The sequestration of trace metals preserved in pyritized burrows
Connor Brolly*1, John Parnell1 & Xueying Wang2

1 University of Aberdeen, Department of Geology & Geophysics, Aberdeen AB24 3UE
2 University of Aberdeen, Department of Chemistry, Aberdeen AB24 3UE
*Corresponding author: Connor Brolly, University of Aberdeen, AB24 3UE, connor.brolly@gmail.com

Abstract
Pyritized burrows from three localities were analysed using LA-ICP-MS to determine their trace element content and assess their ability to sequester trace elements. Pyritic burrows from Hock Cliff (Jurassic), Wren’s Nest (Silurian) and Southerham Grey Pit (Cretaceous) have anomalous levels of Se, Cu and Pb and are enriched relative to their host sediments. Sequestration rates were calculated using sedimentation rates from similar depositional environments. Results show that pyritic burrows, mediated by bacterial sulphate reduction, can sequester Se, Cu and Pb up to 3 orders of magnitude greater than the rate of Fe-Mn crusts, which are considered rich sources of trace elements, demonstrating that bioturbated marine sediments are significant sinks of trace elements.

Keywords: Bioturbation, burrows, pyrite, trace elements, sequestration, selenium

1 Introduction
Burrows are one of a large range of trace fossils, which can be defined as a biogenic sedimentary structure created in sediment by the activity of a burrowing animal (Bromley, 1996). The burrows analysed in this study are cylindrical or tube-line sedimentary features which are present in all orientations (vertical to horizontal) in shallow marine environments and which are generally oxidised.
Burrowing evolved particularly at the Ediacaran-Cambrian boundary during a major increase in animal diversification and modes of life (Buatois et al., 2020; Mángano and Buatois, 2014). Burrowing in the Ediacaran was restricted to very small horizontal traces, commonly associated with firm, erosion-resistant algal mats (Jensen et al., 2006; Seilacher et al., 1999). The Cambrian Period is characterised by an increase in penetrative, vertical burrowing promoting the exchange of fluids and OM between the water column and the sediment, increasing habitability, known as the ‘agronomic revolution’ (Seilacher et al., 1999).

Sulphate-reducing bacteria control the composition of OM in shallow marine sediments under anoxic conditions, and higher microbial activity is coupled with decreasing sulphate levels and an increase of sulphide and OM degradation (Sturdivant and Shimizu, 2017). Burrows are commonly enriched in organic matter and a range of nutrients including nitrogen, potassium, phosphorus, sulphur, and trace elements as burrowing organisms such as worms, secrete mucus to pass easily through the sediment (Ayoola and Olayiwola, 2014; Bromley, 1996). The mucus in the burrow walls can be used as a feedstock for sulphate-reducing bacteria which promotes localised hydrogen sulphide (H$_2$S), and early diagenetic pyrite (Virtasalo and Kotilainen, 2013; Virtasalo et al., 2010). Pyritization would most likely take place after the death of the organism, as a live organism would create an oxic environment which would prohibit pyritization (Jørgensen, 1977). The decomposition of the mucus walls and the burrowing organism creates a reducing environment which favours pyrite formation (Thomsen and Vorren, 1984).

The reworking of sediments by animal activity prior to compaction alters the substrate significantly. Burrowing organisms such as worms can have subsurface burrows as deep as 2 m and affect several square kilometres of sediment (Gingras et al., 2015; Weaver and Schultheiss, 1983). Burrowing can highlight erosional features in fine grained sediments such as black shales, which reveals information on bottom currents, water-column mixing and oxygenation (Schieber, 2003). It can disturb sediment layering which enables the exchange of minerals and fluids between sedimentary layers; cause an
increase or decrease in organic matter and change the pore fluid chemistry. These changes have
two knock-on effects on porosity and permeability, which is why bioturbation is an important area of
research for the oil industry, as it can affect oil recovery (Gingras et al., 2015; Pemberton and Gingras,
2005).

Bioturbation also has implications for trace element sequestration and concentration. Pyrite is a
major residence of trace elements in sedimentary rocks. It is more common for pyrite to precipitate
in sediments such as black shales that are clearly anoxic (Hu and Gao, 2008; Large et al., 2015, 2014;
Parnell et al., 2016). However, pyrite also precipitates in anoxic/sub-oxic microenvironments within
otherwise oxic environments (Jørgensen, 1977; Mitchell, 1968; Thomsen and Vorren, 1984), such as
the burrows investigated here. Pyritic burrows from three localities in the UK, representing a range of
geological ages were analysed to investigate their trace metal element and sequestration rate.

The objectives were to determine:

(i) If the burrow pyrite contains anomalous concentrations of trace elements. Pyrite in black
shale can concentrate trace elements first located in organic matter in the carbonaceous
sediment, but this reservoir is not available in many other sediments so enrichment in
pyrite might not occur.

(ii) If trace elements in the burrow pyrite represent concentrations relative to the host
sediment.

(iii) If the pyrite caused an overall sequestration of trace elements into the host bed.

2 Methods

Pyritized burrows were collected from three localities throughout the UK (Fig. 1); Wren’s Nest, Dudley
(Silurian), Hock Cliff, Fretherne (Jurassic) and Southerham Grey Pit, Lewes (Cretaceous). Wren’s Nest,
Dudley, part of the Much Wenlock Limestone Formation, hosts extremely well preserved Silurian fossil
biota including pyritized burrows, which are concentrated in the Nodular Beds Member (Ray and
Thomas, 2007). The Blue Lias Formation, exposed at Hock Cliff, Fretherne, has alternating mudstones, shales and limestones, with vertical pyritized burrows preserved in dark, grey shale beds (Simms et al., 2004). Southerham Grey Pit, Lewes, has abundant ‘worm’ tubes, which are pyritized or have pyritized nodules spatially associated with them, found in the Zig Zag Chalk Formation (Jeans et al., 2016).

Mm-scale burrows from each locality were analysed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to produce enrichment maps. The LA-ICP-MS method is described in detail in Parnell et al. (2017). This approach was used to map the distribution of Fe, Se, Cu and Pb. These elements were chosen because they are commonly found in pyrite in black shales.

Average trace element values from Fe-Mn rich crusts and Neoproterozoic Gwna Group shales were used as a comparison with the new data presented here, given that both are regarded as rich sources of trace elements and the Gwna Group shales were studied at the same laboratory at the University of Aberdeen.

Bulk trace metal content was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS), at ALS Laboratories, Loughrea, Ireland. Each sample was agate milled and homogenised and 0.5 g was partially digested using aqua regia.

Scanning electron microscopy was performed on a Zeiss Gemini-300 FEG-SEM, to investigate mineralisation within the burrows.

3 Results

3.1 LA-ICP-MS

Burrows were analysed with LA-ICP-MS to determine the enrichment and the distribution of elements within an area of interest e.g. cross-section of a burrow. The trace metal content of the samples and
average shale and carbonate values are summarised in Table 1, and are plotted in Fig. 2. Average spot analyses from Hock Cliff burrows show a Se content of 8.2 & 7.7 ppm (A & B respectively). Mean shale Se content is 1.3 ppm (Stüeken et al., 2015). The average Pb content at Hock Cliff is 669 ppm in burrow A & 297 ppm in burrow B, which is up to 30 times higher than the global mean shale Pb content of 19.5 ppm (Hu and Gao, 2008). The average Cu content is 494 ppm in burrow A & 215 ppm in burrow B, which is up to 10 times higher than the global mean shale Cu content of 36.5 ppm (Hu and Gao, 2008). The host rock has a Se value of 0.7 ppm, a Cu value of 10.7 ppm, and a Pb value of 6.24 ppm.

Fe, Se, Cu and Pb LA-ICP-MS maps from Hock Cliff are shown in Fig. 3 below. Se and Pb are concentrated in the rim of both burrows suggesting they occur in the same mineral phase. In burrow A, Fe is more concentrated in the rim, suggesting there is some weathering in the burrow core. Cu is more evenly distributed but appears slightly depleted in the burrow rim.

Fe, Cu and Pb maps from Wren’s Nest are shown in Fig. 4, below. The concentrations of Cu and Pb are more evenly distributed throughout the burrow, compared with Hock cliff where the Se and Pb are concentrated in a halo towards the edge of the burrow. Another notable feature is the lack of Se present within the burrow. Cu and Pb are concentrated in similar amounts compared with Hock Cliff.

Average spot analyses show a Cu content of 210 ppm, which is 5 times that of the global mean shale Cu content, and a Pb content of 198, which is 10 times that of the global mean shale Pb content (Hu and Gao, 2008). The Wren’s nest host rock has a Cu content of 4 ppm, and a Pb content of 4.19 ppm.

Southerham burrows are extremely weathered and the majority of them display a weathered burrow core, which could not be analysed by LA-ICP-MS as the surface was not flat. The burrows are large enough to be extracted for bulk analysis at ALS laboratories which is comparable to LA-ICP-MS. The results are summarised in Table 1.
Pyritized burrow from Southerham have a Se value of 4.5 ppm, Cu of 66 ppm, and Pb of 329 ppm. These measured values are up to 15 times greater than the average shale values, and up to 2 orders of magnitude greater than the host rock values (Hu and Gao, 2008).

4 Discussion

4.1 Metal enrichment in burrows

A summary of the burrow forming process and metal enrichment is shown in Fig. 5 below. Trace metals are incorporated in to burrows during diagenesis. Trace metal-rich seas deposit a range of elements including Se, Pb and Cu on the seafloor. Iron-oxides present in the seafloor sediments act as a sink, and many trace elements are adsorbed on the Fe-oxides. Organic matter accumulates on the seafloor through the decomposition of marine organisms and land-derived detritus (e.g. plant material). Burrowing organisms introduce organic matter, Fe (oxyhydr)oxides and trace metal oxanions into the burrow from the seafloor (Berner, 1984; Virtasalo and Kotilainen, 2013). The act of burrowing requires a lubricant; therefore, organisms secrete mucus to ease passage through the sediment which decays creating a localised reducing environment (Bromley, 1996). Lalonde et al. (2010) demonstrated that mucus linings were more reactive than other organic compounds in marine sediment, increasing the potential of burrows as metal sinks. Mucus trails preserved by pyritization are found in the Cretaceous Ingersoll shale where body fossils are not as common, emphasising the reactivity of mucus secreted by organisms (Savrda et al., 2016). Burrows preserve a range of nutrients such as nitrogen, potassium, phosphorus, sulphur, and trace elements as a result of the burrowing organism (Ayoola and Olayiwola, 2014).

The introduction of “super-reactive” organic carbon in the form of extracellular polysaccharides (EPS) bioturbation within the burrow system, through mucus lining of the burrower drives sulphate reduction and OM degradation (Harazim et al., 2020; Sturdivant and Shimizu, 2017; Sutherland, 2006). Early localised sulphate-reducing bacteria exploit OM in the burrow as a feedstock, reducing sea water
sulphate to hydrogen sulphide (H_2S). The H_2S reacts with iron minerals which are rich in trace metals to form pyrite. This process is dependent on a balance between carbon, sulphur, and iron.

Bioturbation in iron-rich sediments rapidly oxidises OM through iron-reducing bacteria. Where no bioturbation occurs, sediments become sulphide rich, mediated by sulphate reducing bacteria. In Fe-rich sediments, the supply of ferrous iron exceeds the supply of sulphide and ferrous iron reacts with H_2S and sequesters it to monosulfide, which detoxifies the sediment, promoting bioturbation (Antler et al., 2019). At depth sediments become dominated by sulphide which is poisonous to bioturbating organisms and reduced ventilation from sediment mixing, inhibits the reoxidation of ferrous Fe, promoting pyrite formation (Antler et al., 2019). The trace metals present in the pyrite reflect the trace metals present in the iron minerals in the sediment (Mitchell, 1968). After diagenesis the burrow is completely pyritized and enriched in trace metals. Au, Cd, Cu, Pb and Zn are commonly found adsorbed onto naturally occurring Fe sulphides, and this process could be significant in the concentration of metals and the formation of ore deposits (Huerta-diaz et al., 1998; Jean and Bancroft, 1986).

The control that bioturbation has for mobility of redox-sensitive trace elements (i.e. Fe, V, Cr, Mn, Co, Ni, Cu, and As) has been addressed by Harazim et al., (2015). The authors found that the average TOC was 1.0 wt. % higher in sediment from within burrows compared with the surrounding sediment, and that pyrite found within burrows correlated with an increased level of Co, Ni, Cu and Zn. The rarity of the pyrite and persistence of organic carbon suggest that in this case the carbon was too refractory to be used as a feedstock for bacterial sulphate reduction (Widerlund and Davison, 2007). The lack of organic matter reactivity means that these elements are incorporated into silicates rather than pyrite or organic matter. The localities selected for this study were abundant in pyritized burrows suggesting that the bioavailability of the organic matter in the burrows was not a limiting factor.

Examples of lacustrine pyritic burrows are also found in the literature. Virtasalo et al. (2010), analysed small burrow-like and irregularly shaped concretions in Holocene postglacial lacustrine clays in the
northern Baltic Sea. The burrows here experienced a transition from a freshwater lacustrine environment to a more brackish environment due to increasing influx of saline water from the Baltic Sea. The burrows reported are pyritic and show a range of crystal textures including framboidal, euhedral, microcrystalline masses and framboids with overgrowths of marcasite crystals. The framboidal texture indicates sufficient space for the crystals to grow so pyrite precipitation would occur in an open space (Thomsen and Vorren, 1984). Trace metal concentration was not the scope of this work but given the concentration of pyritic burrows within the sediments, lacustrine settings could sequester significant levels of trace metals.

4.2 Burrow enrichment relative to host sediment

The burrows discussed here all show an enrichment in trace elements relative to their host sediment as shown in Figure 2. Se mineralisation in Hock cliff burrows are 10 times richer than its host sediment, and Southerham burrows are around 4 times that of their host sediment. The burrows at Wren’s nest did not show any Se mineralisation. Cu concentrations at both Wren’s Nest and Hock Cliff burrows were 50 times greater than their host sediment, and Southerham burrows was 20 times that of its host sediment. Pb concentrations at both Wren’s Nest and Southerham were 50 times greater than trace elements recorded in the host sediment. The Hock Cliff burrows were up to 100 times richer in Pb than its host sediment.

This shows that there is anomalous enrichment of trace elements in pyritic burrows relative to their hosts sediments. Trace element enrichment in burrows exceed the average values recorded for shale and carbonates and are comparable to values of the Gwna Group shales, which are regarded as protoliths to ore deposits.

4.3 Pyrite mineralisation

Burrows from Southerham and Hock cliff display framboidal textures, indicating that the pyrite had space to grow, and is also considered a signature of early stage microbial sulphate reduction (Fig. 6A...
& B) (Schoonen, 2004; Virtasalo and Kotilainen, 2013). Early diagenetic framoidal pyrite in bioturbations have been shown to be richer in trace elements compared with pyrite not found in bioturbations (Lerouge et al., 2011). Southerham pyritic burrows show pyrite framboids with euhedral overgrowths (Fig. 6A). Euhedral pyrites are a secondary feature to the framboids and formed during diagenesis, recrystallising the original pyrite. Similar features are observed in SEM micrographs from Armstrong et al. (2018) and Virtasalo et al. (2010), which show framoidal pyrite with euhedral overgrowths.

The distribution of the metals within the burrows can give information about the timing of pyrite mineralisation. In the Hock Cliff burrows, as Pb and Se are concentrated in the burrow rim it is likely that they are from the same mineral phase. Lead selenide (clausthalite) is a common mineral phase found in pyrites. As Pb and Se are concentrated in the rim it suggests that it was enriched at a later stage, after early stage pyritization mediated by sulphate-reducing bacteria. Similar features are described by Parnell et al. (2017) and are attributed to hydrothermal Pb mineralisation during metamorphism. Fe and Cu are more evenly distributed throughout the burrow but are depleted at the burrow rim. This suggests that Cu was originally incorporated into the burrow at an early stage.

4.4 Oxidation of burrows and implication on metal concentration

The pyritic burrows reported here and elsewhere in the literature tend to be altered to Fe-oxide, as pyrite is commonly oxidized in the sedimentary environment (Rimstidt and Vaughan, 2003), giving the burrows a rusty colouration. Primarily this oxidation is only on surface exposures but in some cases, this weathering can penetrate to the core of the burrow. This has the potential to affect the distribution of trace metals, by remobilising trace metals which are soluble in oxidising conditions. Perez et al. (2019) demonstrated through LA-ICP-MS analysis of weathered pyrites that some trace elements were concentrated in a halo around the edge of the pyrite crystal, suggesting that certain trace elements are more persistent under oxidising conditions. Laser maps from Hock Cliff show that
Se & Pb are concentrated in a halo on the edge of the burrow and are depleted in the core of the burrow, which could be a result of preferential oxidation, redistributing Se within the burrow.

Regardless of the redistribution of metals, results shown here demonstrate that trace elements are preserved within burrows after oxidation, and therefore bioturbated sediments still represent a significant sink for trace metals, even after oxidative weathering.

4.5 Sequestration rates

Seafloor mining operations have focussed on deep marine Fe-Mn crusts as they are abundant in Se, Te and other trace elements. Although Fe-Mn crusts are rich sources of trace elements, they accumulate extremely slowly at 1-10 mm/Ma (Hein, 2000). Recent work by Armstrong et al. (2018) demonstrated that the black shales of the Gwna group have a Te sequestration rate greater than that of Fe-Mn crusts, highlighting the value of black shale for trace element sequestration.

The sequestration rates of Se, Pb & Cu were calculated using; the accumulation rates of each locality, which was calculated using the thickness and age of the unit they were sampled from; the measured density of each sample and the concentration of the element (in ppm) determined by LA-ICP-MS analysis. This information is summarised in table 1. Accumulation rates for each depositional environment were collated from existing literature and used to calculate sequestration ranges for the selected elements. This information is summarised in supplementary table 1.

Accumulation rates for a Cretaceous shallow shelf sea environment ranges from 6.4-100 m/Ma (Damholt and Surlyk, 2004; Friedman et al., 2016; Hopson, 2005; Kennedy and Garrison, 1975; Laurisden et al., 2009; Puckett, 1991; Surlyk and Lykke-andersen, 2007). Sequestration rates based on these accumulation rates and a measured density of 2.44 g/cm³ are 900-13900 nmols/yr⁻¹ for Se, 16300-253400 nmols/yr⁻¹ for Cu and 24900-387400 nmols/yr⁻¹ for Pb.
Accumulation rates for a Jurassic hemipelagic/pelagic environment ranges from 1.5-40 m/Ma (DeCelles and Currie, 1996; Hinnow and Park, 1999; Mattioli and Pittet, 2002; Simms et al., 2004). Sequestration rates based on these accumulation rates and a measured density of 2.72 g/cm3 are 400-10600 nmols/yr$^{-1}$ for Se, 31100-368100 nmols/yr$^{-1}$ for Cu, and 6300-156000 nmols/yr$^{-1}$ for Pb.

Accumulation rates for a Silurian carbonate platform environment ranges from 5.8-79 m/Ma (Bosscher and Schlager, 1993; Calner and Jeppsson, 2003; Cocks, 2004; Narbonne and Dixon, 1984; Soja, 1993). Sequestration rates based on these accumulation rates and a measured density of 2.87 g/cm3 are 55000-745200 nmols/yr$^{-1}$ for Cu and 15900-215500 nmols/yr$^{-1}$ for Pb.

The sequestration rates of Se, Cu & Pb in Fe-Mn crusts are 0.5, 200 & 100, respectively. Conservative estimates of sequestration rates for all three depositional environments exceed those of Fe-Mn crusts. On average pyritic burrows sequester Se up to three orders of magnitude faster than Fe-Mn crusts. Cu and Pb are sequestered in pyritic burrows at two orders of magnitude greater than Fe-Mn crusts. Pb sequestration rates in pyritic burrows is the only element discussed here that is comparable to sequestration rates of Gwna Group sediments. Se and Cu burrow sequestration rates are two orders of magnitude lower than that of the Gwna Group. This shows that bioturbation can sequester metals more efficiently than Fe-Mn crusts, and bioturbated marine sediments could be regarded as a significant sink for trace elements.

5 Conclusion

The trace element data shows that bioturbated marine sediments have anomalous levels of trace elements preserved in pyritized burrows. The act of burrowing increases organic material in the sediment which drives bacterial sulphate reduction and the sequestration of trace elements. Specifically:

(i) When an organic rich reservoir is not available, trace elements can be concentrated into burrows which are rich in OM, which promotes pyritization and metal sequestration.
Bioturbated sediments across a range of geological ages show anomalous levels of trace elements preserved in pyritized burrows.

(ii) The three localities discussed here show an enrichment of Cu, Se, and Pb relative to their host sediments, despite oxidation which might weather and degrade the burrow.

(iii) Bioturbated sediments from Hock cliff, Wren’s Nest and Southerham Grey Pit are more efficient at sequestering metals when compared with other deposits such as Fe-Mn crusts, which are regarded as rich sources of metals, but accumulate very slowly. Pyritic burrows can sequester Se up to three orders of magnitude faster than Fe-Mn crusts, and Pb and Cu up to two orders of magnitude faster than Fe-Mn crusts.

Acknowledgments

This work was supported by NERC grant NE/M010953/1. Electron Microscopy was performed with the help of J. Still in the ACEMAC Facility at the University of Aberdeen.

References

Frimmel, H.E., 2009. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental

Fig. 1 Map showing sampling localities of pyritic burrows. **a** – Wren’s Nest, Nodular Beds Member, Silurian. **b** – Hock Cliff, Blue Lias Formation, Jurassic. **c** – Southerham Grey Pit, Zig Zag Chalk Formation, Cretaceous.

Table 1. Sequestration rates of bioturbated sediments. Average values used in this study and elsewhere; Fe-Mn crusts (Hein et al., 2013, 2003, 1993); Gwna Group sediments (Armstrong et al., 2018); Wren’s Nest formation age and thickness data (Cocks, 2004); Hock Cliff formation age and thickness data Simms et al. (2004); Southerham Grey Pit formation thickness and age data Hopson (2005). Average shale values taken from Hu and Gao (2008) and Stüeken et al. (2015). Hock Cliff and Wren’s Nest burrow sample values obtained by LA-ICP-MS mapping. Host rock values for Hock Cliff & Wren’s Nest were analysed for their bulk trace metal content by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS), at ALS Laboratories, Loughrea, Ireland.

Fig. 2 Elemental content in parts per million (ppm) on the Y axis, sample localities on the X axis. Average shale values (Hu and Gao, 2008; Rudnick and Gao, 2003); Average carbonate values (Frimmel, 2009; Shamberger, 1981). Graphs are logarithmic as the average element values are considerably lower than found in pyritic burrows.

Fig. 3 LA-ICP-MS for Fe, Cu, Se and Pb in a pyritic burrow, Hock Cliff. Note the relative enrichments of Cu in the burrow centre, and Se and Pb in the outer burrow wall. Blue colours indicate lower trace element content, and red colours indicate higher trace element content.

Fig. 4 LA-ICP-MS for Fe, Cu, and Pb in a pyritic burrow, Wren’s Nest. Note the relative enrichments of Cu & Pb are more evenly distributed throughout the burrow cross-section. Blue colours indicate lower trace element content, and red colours indicate higher trace element content.
Fig. 5 Summary diagram of pyritic burrow formation and metal enrichment in a marine sedimentary setting, adapted from (Virtasalo et al., 2010). Sulphate-reducing bacteria (SRB).

Fig. 6 A, Pyrite framboids with euhedral overgrowths, Southerham Grey Pit. B, Pyrite framboids, Hock Cliff. C, Euhedral and framboid pyrites weathered to iron oxides but still retain original pyritic morphologies, Southerham Grey Pit.