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Abstract 

With the rapid development of mobile robots, they have begun to be widely used in industrial manufac-

turing, logistics scheduling, intelligent medical and other fields. For large-scale task space, the communi-

cation between multi-agent is the key to affect cooperation productivity, and agents can coordinate more 

effectively with the help of dynamic communication. However, the traditional communication mechanism 

uses simple message aggregation and broadcast, and in some cases lacks the distinction of the importance 

of information. Multi-agent deep reinforcement learning (MDRL) is valid to solve the problem of infor-

mational coordination strategies. However, how different messages affect each agent's decision-making 

process remains a challenging task for large-scale task. To solve this problem, we propose IMANet (Im-

port Message Attention Network), It divides the decision-making process into two sub-stages: communi-

cation and action, where communication is considered to be part of the environment. First, an attention 

mechanism based on query vectors is introduced. The correlation between the query vector agent's own 

information and the current state information of other agents is estimated, and then the results are used to 

distinguish the importance of information from other agents. Second, LSTM network is used as the unit 

controller for each agent, and individual rewards are used to guide the agent training after communication. 

Finally, IMANet is evaluated on tasks on challenging multi-agent platforms, Predator and Prey (PP) and 

Traffic junction. The results show that IMANet can improve the efficiency of learning and training, espe-

cially when applied to large-scale task space, with a success rate 12% higher than CommNet in baseline 

experiments. 

1. Introduction 

Multi-agent system is very practical in distributed 

control, remote scheduling, and modeling analysis 

[1]. Compared with a single agent, it can complete 

tasks more effectively and has better robustness, 

reliability, and scalability. Communication is the 

basis for maintaining the efficiency and organizat-

ion of multi-agent systems [2]. In the DEC-

POMDP (Decentralized Partially Observable Mar-

kov Decision Process) environment, through com-

munication [3], agents can exchange their observa-

tions to better discover the current global state and 

understand the actions and intentions of other 

agents. However, traditional pre-defined commu-

nication protocols and broadcast messages cannot 

allow multi-agent to effectively "learn to com-

municate" in a large-scale task. Reinforcement 

learning (RL) is mainly to study how agents 

choose actions by perceiving local and global 

states, and constantly interact with the dynamic en-

vironment in order to find optimal policy that max-

imize cumulative rewards [4, 5]. 

The reinforcement learning problem in multi-

agent scenarios is more complex than in single-

agent scenarios. Because the agent interacts with 
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the environment at the same time and treats other 

agents as part of the environment, the agent usually 

faces the dimensionality disaster (grows exponen-

tially with the number of agents, so the multi-agent 

system dimension is very large and computation-

ally complex) [6], credit assignment (identify the 

impact of the agent’s behavior on this global return) 

and other issues [7]. As the number of agents in-

creases, the task space is extended to large-scale 

and cooperative information is augmented. Deep 

learning is an efficient representation learning that 

can discover the key information in the original 

message [8]. The main reason is that the neural net-

work can process the input high-dimensional data 

and extract useful expressions [9,10]. The main ad-

vantage of deep reinforcement learning (DRL) is 

that it can extend RL to high-dimensional state and 

action spaces [11]. 

In recent years, multi-agent deep reinforce-

ment learning (MDRL)[12], a combination of deep 

learning (DL) and multi-agent reinforcement 

learning (MARL), has been successful in many 

complex environments. Such as StarCraft [13], 

particle environment [14]. However, these tasks 

either assume that the environment is completely 

observable, or there is a lack of communication be-

tween agents. 

In this paper, we will investigate how to use 

Deep MARL's approach for effective communication 

learning in a partially observable distributed envi-

ronment. 

In the centralized training paradigm, as the 

number of agents increases, the linear growth of 

the input dimension and the exponential growth of 

the output space make, the centralized training 

method using the traditional central controller 

makes the algorithm not easily scalable to large-

scale tasks, the convergence of the algorithm be-

comes poor or even unable to converge, and the 

problem of poor scalability. In the communication 

process, broadcast communication is a common 

setting for the study of "learning communications" 

between agents, but this does not allow selective 

attention to the observations and actions of other 

agents, does not provide useful information to 

agents in the decision-making process, and leads 

to unstable learning processes. These problems are 

caused by the inability of traditional reinforcement 

learning methods to learn cooperative strategies 

through effective communication in DEC-

POMDP conditions [15]. To this end, we propose 

the IMANet method for multi-agent deep rein-

forcement learning. 

The main contributions of this paper are as 

follows: 

(1) We use a query vector-based attention 

mechanism in the IMANet communication 

structure to identify the messages contained 

in more favorable specific agents. In this al-

gorithm, the local observations of each 

agent are encoded and attention is directed 

to different agents according to the magni-

tude of the attention weights, generating dy-

namically changing communication vectors 

to coordinate policies. The problem of ina-

bility to judge and distinguish the im-

portance of messages is solved to make the 

learning process more efficient and stable. 

(2) Using a single individual LSTM network as 
a controller for each agent [16], individual 

observations and communication vectors 
from the agents themselves are processed. 

Our independent control model selectively 

outputs important information, thus alleviat-
ing the problems associated with dimen-

sional explosion, which makes it possible 
for agents to learn coordination strategies in 
large-scale spaces. 

2. Notation and Background  

2.1 Technical Background 

Dec-POMDP is a multi-agent extension of par-

tially observable Markov decision process. First, 

our approach requires the introduction of the nec-

essary notation, and then three common reinforce-

ment learning framework structures are introduced. 

Decentralized Partially Observable Markov 

Decision Processes (Dec-POMDPs).We consider 

a fully cooperative multi-agent setting that can be 

formulated as DEC-POMDP [17]. It is formally 

defined as a tuple N,S,A,T,R,O,Z, , Where N is 

the number of agents, S  is the state space;

1 2 N×A ...A A A=  is the action space of all agents, 

and jA is the set of local action ja that agent j can 

take;  : 0,1T S A S  →  is the state transition 

probability. 1 2( , ,..., )NR r r r=  is the set of rewards, 
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Where: jr ：S A S  →  is the reward function of 

an agent j ;  1,..., NO O O= is the set of joint obser-

vation o ; :Z S A O →  is observation function; 

 0,1  is the discount factor. The set of action 

policies is  1 2, ,..., N   = , each policy is rep-

resented by a neural network and its parameter set 

 1 2= , ,... N    . 

A policy ( | ; )t t j

j ja h   is the probability of 

taking action 
t

ja  when encountering history 
t

jh un-

der the policy parameters j . The agent's action 
t

ja  depends on the encountered history 
t

jh . We 

generally omit the parameter j  in policy 

( | ; )t t j

j ja h   for brevity, and denote the policy as 

( | )t t

j ja h  . We use 
t

jh  to denote the history of in-

dividual observations jo , individual rewards jr , 

and individual actions ja encountered by the agent

j  following policy   at the time t and is defined 

as  0 0 0 0 1 1 1, , , ,..., , ,t t t t

j j j j j j j jh s o r a r a s− − −= . Sequence 

 0 0

j jh s=  denotes the history at time 0t = , con-

tains only the star state 
0

js of the agent j . The re-

turn of an agent j  that interacts with the environ-

ment to produce a history 
t

jh  is written as 

( )
0

T
t t t

j j

t

R h r
=

= . 

2.2 Multi-agent reinforcement learning archi-

tecture 

Three architectures of multi-agent reinforcement 

learning: Decentralization: Without a central con-

troller, the agent makes independent decisions 

based on its own policy network. Fully cen-tral-

ized: The central controller makes decisions for all 

agents. Centralized training and decentralized 

execution: The central controller is used only by 

the training process. Each agent makes a decision 

on its own policy network by its own observations. 

Decentralization. All agents are independent 

individuals, and they do not communicate with 

each other. As shown in Figure 1. Each agent in-

dependently interacts with the environment to ob-

tain individual observation 
io and individual re-

wards 
ir . Each agent deploys its own policy net-

work and trains its own policy network inde-

pendently, exactly the same as the reinforcement 

learning of a single agent. After the training, each 

agent utilizes its own policy network to make a de-

cision, and the observed 
io  is the input of the pol-

icy network and the probability distribution 

( | ; )i i ia o  is the output. To produce a discrete 

action 
ia , we sample from this distribution: 

( | ; )i i ia o  , and then execute the action 
ia . 

Regardless of training or execution, there is no 

communication between agents. The essence of 

such decentralization is single-agent reinforce-

ment learning, rather than true multi-agent rein-

forcement learning. Although this decentralized 

structure can well deal with the problems caused 

by the growth of the number of agents, the effect 

of single-agent reinforcement learning for multi-

agent reinforcement learning does not usually 

work. The single-agent algorithm assumes that 

these functions are stable, and in a multi-agent sce-

nario, it will face the problem of environmental in-

stability. The reason is that the influence between 

them should not be ignored.  
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Figure 1:Decentralized architecture. 

Fully centralized. There are n agents inter-

acting with the environment, and each agent will 

change the environment, thereby affecting other 

agents. As shown in Figure 2. There is no policy 

network on the agent, so the agent cannot make de-

cisions by itself, and all have to be commanded by 

the central controller.  

During training, the agent reports its observa-

tion io  and reward ir  to the central government. 

The policy network is in the center, and the center 

transmits the decision ia  to the agent i . The agent 
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performs actions in accordance with the instruc-

tions of the center , and interacts with the environ-

ment to do it in the center. The central controller 

uses all observation o , reward r , and action a  to 

train the policy network. Even after the training is 

completed, the central controller is needed when it 

comes to decision-making.  

N policy networks are trained on the central 

controller, and their network structures are the 

same, but the parameters may be different. Use i  

to denote the parameters of the i-th agent. The in-

put of the policy network is all the observations 
1 no o  of the agent. The i-th policy network de-

termines the action ia  of the agent i , and the de-

cision can only be made by the central government. 

This is because the policy network needs to use the 

observations of all agents. An agent only knows its 

own observation io , it does not have enough infor-

mation to make a decision, so the policy network 

cannot be deployed on the agent, and can only stay 

on the central controller. In the execution, all 

agents report their observations to the central gov-

ernment, then the central government determine 

each agent what to do. The center transmits 1 na a  

to the corresponding agent. 

Central controller

forooa ini ),;,...|( 1  all
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Figure 2: Fully centralized architecture. 

The advantage of centralization is to know the 

overall information, which can help all agents 

make better decisions. But centralization also has 

disadvantages. The execution speed is slow. The 

agent itself has no decision-making power, and all 

decisions are made by the central government. The 

agent reports all its observations to the central gov-

ernment, and the central government collects 

global information before making decisions. The 

biggest problem faced by this centralized structure 

is the huge input and output space. With the in-

crease in the number of agents, the input dimen-

sion increases linearly, and the space exponential 

of the output joint policies increases. 

Centralized Training Decentralized Exe-

cution (CTDE). In the traditional CTDE architec-

ture, each agent has its own policy network and the 

team has a central controller during training, which 

helps the agent train the policy network. After 

training, there is no need for a central controller, 

and each agent interacts with the environment in-

dependently. The agent has own policy network to 

act based on your own local observations. There 

are many different models of CTDE, which are 

popular nowadays (such as MAAC proposed by 

Sha et al [18], COMA proposed by Foerster et al 

[19].). 

3. Related Work 

Recently, the direct communication method of em-

bedding communication channels in deep neural 

networks (direct communication:The use of spe-

cific communication channels can selectively 

complete the information exchange between vari-

ous agents [20].)For learning communication pro-

tocols, it has been proven to be very effective [21-23]. 

Under normal circumstances, the continuous trans-

mission between agents through the network forms 

a Communication channel, which makes the 

agents consider local information and global infor-

mation at the same time during the learning pro-

cess. The protocol can be optimized at the same 

time as the network is optimized. 

Learning an effective multi-agent communi-

cation protocol is mainly divided into the follow-

ing two aspects. 

3.1 Broadcast partial observations of each 

agent to all agents 

Sukhbaatar proposed the CommNet algorithm. 

CommNet is just a single network designed for all 

agents [24]. It solves the Dec-POMDP problem. It 

follows the centralized training and decentralized 

execution method. This single-network communi-

cation channel cannot be easily extended to a 

large-scale agent environment. Due to continuous 

communication, the controller can learn through 
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backpropagation. However, the information trans-

mission method adopted by this algorithm is to 

broadcast communication content to all agents, 

which will also cause waste of bandwidth re-

sources. Aiming at the problem of channel occu-

pation when broadcasting a message to each agent 

within the communication range. Kim proposed 

SchedNet [25], a learning method for multi-agent 

deep reinforcement learning. This method intro-

duces the CSMA protocol, which is a contention-

type access medium. When the agent sends a mes-

sage to the channel, it monitors whether the chan-

nel is occupied at this time, and stops sending if it 

is occupied. When a conflict occurs, it will stop 

sending the message, wait for a suitable time, and 

send it randomly. This method also alleviates the 

message loss problem caused by the agent through 

broadcast communication. The Message-Dropout 

MADDPG uses the message dropout technology 

in multi-agent reinforcement learning in order to 

allocate communication resources reasonably [26]. 

This method uses a centralized training decentral-

ized execution framework under fully or partially 

observable conditions, discards the received mes-

sage with a certain probability in the training phase, 

and compensates by multiplying the weight of the 

discarded block unit by the correction probability 

this influence. This method is also robust against 

communication errors. 

3.2 Selective and targeted communication 

through the use of attention mechanism 

As it is difficult for multi-agents to distinguish be-

tween valuable information and shared infor-

mation, Lu proposed the ATOC based on the actor-

critic framework [27]. In this algorithm, the local 

observation value of each agent is coded. The at-

tention unit is used to determine which agents to 

communicate with (screening agents for infor-

mation sharing), and a two-way LSTM network is 

used as the communication channel between com-

munication groups. Agents in this communication 

group exchange information with each other in the 

communication channel. The attention module is 

an RNN network and will face the problem of van-

ishing gradients. Without a centralized controller, 

decentralized agents cannot learn effective and de-

centralized cooperation policies in a complex en-

vironment. Wang proposed a new attention-based 

communication neural network (CommAttn) [28]. 

CommAttn can use the display communication 

method to automatically learn and explore the co-

operation policies in the problem, by modeling the 

interaction between agents and introducing the at-

tention mechanism. Calculate the relevance of the 

received message, and determine whether commu-

nication between agents is required, so that the 

agent can decide who to communicate with. The 

learned communication model of the system is 

more able to adapt to the dynamically changing en-

vironment. Facebook AI Research proposed a col-

laborative multi-agent deep reinforcement learn-

ing method, namely TarMAC [29]. Allow targeted 

communication between agents. The purpose is sim-

ilar to ATOC's attentional mechanism. It not only de-

termines who to send the message to, but also the 

part of the observation that is most relevant to the 

goals of other multi-agents. This targeted commu-

nication behavior is achieved through a signature-

based attention mechanism: Together with the 

message, the sender broadcasts a key that encodes 

the attributes of the multi-agent targeted by the 

message and is used by the receiver to measure the 

relevance of the message. To cope with how to se-

lect important messages and how to process im-

portant messages efficiently. Mao proposed a DRL 

method called Double Attentional Actor-Critic 

Message Processor (DAACMP) [30], which em-

beds a first class attention mechanism in the actor 

part, where the importance of a message is posi-

tively related to the distance between two agents, 

the Actor Attention is able to pay attention to the 

messages of nearby agents adaptively. Embedding 

the second type of attention mechanism in the 

Critic part, where the joint action policies of team-

mates are modeled using Q-values, and similar 

joint actions are grouped and processed instead of 

processing the action policy of individual agent, 

the Critic Attention has a more sophisticated abil-

ity to process all important messages. 

In the above method, using the method of 

multi-agent deep reinforcement learning with di-

rect communication, there will be an obvious in-

formation transmission process between the agents, 

and the communication objects can be selected to 

reduce the problem of the explosion of the joint ac-

tion space or by optimizing the communication 

content. This method allows the agent to pay atten-
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tion to more important messages when sending in-

formation, reduce the bandwidth occupation in the 

communication channel, and improve calculation 

efficiency. 

The IMANet method in this article can be 

seen as an extension of the CommNet. The 

CommNet algorithm is to chain the messages to-

gether and broadcast them, IMANet adds an atten-

tion vector to learn the importance weight of each 

message from other agents, obtain their weighted 

sum and use it to perform operations. You can se-

lectively conduct partial interactions and deter-

mine which multi-agents provide shared infor-

mation that can improve performance and make 

the training process more stable. And because 

CommNet uses a central controller for centralized 

training, the scalability is poor, so we have an in-

dependent controller. 

4. IMANet method 

4.1 Basic description 

We first introduce the necessary assumptions for 

our approach, and then describe in detail our multi-

agent communication architecture. 

Hypothesis 1 The decision-making process is 

divided into two sub-phases: communication sub-

phase and action sub-phase. 

Hypothesis 2 During training, the current 

content of the agent's communication is related to 

the agent's own encounter history and the encoun-

ter histories of other agents (i.e., the hidden layer 

states in the next section). 

Hypothesis 3 Each agent's policy depends 

only on its own hidden layer state. 

4.2 IMANet architecture 

We propose a new deep MARL framework with 

targeted communication, called IMANet, whose 

overall architecture is depicted in Figure 3. IMA-

Net consists of the following three levels of control 

structure. 
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Figure 3: An overview of our IMANet model (a) Optimize the individual rewards of each agent based on the observation re-

sults.(b) The produce of communication vectors for each agent in a single communication step. (c) The module view of the 

LSTM unit.. 

NC (NO Communication) is an independent 

control that uses LSTM network structure, where 

each agent is controlled by an independent LSTM. 

IMANet without communication is exactly NC. 

For the j-th agent, its policy is defined as equation 

(1)-(3).   

               
1 ( ( ), , )t t t t

j j j js LSTM e o h s+ =   (1)  

              
1 ( ( ), , )t t t t

j j j jh LSTM e o h s+ =  (2) 

( )t t

j ja h=
            

                            (3)                   

Where t

jo  is the observation of the agent j  at 

a time t , (.)e  is the encoder function parameterized by 

the fully connected neural network, and   is the ac-
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tion policy of the agent. In addition, t

jh  and t

js  re-

spectively represent the hidden layer state and 

memory cell state of the agent j  at a time t . Use 

the same LSTM model for all agents and share 

their parameters. All agents share a unit, which has 

a higher utilization rate of samples, shared param-

eters reduce model complexity. 

IMANet extends this independent controller 

model NC, a vector tc  containing communication 

is introduced, which allows agents to obtain local 

information observed by other agents through ex-

change to observe the global state of the system. 

As in hypothesis 1, the IMANet model divides the 

decision-making into two sub-phases: communication 

and action, as shown in Figure 4. Before choosing an 

action, use the method based on the attention 

mechanism to decide which important information 

to pay attention to. 
current 

state
Next state

Next stage 
Communication 

substage
Action substage

Decide which 

action to perform

Decide which agent 

messages to focus on T stage 

current 

state

 

Figure 4: Decision sub-stage. 

The policy for the j-th agent in the IMANet 

network is defined as equation (4)-(6).   

                     
1 ( ( ), , , )t t t t t

j j j j js LSTM e o c h s+ =   (4) 

                      
1 ( ( ), , , )t t t t t

j j j j jh LSTM e o c h s+ =   (5) 

       = ( )t t

j ja h                               (6) 

According to Figure 3(c), the candidate 

memory cells 1t

js +  and the gate values functions 

u , f , and o  are defined as equation (7)-(10). 

             
1 tanh( [ , ( ), ] )t t t t

j s j j j ss w h e o c b+ = +   (7) 

     ( [ , ( ), ] )t t t

u u j j j uw h e o c b = +   (8)   

    ( [ , ( ), ] )t t t

f f j j j fw h e o c b = +  (9)   

             ( [ , ( ), ] )t t t

o o j j j ow h e o c b = +   (10) 

Among them, since the same LSTM model is 

used for each agent, that is, the update gate u , 

which determines what information we want to 

store in the cell state, has parameters uw  and ub . 

The forget gate f , which determines what infor-

mation we want to discard from the cell state, has 

parameters fw  and fb . The next tanh  layer cre-

ates a candidate vector 
1t

js +
, which will be added 

to the cell state. In the next step, we will combine 

these two vectors to create the update value, which 

includes parameters sw  and sb . Finally, the output 

gate o , where we need to decide what we want to 

output, will be based on our cell state, which in-

cludes parameters ow  and ob . That is, all the pa-

rameters are in the four w  and b .  represents the 

sigmoid function, which makes the gate value very 

close to 0 or 1. At each time step, Through an ac-

tivation function tanh , the current input ( )t

je o , 
t

jc

and the 
t

jh  passed down from the previous state 

are spliced and trained to obtain 
1t

js +
. Here, tanh is 

used because 
1t

js +
 is used as input data instead of a 

gate signal. The three gate values above the update 

gate u , the forget gate f  and the output gate o  

allow the values flowing through the network to be 

adjusted. 

The update gate and the forget gate are used 

to update the value of the state 
1t

js +
 , the state value 

is defined as equation (11). 

        
1 1t t t

j u j f js s s+ +=   +                 (11) 

Specifically, f  is used as a forgetting gate to 

control which information of the previous state t

js  

should be retained and which should be forgotten. 

as an update gate u , select and memorize the in-

puts coding observations ( )t

je o  and communica-

tion vectors t

jc  at this stage, and record more im-

portant contents. Adding the results of the above 

two, it means that part of the information of the 

current state t

jh  is deleted and some information of 

the new input 1t

js +  is added to obtain the next state 

1t

js + . 

The output gate is used to update the hidden 

layer state function 1t

jh + , the hidden layer state is 

defined as equation (12). 
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1 1

0 tanht t

j jh s+ +=                    (12)    

The 1t

js +  obtained in the previous stage is 

scaled by an activation function tanh and con-

trolled by the output gate o . This stage will de-

termine which states will be used as the output of 

the current hidden layer state 1t

jh + . 

Training. We use the reinforcement learning 

method based on Policy gradient to train the action 

policy. IMANet uses independent controllers to 

train different agents for guidance, executed in a 

decentralised manner, as each agent only needs its 

local state vector and the weighted sum of incom-

ing messages to act, As shown in Figure 5 . 
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                Figure 5: IMANet controller model. 

Each controller trains only one agent and the 

system has n agents. As shown in Figure 3(a), the 

agent j interacts with the environment at time t  to 

obtain individual observations t

jo , individual ac-

tions t

ja  and individual rewards t

jr from the envi-

ronment. For training, the agent j  needs an inde-

pendent controller. As shown in Figure 5, for agent 

j  at time t , the attention unit performs a purpose-

ful fusion based on the received hidden layer state 

( )t t

i nh h i j  of other agent to generate a com-

munication vector t

jc . The hidden layer state t

jh  

of agent j  and the communication vector t

jc  con-

taining the encounter histories of other agents are 

sent to the independent controller of agent 

j .Through a communication mechanism, the dif-

ferent agents can exchange information about their 

observations, actions and intentions to stabilize 

their training process. After training, the agent j  

makes its own decisions based on its own hidden 

layer state(encounter history)  t

jh . And the policy 

network outputs a probability distribution

( | )t t

j ja h .  

The overall performance measure of the pol-

icy  , is denoted as ( )J  . It is defined as equa-

tion (13). 

 ( ) ( ) ( )t t t t

j j j jJ E R h p h R dh = =    (13) 

where ( )t

jp h  is the probability of the exist-

ence of each sequence t

jh  given the parameter j  

of the policy .  

To optimize the policy  , we want to update 

the parameter 
j  along the gradient of J  to an 

optimal , it is defined as equation (14). 

 

 ( )1t t

j j J   + = +    (14) 

where   is the learning rate, the policy are 

updated by ascent with the following gradient, the 

policy gradient is defined as equation (15). 

 

( ) ( ) ( )

( ) ( )

t
j

t
j

t t t

j j j
h

t t t

j j j
h

J p h R h dh

p h R h dh

 



 =

= 




  (15) 

Communication. Establishing effective col-

laboration policies requires targeted communica-

tion, that is, the ability to send specific messages 

to agents. We use the attention mechanism based 

on query vector in the communication structure to 

identify more beneficial specific agent messages 

and realize the fusion of messages, leading to spe-

cific communication links according to the size of 

the attention weight. The attention model based on 

query vector is shown in Figure 6. 



Softmax

t

jC

t
iw 1

t

iw
+

t

kw

t

ke1

t

ie+

t

ie

t

ih 1

t

ih+
t

kh
 

Figure 6: Attention model for query vector. 
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As shown in Figure 3(b) and Figure 6, in the 

attention model. The communication vector t

jC  is 

defined as equation (16)-(18). 

 
t t t

j i i

i j

C w h


=   (16) 

 ( , )t t t

i j ie Score h h=   (17) 

 

1

exp( )

exp( )

t
t i
i T

t

n

n

e
w

e
=

=


  (18)                   

In the communication process, we try to un-

derstand the content of the communication re-

ceived by agent j  from other agents. t

jC  is the 

communication vector of the agent j at time t . 

The score function( ( , )t t

j iScore h h ) is used to calcu-

late the hidden layer state t

jh  at the current mo-

ment as the query vector, and do the inner product 

operation with the hidden layer vectors 

( )t t

i nh h i j  passed by other agents at the cur-

rent moment, respectively, to get the weighting co-

efficient w t

i  of the similarity size, and the size of 

the coefficient reflects the importance of the con-

tent at the same time. The attention mechanism 

module is a simple LSTM network. The commu-

nication vector at the current moment can be ob-

tained through the weighted addition of the hidden 

layer. At this time, the agent focuses on more im-

portant information. Take the agent's own local ob-

servation and state coding as input, and use the 

communication vector generated by the query vec-

tor attention mechanism, that is, the state infor-

mation observed by other agents as additional in-

put, and the fused state of the hidden layer is output 

to guide the cooperation policies  .  

5. Experiment 

5.1  Experimental Setup 

5.1.1 Experiment environment settings. We 

evaluated IMANet, CommNet, and NC in the 

traffic junction task (Sukhbaatar et al., 2016) and 

Predator and Prey task [31]. CommNet is a 

communication method that uses broadcast. The 

detailed experimental environment will be 

described in detail in the following subsections. 

The experimental hardware environment uses 

Intel(R) Core(TM) i7-7700 CPU+GeForce GTX 

1650+16GB; the software environment for the 

experiments uses PYTorch+Gym [32]; the agent 

updates the policy according to their respective 

reward functions. Using the RMSProp approach, 

the configuration of learning rate hyperparameters 

is done automatically by the algorithm, and 

RMSProp can be targeted to provide different 

learning rates for each parameter, this method was 

proposed by Geoff Hinton [33]. thus improving the 

problem of fading learning rate. 

We use a learning rate of 0.001, set the hidden 

size to 128 units, do 10 weight updates every round, 

and conduct 1000 rounds of experiments in a 

Predator and Prey task and traffic junction task. 

Use LSTM to realize the attention unit. 

 

5.1.2  Scenarios. Predator and Prey: In the grid 

map of different sizes, there are n agents as 

predators to capture a static prey, and each predator 

has the same size of perception area. When the 

prey is caught, a positive reward is given. Until the 

end of this round, that is, other agents have reached 

the position of the prey, as shown in Figure 7. 

moving Predator 

Range of
perception

Fixed prey

 

Figure 7: predator-prey environments’ Visualizations. 

Figure 7 shows the red circle representing the 

predator and the red arrow representing the 

direction in which the predator is moving. Each 

predator can take five actions: up, down, left, right, 

and stop. The green circle represents fixed prey. 

The yellow 3×3 square represents the perception 

range of the agent. 
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Traffic junction: In the task of traffic 

junction, the total number of cars is fixed at, cars 

avoiding collisions while passing through the 

intersection. The cars randomly follow one of the 

possible routes to reach the grid destination and are 

again added back to the environment with a 

different route assignment. We set up two one-way 

roads on a 7 × 7 grid, as shown in Figure 8(a), and 

the four connected junctions of two-way roads in 

15×15 grid, as shown in Figure 8(b). 

Car arrivals

Car exiting

 

(a) 

Visual range

 

(b) 

Figure 8: Easy and difficult versions of traffic junction task: 

(a) 7 × 7 grid of traffic junction task; (b) 15 × 15 grid of 

traffic junction task. 

Figure 8 shows different colored circles rep-

resenting cars controlled by agents, while different 

colored dashed lines represent possible routes. The 

cars take a probability from entering the arrivals 

point and the car can take two actions: braking and 

forward. When the car reaches the target position 

on the edge of the grid, it will be removed. One or 

more road intersections exist in different maps, so 

the diverse routes are optional. It is considered a 

collision that two cars occupy the same position at 

the same time, and the agents will be penalized, but 

will not affect the simulation. The identification of 

each car, its current location and the assigned route 

are encoded in a one-hot binary vector set, each car 

is finitely perceived as a grid of area 2×2 and can 

communicate with other cars under certain 

conditions. 

5.1.3  Metrics. We will evaluate our method and 

baseline algorithm in terms of the following 

indicators. 

In the Predator and Prey task： 

(1) Maximum allowable steps taken maxT : 

 max finishT kT=   (19) 

where finishT  is the average time period from 

the start of the movement of the first predator to 

the location of the last predator to reach the prey, 

Select  k  values according to different map sizes 

and number of agents. 

(2) Success rate :          

 /successn n =   (20) 

where   is the ratio of the number of 

successful events to the number of test events. An 

event is considered successful if all predators cap-

ture prey before the maximum allowed step taken

maxT . 

(3) Agent density agent : 

 
agent

agent

n

W H
 =


  (21) 

where agent  denotes the sparsity of the envi-

ronment, agentn  is the number of agents in the map, 

and HW   is the size of the map. 

(4) Average step taken steps takenT − :  

 total
steps taken

agent

T
T

n
− =   (22) 

where steps takenT −  denotes the average step 

taken of each agent to reach the goal, totalT  is the 

number of steps to complete the epoch, and agentn  

is the sum of the number of agents. 
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(5) Average reward averager :                   

 
1

1 n

average i

iagent

r r
n =

=    (23) 

where averager  denotes the average of rewards 

obtained by each agent at each epoch,  ir is the in-

dividual reward of agent i , and agentn  denotes the 

number of agents. 

In the Predator and Prey environment, the re-

ward function for agent i  is set as follows: 

( ) (1 )i i penalty i t successr t r n r = −  +     (24) 

Where i  indicates whether the agent i  has 

captured the prey, and it is set to 1 or 0. 1 indicates 

that the agent i  has captured the prey at a time t , 

otherwise it is 0. penaltyr  represents the penalty 

value at a time step, equal to -0.05, which can en-

courage the agent to actively explore the environ-

ment. tn  represents the number of agents that cap-

tured the prey at a time t . successr  represents the re-

ward value for catching the prey, which is equal to 

0.05. 

In the traffic junction task： 

(1) Maximum allowable steps taken maxT : 

max finishT kT=                    (25)                                    

                                

 

 where finishT  is the average time period 

from the start of the movement of the first car to 

the arrival of the last one at the target position at 

the edge of the grid. Selecting k  values according 

to different size of tasks. 

(2) Success rate :     

           /successn n =                     (26) 

where   is the ratio of the number of suc-

cessful events to the number of test events. The 
simulation ends after the Maximum allowable 

steps taken maxT . No collision is classified as a suc-

cess, and if one or more collisions occur, it is clas-
sified as a failure.                                   

In the traffic junction environment, the reward 

function for agent i  is set as follows: 

( ) t

i coll i time ir t r d r = +
                      

    (27) 

where collr  denotes the penalty incurred when 

two cars collide, 10collr = − . 
t

id is the number of 

times car i  collides at time t , but the collision 

does not affect the car's route. The actions the car 

can take at each time step are braking and moving 

forward. i  is the number of steps that car i  has 

elapsed from the time it starts to the moment t ,

0.01time i ir  = − . 

5.2 Ablation Experiment  

IMANet is attentional communication model, we 

conduct ablation experiments on the structure of 

the attention unit, and NC is a simplified version 

of IMANet without communication. NC has to 

train an independent policy network for each agent. 

In order to verify the influence of independent 

controllers in IMANet on the increase in the 

number of agents and the advantages of 

communication. We increase the number of agents 

on a map of the same size and the density of agents 

increases accordingly. We can test this by 

performing it in three different Predator and Prey 

environments with sparse, normal and crowded 

agent densities agent . With the success rate   and 

average reward averager ， we can evaluate the 

performance of the IMANet and NC. The success 

rate   is shown in Table 1 and the average reward 

value averager is shown in Figure 9. 

Scene setting: Sparse scene task with 

6agentn =  and 0.06agent = , normal scene task with 

8agentn =  and 0.08agent = , and Crowded scene 

task with 10agentn = and 0.1agent = . Set the 

maximum allowable steps taken 
40max =T

. 

TABLE 1: Success rate in three density levels of Predator-

Prey environment in cooperative setting. 

Predatory-Prey (Success Rate ) 

Agent Den-

sity 

（ agentn  ） 

10×10, 6 

agents, sparse 

10×10, 8 

agents,normal 

10×10, 10 

agents,crowded 

NC 83.3±0.9% 83.4±0.8% 81.3±0.5% 

IMANet 90.3±0.8% 86.8±0.8% 82.7±0.8% 
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(a) 

 

(b) 

Figure 9: The average rewards ( )averager against the change of 

agent density setup: (a) Average rewards ( )averager of IMA-

Net; (b) Average rewards ( )averager of NC. 

As shown in Table 1. NC has success rates   

of 83.3±0.9% and 81.3±0.5% on Sparse and Crowded 

respectively, In the same size map environment, as 

the number of agents increases, the independent 

controller structure we use to guide each agent 

training effectively improves the dimensional 

explosion problem. As the number of agents 

increases on the same size map, independent 

controllers can help IMANet models scale to large 

teams of agents. 

 In Figures 9(a) and 9(b), the average reward 

value averager of NC under the three task situations 

of sparse, normal and crowded is close to 4.5. 

However, the average reward value of IMANet is 

close to 7.4, and the performance of IMANet is 

better than NC in all three density levels. This 

shows that attentional communication can improve 

the collaboration between agents in the coopera-

tive task scenario. 

5.3 baseline 

We conducted experiments comparing IMANet 

with NC and CommNet in predator and prey tasks 

and traffic junction task - 1) no communication, 2) 

communication, but broadcast communication, 

and 3) targeted Communication. and set up task 

scenarios of different size , the benefits of 

communication and attention increase with the 

complexity of the task space. The comparison of 

IMANet with baseline work is shown in Table 2. 

TABLE 2: Comparison of IMANet's work with NC, 

CommNet's multi-agent collaborative communication. 

 
Communica-

tion Cate-
gory 

Execution 

CommNet 
Broadcast 

Communication 
Decentral-

ized 

NC 
No Commu-
nication 

Decentral-
ized 

IMANet 
Targeted 

Communication 
Decentral-

ized 

In the Predator and Prey environment, we set 

up three grid worlds of different sizes and different 

numbers of cooperative predators, and we 

evaluated IMANet against CommNet and NC on 

small, medium and large scales. The observation 

horizon of the agents is effective, thus emphasizing 

the importance of communication. 

Scene setting: The small task has 3  agents on 

a 4 4  grid with max 20T = ,  the medium task has 

5  agents on a 8 8  grid with max 40T =  and  the 
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large task has 8  agents on a 15 15  grid with 

max 75T = . 

We compare the convergence effect of the 

average step taken steps takenT −  in 1000 epochs and the 

success rate   of IMANet, CommNet and NC. 

Figure 10 shows the fast and slow convergence of 

the step taken as well as the smoothness, and 

Tables 3 and 4 report and evaluate the success rate 

and average step taken of the three algorithms at 

different scales, respectively. 

 
(a)                                                                             (b)                                                                                 (c)    

Figure 10: Average steps taken ( )steps takenT −  to complete an episode of Predator-Prey environment (a) Average step taken

( )steps takenT −  at Small-scale.(b) Average step taken ( )steps takenT −  at medium-scale. (c) Average step taken ( )steps takenT −  at large-

scale. 

TABLE 3: Success rates of cooperative tasks with three different settings in a Predatory-Prey environment. 

Predatory-Prey (Success Rate ) 

map size（ agentn
 ） 4×4, 3 agents, small 8×8, 5 agents, medium 15×15, 8 agents, large 

CommNet 99.0±0.9% 86.6±10% 49.0±0.4% 

NC 98.0±0.6% 92.6±0.5% 43.9±6.9% 

IMANet 99.9±0.1% 99.0±0.9% 67.3±6% 

TABLE 4: Avg. number of steps taken to complete the episode in three different environment sizes settings 

Predatory-Prey (Avg. Steps ) 

map size（ agentn
 ） 4×4, 3 agents, small 8×8, 5 agents, medium 15×15, 8 agents, large 

CommNet 4.1±0.01 18.1±0.13 74.7±0.04 

NC 4.0±0.00 18.7±0.04 73.9±0.06 

IMANet 4.0±0.00 17.6±0.03 58.3±0.09 
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In the traffic junction task, we can test what 

communication methods the agent performs 

during the task to avoid collisions while going 

through the intersection. At any time, the 

maximum number maxN  of car is set at the 

intersection, each time a new car is added to the 

environment with a probability arrivep  from either 

of the different directions. We study IMANet with 

CommNet and NC in both easy and difficult traffic 

junction environments. 

Scene setting: The easy version is a 

connecting junctions consisting of two 7 × 7 one-

way roads with max 4N =  , 0.25arrivep = and

max 20T = ,The difficult version is a four-

connection intersection consisting of four 15 × 15 

two-way roads with max 14N =  , 0.05arrivep = and

max 80T = . 

In order to analyze the impact of target 

communication on car through intersections in 

traffic scenarios, we use success rate   evaluation 

of IMANet with CommNet and NC,Tables 5 

report and evaluate the success rate. 
TABLE 5: Success rate on various difficulty levels 

 

Traffic junction (Success Rate) 

Level Easy Difficult 

 

CommNet            93.2±2.5%                       53.4±3.7% 

 

NC                       74.0±0.9%                       50.3±0.7% 

 

IMANet               93.0±5.2%                        68.3±7.8% 
   

 

5.4  Analysis. 

AS shown in Table 3, on small, both 

commNet, NC and IMANet get close to 99.9% , a 

without communication baseline NC has success 

rates of 43.9±6.9% on large-scale, a broadcast 

communication baseline CommNet has success 

rates of 49.0±0.4% on large-scale, targeted 

communication IMANet has success rates of 

67.3±6%  on large-scale, which is an 12% absolute 

improve over CommNet. 

As shown in Table 5, in the traffic junction 

experiment, there can be no good performance 

without communication. The baseline NC proves 

this. NC has success rates of 74.0±0.9% and 50.3±0.7% 

on easy and difficult respectively. On easy, both 

CommNet and IMANet get close to 93%. IMANet 

has success rates of 68.3±7.8% on difficult, which is 

an 10% absolute improve over CommNet. 

Figure 10 shows the average step taken 

convergence efficiency on cooperation task in 

Predator and Prey environment. As shown in 

Figures 10(a) and 10(b), on small-scale, the 

average step taken convergence efficiency of 

IMANet, CommNet and NC are all close to 95%, 

on medium-scale, the average step convergence 

efficiency obtained by CommNet is 71%, and the 

average step efficiency obtained by NC and 

IMANet is close to 92%. As shown in Figure 10(c), 

on large-scale, the average step taken convergence 

efficiency of IMANet is 62%, which is much higher 

than the CommNet and the IC. As shown in Table 

Ⅳ, IMANet agents take 58.3 steps to capture prey 

on average vs. 73.9 for NC vs. 74.7 for CommNet, 

IMANet largely outperforms all the baselines. The 

above experiments verify that our method can be 

effectively extended to large-scale agent teams. 

NC VS IMANet. This communication-free 

approach has the advantage that it can cope well 

with the increase or decrease of agents, but it 

cannot observe the information of other agents and 

cannot coordinate the actions of agents. IMANet 

outperforms NC, we can see communication 

indeed helps. CommNet VS IMANet. However, 

CommNet also has communication, Why does it 

perform so much worse in a large-scale task space? 

CommNet uses centralized training and 

decentralized execution, where the policies of 

multi-agents form a large network. In this structure, 

all hidden layer vectors are stacked though 

broadcast communication to generate a communication 

vector. Input the joint observation value of the 

agent, and the output is the action of all the agents. 

The action generation of this structure is based on 

a joint policies.  As the number of agents increases, 

the number of observations increases linearly and 
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the space of joint actions increases exponentially. 

Therefore, as shown in Figure 10(b), the average 

step taken learning training process for the 

baseline experiment appears to be unstable. Our 

IMANet uses an independent LSTM network as a 

controller to guide the generation of action 

strategies for the agents. The agent uses an 

attention unit to weight and aggregate the hidden 

layer vectors passed by each agent, and since each 

agent pays more attention to information that is 

more similar to its own observations, the agent has 

continuity in its observations and so does the generated 

communication messages, which makes the training 

process smoother. This decentralized execution 

allows the agents to generate appropriate actions 

based on their own hidden layer states. This 

independent network structure allows each agent 

to update its policy according to its own reward 

function. It can effectively deal with the problems 

caused by the increase in dimensionality. Through 

the above experiments, we can conclude that our 

content-based optimization method IMANet has 

better scalability and stability in the cooperative 

agent setting compared to the traditional broadcast 

communication method. It can better handle the 

problems that arise with the increase of task space.  

6. Conclusions 

We propose IMANet to learn the communication 

between agents in a fully cooperative multi-agent 

task. In IMANet, we embed attention units based 

on query vectors. The attention units can compress 

the state values of the hidden layer more efficiently 

by assigning different attention sizes, and since the 

observations of the agents have continuity, the 

generated communication information also has 

continuity, which makes the training process 

smoother. Also this independent network structure 

allows each agent to update its policy according to 

its own reward function. This decentralized execu-

tion allows the agnets to generate more beneficial 

value actions based on their own hidden layer 

states. The algorithm performs significantly better 

than the other two algorithms in experiments with 

Predator and Prey and traffic junction. Moreover, 

the agent remained significantly more scalable in a 

larger task space. Attention-based communication 

can indeed help the agent to perform tasks more 

effectively in the MARL environment. 
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