IMANet models scale to large

teams of agents.

 In Figures 9(a) and 9(b), the average reward

value averager of NC under the three task situations

of sparse, normal and crowded is close to 4.5.

However, the average reward value of IMANet is

close to 7.4, and the performance of IMANet is

better than NC in all three density levels. This

shows that attentional communication can improve

the collaboration between agents in the coopera-

tive task scenario.

5.3 baseline

We conducted experiments comparing IMANet

with NC and CommNet in predator and prey tasks

and traffic junction task - 1) no communication, 2)

communication, but broadcast communication,

and 3) targeted Communication. and set up task

scenarios of different size , the benefits of

communication and attention increase with the

complexity of the task space. The comparison of

IMANet with baseline work is shown in Table 2.

TABLE 2: Comparison of IMANet's work with NC,

CommNet's multi-agent collaborative communication.

Communica-

tion Cate-
gory

Execution

CommNet
Broadcast

Communication
Decentral-

ized

NC
No Commu-
nication

Decentral-
ized

IMANet
Targeted

Communication
Decentral-

ized

In the Predator and Prey environment, we set

up three grid worlds of different sizes and different

numbers of cooperative predators, and we

evaluated IMANet against CommNet and NC on

small, medium and large scales. The observation

horizon of the agents is effective, thus emphasizing

the importance of communication.

Scene setting: The small task has 3 agents on

a 4 4 grid with max 20T = , the medium task has

5 agents on a 8 8 grid with max 40T = and the

0 200 400 600 800 1000

-4

-2

0

2

4

6

8

10

r
e
w
a
r
d

epoch

 IMANet10×10(6)
 IMANet10×10(8)
 IMANet10×10(10)

0 200 400 600 800 1000

-4

-2

0

2

4

6

8

r
e
w
a
r
d

epoch

 NC10×10(6)
 NC10×10(8)
 NC10×10(10)

 13

large task has 8 agents on a 15 15 grid with

max 75T = .

We compare the convergence effect of the

average step taken steps takenT − in 1000 epochs and the

success rate  of IMANet, CommNet and NC.

Figure 10 shows the fast and slow convergence of

the step taken as well as the smoothness, and

Tables 3 and 4 report and evaluate the success rate

and average step taken of the three algorithms at

different scales, respectively.

(a) (b) (c)

Figure 10: Average steps taken ()steps takenT − to complete an episode of Predator-Prey environment (a) Average step taken

()steps takenT − at Small-scale.(b) Average step taken ()steps takenT − at medium-scale. (c) Average step taken ()steps takenT − at large-

scale.

TABLE 3: Success rates of cooperative tasks with three different settings in a Predatory-Prey environment.

Predatory-Prey (Success Rate)

map size（ agentn
 ） 4×4, 3 agents, small 8×8, 5 agents, medium 15×15, 8 agents, large

CommNet 99.0±0.9% 86.6±10% 49.0±0.4%

NC 98.0±0.6% 92.6±0.5% 43.9±6.9%

IMANet 99.9±0.1% 99.0±0.9% 67.3±6%

TABLE 4: Avg. number of steps taken to complete the episode in three different environment sizes settings

Predatory-Prey (Avg. Steps)

map size（ agentn
 ） 4×4, 3 agents, small 8×8, 5 agents, medium 15×15, 8 agents, large

CommNet 4.1±0.01 18.1±0.13 74.7±0.04

NC 4.0±0.00 18.7±0.04 73.9±0.06

IMANet 4.0±0.00 17.6±0.03 58.3±0.09

0 200 400 600 800 1000
2

4

6

8

10

12

14

16

18

20

s
t
e
p
s
-
t
a
k
e
n

epoch

 CommNet
 NC
 IMANet

0 200 400 600 800 1000

15

20

25

30

35

40

s
t
e
p
s
-
t
a
k
e
n

epoch

 CommNet
 NC
 IMANet

0 200 400 600 800 1000
50

55

60

65

70

75

s
t
e
p
s
-
t
a
k
e
n

epoch

 CommNet
 NC
 IMANet

 14

In the traffic junction task, we can test what

communication methods the agent performs

during the task to avoid collisions while going

through the intersection. At any time, the

maximum number maxN of car is set at the

intersection, each time a new car is added to the

environment with a probability arrivep from either

of the different directions. We study IMANet with

CommNet and NC in both easy and difficult traffic

junction environments.

Scene setting: The easy version is a

connecting junctions consisting of two 7 × 7 one-

way roads with max 4N = , 0.25arrivep = and

max 20T = ,The difficult version is a four-

connection intersection consisting of four 15 × 15

two-way roads with max 14N = , 0.05arrivep = and

max 80T = .

In order to analyze the impact of target

communication on car through intersections in

traffic scenarios, we use success rate  evaluation

of IMANet with CommNet and NC,Tables 5

report and evaluate the success rate.
TABLE 5: Success rate on various difficulty levels

Traffic junction (Success Rate)

Level Easy Difficult

CommNet 93.2±2.5% 53.4±3.7%

NC 74.0±0.9% 50.3±0.7%

IMANet 93.0±5.2% 68.3±7.8%

5.4 Analysis.

AS shown in Table 3, on small, both

commNet, NC and IMANet get close to 99.9% , a

without communication baseline NC has success

rates of 43.9±6.9% on large-scale, a broadcast

communication baseline CommNet has success

rates of 49.0±0.4% on large-scale, targeted

communication IMANet has success rates of

67.3±6% on large-scale, which is an 12% absolute

improve over CommNet.

As shown in Table 5, in the traffic junction

experiment, there can be no good performance

without communication. The baseline NC proves

this. NC has success rates of 74.0±0.9% and 50.3±0.7%

on easy and difficult respectively. On easy, both

CommNet and IMANet get close to 93%. IMANet

has success rates of 68.3±7.8% on difficult, which is

an 10% absolute improve over CommNet.

Figure 10 shows the average step taken

convergence efficiency on cooperation task in

Predator and Prey environment. As shown in

Figures 10(a) and 10(b), on small-scale, the

average step taken convergence efficiency of

IMANet, CommNet and NC are all close to 95%,

on medium-scale, the average step convergence

efficiency obtained by CommNet is 71%, and the

average step efficiency obtained by NC and

IMANet is close to 92%. As shown in Figure 10(c),

on large-scale, the average step taken convergence

efficiency of IMANet is 62%, which is much higher

than the CommNet and the IC. As shown in Table

Ⅳ, IMANet agents take 58.3 steps to capture prey

on average vs. 73.9 for NC vs. 74.7 for CommNet,

IMANet largely outperforms all the baselines. The

above experiments verify that our method can be

effectively extended to large-scale agent teams.

NC VS IMANet. This communication-free

approach has the advantage that it can cope well

with the increase or decrease of agents, but it

cannot observe the information of other agents and

cannot coordinate the actions of agents. IMANet

outperforms NC, we can see communication

indeed helps. CommNet VS IMANet. However,

CommNet also has communication, Why does it

perform so much worse in a large-scale task space?

CommNet uses centralized training and

decentralized execution, where the policies of

multi-agents form a large network. In this structure,

all hidden layer vectors are stacked though

broadcast communication to generate a communication

vector. Input the joint observation value of the

agent, and the output is the action of all the agents.

The action generation of this structure is based on

a joint policies. As the number of agents increases,

the number of observations increases linearly and

 15

the space of joint actions increases exponentially.

Therefore, as shown in Figure 10(b), the average

step taken learning training process for the

baseline experiment appears to be unstable. Our

IMANet uses an independent LSTM network as a

controller to guide the generation of action

strategies for the agents. The agent uses an

attention unit to weight and aggregate the hidden

layer vectors passed by each agent, and since each

agent pays more attention to information that is

more similar to its own observations, the agent has

continuity in its observations and so does the generated

communication messages, which makes the training

process smoother. This decentralized execution

allows the agents to generate appropriate actions

based on their own hidden layer states. This

independent network structure allows each agent

to update its policy according to its own reward

function. It can effectively deal with the problems

caused by the increase in dimensionality. Through

the above experiments, we can conclude that our

content-based optimization method IMANet has

better scalability and stability in the cooperative

agent setting compared to the traditional broadcast

communication method. It can better handle the

problems that arise with the increase of task space.

6. Conclusions

We propose IMANet to learn the communication

between agents in a fully cooperative multi-agent

task. In IMANet, we embed attention units based

on query vectors. The attention units can compress

the state values of the hidden layer more efficiently

by assigning different attention sizes, and since the

observations of the agents have continuity, the

generated communication information also has

continuity, which makes the training process

smoother. Also this independent network structure

allows each agent to update its policy according to

its own reward function. This decentralized execu-

tion allows the agnets to generate more beneficial

value actions based on their own hidden layer

states. The algorithm performs significantly better

than the other two algorithms in experiments with

Predator and Prey and traffic junction. Moreover,

the agent remained significantly more scalable in a

larger task space. Attention-based communication

can indeed help the agent to perform tasks more

effectively in the MARL environment.

Data Availability

The data used to support the findings of this study

are available from the authors upon request.

Conflicts of Interest

The authors declare that they have no known com-

peting financial interests or personal relationships that

could have appeared to influence the work re-

ported in this paper.

Acknowledgments

This work was supported by the Dalian University

Research Platform Project Funding: Dalian Wise

Information Technology of Med and Health Key

Laboratory, the National Natural Science Foundation

of China: Research on the stability of multi-surface

high-speed unmanned boat formation and the method

of cooperative collision avoidance in complex sea

conditions, NO.61673084.

References

[1] Olfati-Saber R, Fax J A, Murray R M. Consensus and Cooperation in
Networked Multi-Agent Systems[J]. Proceedings of the IEEE, 2007,
95(1):215-233.

[2] Goldman C V, Zilberstein S. Decentralized Control of Cooperative
Systems: Categorization and Complexity Analysis[J]. Journal of
Artificial Intelligence Research, 2011, 22.

[3] Claudia V. Goldman, Shlomo Zilberstein. Optimizing information
exchange in cooperative multi-agent systems[P]. Autonomous agents
and multiagent systems,2003.

[4] Sutton R S. Policy gradient method for reinforcement learning with
function approximation[C]// Proceedings of the 1998 IEEE
International Conference on Robotics & Automation. 2000.

[5] Hu Y , Wang W , Jia H , et al. Learning to Utilize Shaping Rewards:
A New Approach of Reward Shaping[J]. 2020.

[6] Busoniu L, Babuska R, Schutter B D. A Comprehensive survey of
Multiagent Reinforcement Learning, IEEE Transactions on Systems.
2008.

[7] Unifying Temporal and Structural Credit Assignment Problems[C]//
null. IEEE Computer Society, 2004.

[8] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with
deep convolutional neural networks[C]//Advances in neural
information processing systems. 2012: 1097-1105.

[9] Shen R, Zheng Y, Hao J, et al. Generating Behavior-Diverse Game
AIs with Evolutionary Multi-Objective Deep Reinforcement
Learning[C]// Twenty-Ninth International Joint Conference on
Artificial Intelligence and Seventeenth Pacific Rim International
Conference on Artificial Intelligence {IJCAI-PRICAI-20. 2020.

[10] Yang Y, Li J, Peng L. Multirobot path planning based on a deep
reinforcement learning DQN algorithm[J]. CAAI Transactions on
Intelligence Technology, 2020, 5(3).

[11] Vincent François-Lavet,Peter Henderson 0002,Riashat Islam,Marc G.
Bellemare,Joelle Pineau. An Introduction to Deep Reinforcement
Learning[J]. Foundations and Trends in Machine Learning,2018,11(3-
4).

 16

[12] Nguyen T T, Nguyen N D , Nahavandi S . Deep Reinforcement
Learning for Multiagent Systems: A Review of Challenges, Solutions,
and Applications[J]. IEEE Transactions on Cybernetics, 2020,
PP(99):1-14.

[13] Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-
level Coordination in Learning to Play StarCraft Combat Games. 2017.

[14] Lowe R, Wu Y, Tamar A, et al. Multi-agent actor-critic for mixed
cooperative-competitive environments[C]. Advances in Neural
Information Processing Systems. Morgan Koufmann, 2017: 6379-
6390.

[15] Zhang K, Yang Z, Baar T. Multi-Agent Reinforcement Learning: A
Selective Overview of Theories and Algorithms[J]. 2019.

[16] Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural
Computation, 1997, 9(8):1735-1780.

[17] Bernstein D S , Givan R , Immerman N , et al. The Complexity of
Decentralized Control of Markov Decision Processes[J]. Mathematics
of Operations Research, 2002, 27(4).

[18] Actor-Attention-Critic for Multi-Agent Reinforcement Learning.
2018.

[19] Foerster J, Farquhar G, Afouras T, et al. Counterfactual Multi-Agent
Policy Gradients[J]. 2017.

[20] Liu Haitao. Research on Several Communication Technologies in
Multi-agent Robot System [D]. Harbin Institute of Technology,2007.

[21] Mao H , Liu W , Hao J , et al. Neighborhood Cognition Consistent
Multi-Agent Reinforcement Learning[J]. 2019.

[22] Wang R, He X, Yu R, et al. Learning Efficient Multi-agent
Communication: An Information Bottleneck Approach[J]. 2019.

[23] Mao H, Gong Z, Zhang Z, et al. Learning Multi-agent Communication
under Limited-bandwidth Restriction for Internet Packet Routing[J].
2019.

[24] Sukhbaatar S, Szlam A, Fergus R. Learning Multiagent
Communication with Backpropagation[J]. 2016.

[25] Authors A Learning to Schedule Communication in Multi-agent
Reinforcement Learning[J]. 2019.

[26] Kim W, Cho M, Sung Y. Message-Dropout: An Efficient Training
Method for Multi-Agent Deep Reinforcement Learning[J]. 2019.

[27] Jiang J, Lu Z. Learning Attentional Communication for Multi-Agent
Cooperation[J]. 2018.

[28] Geng M, Xu K, Zhou X, et al. Learning to Cooperate via an Attention-
Based Communication Neural Network in Decentralized Multi-Robot
Exploration[J]. Entropy, 2019, 21(3).

[29] Das A, Gervet T, Romoff J, et al. TarMAC: Targeted Multi-Agent
Communication[J]. 2018.

[30] Mao H, Zhang Z, Xiao Z, et al. Learning multi-agent communication
with double attentional deep reinforcement learning[J]. Autonomous
Agents and Multi-Agent Systems, 2020, 34(1).

[31] Stone P, Veloso M. Multiagent Systems: A Survey from a Machine
Learning Perspective[J]. Autonomous Robots, 2000, 8(3):345-383.

[32] Brockman G, Cheung V, Pettersson L, et al. OpenAI Gym[J]. 2016.

[33] Geoffrey Hinton, Nitish Srivastava, and Kevin Swer-sky. Neural
networks for machine learning lecture6a overview of mini-batch
gradient descent. page 14,2012.

