SHORT REPORT

A novel Artificial Intelligence-based tool to assess anticholinergic burden: a survey

AGOSTINA SECCHI1, HULKAR MAMAYUSUPOVA2,3, SABER SAMI4, IAN MAIDMENT5, SIMON COULTON6, PHYO KYAW MYINT7, CHRIS FOX8

1Kent and Medway NHS and Social Care Partnership Trust
2AKFA University Medical School, Uzbekistan
3University of Essex, CO4 3SQ, UK
4University of East Anglia, Norwich, NR4 7TJ, UK
5Aston University, Aston St, Birmingham B4 7ET, UK
6University of Kent, Giles Ln, Canterbury CT2 7NZ, UK
7Ageing Clinical & Experimental Research Team, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, Scotland, UK
8University of Exeter, College of Medicine and Health

Address correspondence: Chris Fox, University of Exeter, College of Medicine and Health St Luke’s Campus, Heavitree Road, Exeter, EX1 2LU, UK. Email: Christopher.Fox@exeter.ac.uk

Abstract

Background: many medications possess anticholinergic activity. Their use is associated with a number of serious adverse effects including cognitive effects. The cumulative anticholinergic effect of medications as assessed by tools such as the anticholinergic burden scale (AchB) can identify people particularly at risk of anticholinergic side-effects. Currently, >20 tools are available for clinicians to use, but there is no consensus on the most appropriate tool.

Methods: a newly created online tool—International Anticholinergic Cognitive Burden Tool (IACT)—based on natural language processing and chemical structure analysis, was developed and made available for clinicians to test its functions. We carried out a survey (between 8th of February and 31st of March 2021) to assess the overall need for an assessment tool as well as the usability of the IACT.

Results: a total of 110 responses were received from different countries and practitioners’ groups. The majority of the participants (86.11%) stated they would use a tool for AchB assessment if available and when they were asked to rate the IACT against other tools, amongst 34 responders, 20.59% rated it better and 8.82% rated it significantly better, 44.12% rated it neither better, nor worse, 14.71% rated it worse and 11.76% somewhat worse.

Conclusion: there is a need for an anticholinergic burden calculator to assess the anticholinergicity of medications. Tools such as the IACT potentially could meet this demand due to its ability to assign scores to current and new medications appearing on the market based both on their chemical structure and reported adverse pharmacological effects.

Keywords: anticholinergic, polypharmacy, adverse events, older people

Key Points

• A novel Artificial Intelligence-based anticholinergic tool can be used to assess anticholinergic burden.
• The absolute necessity to evaluate anticholinergic burden when prescribing.
• The International Anticholinergic Cognitive Burden Tool can be easily deployed.
Background and objectives

Global trends in use of medicines with anticholinergic activities are increasing [1–3]. In England, alone the use of anticholinergic medications or medications with anticholinergic activity has registered a significant increase between 1990 and 2001 (from 5.7 to 9.9%, respectively; [4]).

Anticholinergic activity is associated with a number of serious adverse events and it is often the result of prescribing multiple medications [5]. Reported adverse effects include dry mouth, nausea, constipation, blurred vision, urinary retention, cognitive impairment [6] and could increase risks of falls and may be associated with an increase in mortality [7–9]. Older people may be more susceptible to anticholinergic effects due to reduced renal and liver function, which affect the metabolism and elimination of the medications leading to increased exposure [10, 11]. There is also a linear relationship between anticholinergic burden and cardiovascular diseases or deaths [12].

Professionals should aim to reduce the overall anticholinergic burden (AchB) prescribed. Pharmacists might play an important role in deprescribing medications with anticholinergic activity [13]. To achieve this, an assessment of anticholinergic burden for individual medications is essential and it needs to be incorporated in routine clinical practice using a reliable scale.

Currently there are a number of scales available but National Institute for Health and Care [14] does not make recommendation of one over another and there is no gold standard scale [2]. Recent systematic reviews [15–17] could not recommend any particular tool. Lozano-Ortega et al. [18] identified 16 scales, 6 of which were suitable for quantification of anticholinergic exposure. However, the use of these scales and others currently in use [19] is limited, because they do not use an updating system, and there are differences in which medications are included and the impact of dose.

Against this background we developed a new method of measuring anticholinergic burden using machine learning technique—the International Anticholinergic Cognitive Burden (IACT) tool.

The novelty introduced with this tool is the use of a machine learning technique—a natural language processing—to develop an automated model available on a website portal. The anticholinergic burden is assessed by assigning a score based on reported adverse events and aligning closely with drug chemical structure, resulting in a more accurate and up-to-date scoring system.

The current report summarises the results of the survey we carried out with the view of testing the usability of this new calculator tool. The purpose was to better understand the benefits of usage as well as current limitations with the aim of future improved development.

Methods

We developed a questionnaire using Qualtrics software (Qualtrics, Provo, UT, USA). The survey was first piloted among research team members with expertise in pharmacy, geriatric medicine, mental health and health service research who are involved in prescribing. After obtaining the ethical approval from University of East Anglia (reference: 2020/21-068) the survey was distributed via email and social media to various groups including NHS foundation trusts and pharmacies as well as internationally. Participants (doctors, non-medical prescribers, consultants, General Practitioners, nurses and pharmacists) meeting the eligibility criteria, received the link to test the IACT and were invited to take part in the survey to evaluate the tool.

Participants were asked a mixture of closed and open-ended questions. Firstly, to gain more insight of their understanding of AchB calculation. Secondly, to ask an opinion on the usefulness of the IACT tool and possible suggestions for its improvement. The survey questions can be found in Appendix 2 (supplementary data are available in Age and Ageing online). More detailed explanation of the methods can be found in Appendix 4 (supplementary data are available in Age and Ageing online).

The feedback results were exported to Microsoft Excel and graphs plotted using Microsoft Excel (version 2020) and Origin (Pro) software (version 2021b, OriginLab Corporation, Northampton, MA, USA). The qualitative data extrapolated from the open-ended questions were analysed using thematic analysis. This work was funded by EIRA (Enabling Innovation: Research to Application) at University of East Anglia and Research England and Eastern AHSN. Funders played no role in any parts of this work.

Results

One hundred and ten professionals participated in this survey (Appendix 1, Panel A, Supplementary data are available in Age and Ageing online). In total, 73% were aware of national guidelines on AchB assessment and risk of cognitive impairment (Appendix 1, Panel B, Supplementary data are available in Age and Ageing online). Participants’ profession were 47.3% medical doctors (secondary and primary care), 38.2% medical doctors, 5.5% nurse prescribers and 9.1% other professions including physician associate, advance nurse practitioner and scientists (Appendix 1, Panel C, Supplementary data are available in Age and Ageing online).

When asked, the vast majority of 74.3% agreed that the prescriber should assess the AchB whereas 20.2% responded as various professionals should be responsible and 5.5% were not sure (Appendix 1, Panel D, Supplementary data are available in Age and Ageing online).

The respondents were further asked whether they routinely assessed AchB and if yes which tools they frequently used. Around 54.13% answered affirmingly and the distribution of their tool usages is presented (Figure 1). Among those who used various tools, the majority (63.8%, total N = 36) used the ACB scale or ACB calculator. When asked to rate the usefulness of the tools (if used) in a Likert scale from 1 least helpful and 5 most helpful, among the 58 respondents,
AI-based tool to assess anticholinergic burden

The participants were asked to rate the ACB and the other tools against our tool, the IACT. The new AChB calculation system introduced with the IACT, was perceived useful as based on characteristics such as chemical structure, medication side-effects and textual information allowing to score newly added medications in the market, hence differentiating from other tools [19]. Minor issues highlighted were taken in consideration for amendment. For example, we acknowledged the limitation of using the tool when working without internet access; we recognised that the use of the tool was time consuming for many doctors (Appendix 3, Supplementary data are available in Age and Ageing online). To overcome these limitations, we decided to make the IACT available in a web application (APP) accessible when internet access is limited. To facilitate the use of the tool we considered incorporating it within the prescribing web programme used in the GP surgeries such as SystmOne (TPP) so that medications with high levels of AChB are flagged up immediately when prescribing and prescribers do not need to enter the name of the medications in two different web programmes. Although the participants indicated that a tool to calculate AChB should be used by prescribers, the participants valued tools to calculate AChB and following future development our tool, the IACT, has the potential to fulfill this need [21].

Strengths. The survey was completed by professionals coming from a varied background, which helped with creating a greater validity of the data collected.

Limitations. Due to time constraints we could not recruit more international professionals who would have enriched the data and contributed to assess the usability of the IACT tool.

Implication for practice. The aim of this survey was to identify issues on the use of the IACT in clinical practice. The IACT, once refined, will help practitioners to standardise...
prescribing practice, it will help to improve medication monitoring and most importantly it will help to improve patients’ health by preventing anticholinergic side-effects [8, 22–24].

In summary, we conclude that machine learning based systems could be developed to quantify anticholinergic burden with the view of improving patient outcomes. IACT tool has the potential to help clinicians in their clinical decision around prescribing by providing an easy to access to up-to-date scoring system.

Supplementary Data: Supplementary data mentioned in the text are available to subscribers in Age and Ageing online.

Declaration of Conflicts of Interest: None declared.

Declaration of Sources of Funding: This work was funded by EIRA (Enabling Innovation: Research to Application) at UEA and Research England and Eastern AHSN.

References