Threshold values for the protection of marine ecosystems from NORM in subsea oil and gas infrastructure

Darren J. Koppel a, b, *, Tom Cresswell c, Amy MacIntosh c, d, Rebecca von Hellfeld e, f, Astley Hastings e, f, Stuart Higgins a

a Curtin University Oil and Gas Innovation Centre, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
b Australian Institute of Marine Science, Crawley, WA, Australia
c Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
d Department of Earth and Environmental Sciences, Macquarie University, Sydney, NSW, Australia
e School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK
f National Decommissioning Centre, Ellon, Scotland, UK

ARTICLE INFO

Keywords:
TENORM
Risk assessment
Rigs to reef
Decommissioning
Radium

ABSTRACT

This modelling study uses the ERICA Tool and Bateman’s equation to derive sediment threshold values for radiation protection of the marine environment relevant to NORM-contaminated products (radium-contaminated scales, 210Pb films and 210Po films) found in subsea oil and gas infrastructure. Threshold values are calculated as the activity concentration of the NORM-contaminated products’ head of chain radionuclide (i.e., 226Ra + 228Ra, 210Pb, or 210Po) that will increase radiation dose rates in sediments by 10 μGy/h to the most exposed organism at a given release time. The minimum threshold value (corresponding to peak radiation dose rates from the ingrowth of progeny) were for radium-contaminated scales, 0.009 Bq/g of 226Ra, 0.009 Bq/g of 228Ra (in the absence of 226Ra) or 0.14 Bq/g of 228Ra (in the presence of 226Ra), followed by 0.015 Bq/g for 210Po films, and 1.6 Bq/g for 210Po films. These may be used as default threshold values. Added activity concentrations of the NORM-contaminated products to marine sediments below these threshold values implies a low radiological risk to organisms while exceedances imply that further investigation is necessary. Using contaminated product specific parameterisations, such as K4 values derived for Ra from a BaSO4 matrix in seawater, could greatly affect threshold values. Strong consideration should be given to deriving such data as part of specific radiological risk assessments for these products.

1. Introduction

Naturally occurring radionuclides are found at low activity concentrations in oil and gas reservoirs around the world (Smith, 2011). As fluids are extracted from reservoirs, radionuclides may become concentrated in contamination products including inorganic salt scales, films, sludges, and sands within infrastructure such as production pipelines (Nelson et al., 2016; Schmidt, 2000). These naturally occurring radioactive materials (NORM) may be recalcitrant and remain in oil and gas infrastructure at the cessation of operations.

A significant inventory of offshore oil and gas infrastructure is approaching the end of its productive life (Wood, 2017). Pipelines represent a large component of this infrastructure, with hundreds of thousands of kilometres of subsea pipelines laid around the world (Kaiser, 2018). Decommissioning options for this infrastructure include complete or partial removal or leaving it in situ. The reported benefits of leaving some infrastructure in situ include cost savings, improved health and safety outcomes for workers, and ecological benefits from the provision of productive artificial reef habitat (Bull and Love, 2019; McLean et al., 2022). However, questions remain about the long-term environmental consequence of contaminants, including NORM, in such infrastructure (MacIntosh et al., 2021; Melbourne-Thomas et al., 2021; Schläppy et al., 2021).

The disposal of residual NORM-contaminated products in oil and gas infrastructure to the marine environment via in situ abandonment is typically subject to regulatory oversight. For example, nations that are signatories to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (London Convention) (IMO, 1972)
have a requirement to ensure that any infrastructure approved to be abandoned in the marine environment has “de minimis” radioactivity levels (IAEA, 2016). Understanding the potential dose rates from NORM-contaminated products to marine organisms is therefore important to help clarify regulatory requirements.

Three important NORM-contaminated products have been identified in oil and gas systems, including radium-contaminated mineral scales, 210Pb films, and 210Po films (Koppel et al., 2022). Radium-contaminated scales occur when radium is precipitated as an inorganic salt, typically co-precipitated with barium sulfate (Ba(Ra)SO$_4$) (Grandia et al., 2008). These are precipitated from water so may occur wherever water from production fluids is transported. Two radium isotopes, 226Ra and 228Ra, contribute to these scales. Both isotopes have a common chemical behaviour; however, they have different decay chains and progeny, emission types and energies, and half-lives, so their radioecological impacts may be different. 210Pb films originate from either deposition from the decay of 222Rn throughout treatment and transportation systems or electrodeposition of 210Pb from fluids to surfaces such as wet parts of gas production systems (Schmidt, 2000; Smith, 2010). Unsupported 210Pb films are rarely reported but likely to originate where polonium partitions to lighter fractions such as ethane which are then separated and cooled in pipelines (Schmidt, 2000; Smith, 2010). More comprehensive reviews on the chemistry of NORM-contaminated product formation are provided by Nelson et al. (2015) and Schmidt (2000).

The risk of radionuclides to non-human biota is dependent on the amount of radiation that is absorbed by the organisms, termed the absorbed dose, and the radioactivity of the organism (ICRP, 2007). Radiation assessment tools have been developed to simplify calculations of absorbed dose rates to non-human biota and include the ERICA (Environmental Risk from Ionising Contaminants: Assessment and Management Tool) (Brown et al., 2008, 2016) and RESRAD (Residual Radiative) Biota code (US DoE, 2004). Calculated absorbed dose rates can be compared to various environmental dose rate reference levels that describe levels above which potential radiation effects in organisms may occur. Common dose rate reference levels include 10 μGy/h for initial screening and ecosystem-wide protection (Garnier-Laplace et al., 2008), 400 μGy/h benchmark dose rate for marine organisms (UNSCEAR, 2008), or the derived consideration reference levels (DCRL) of the International Commission on Radiological Protection (ICRP) of 4000 μGy/h for reference flatfish and seaweed and 400–4000 μGy/h for reference crab (ICRP, 2008). For more information on these values and their application see the review by Real and Garnier-Laplace (2020).

The 10 μGy/h screening value was derived using the same approach used to derive environmental quality standards for aquatic ecosystems in jurisdictions including Australia and New Zealand (ANZG, 2018), the United States of America (United States Environment Protection Agency, 1985), and the European Union (Directorate-General for Health and Food Safety (European Commission), 2017). In short, dose rates that elicit a 10% effect to an organism’s health, for a range of species, are aggregated into a species sensitivity distribution. The dose rate protecting 95% of all species is then taken and an additional safety factor of 2 applied to account for limitations in input data (Garnier-Laplace et al., 2010).

The ERICA Tool uses the 10 μGy/h reference level as its default screening value. At Tier 1, the ERICA Tool defines Environmental Media Concentration Limits (EMCL), which are the activity concentration of a radionuclide in an environmental media (i.e. soil, sediment, freshwater, or seawater) that will lead to a 95th percentile dose rate of 10 μGy/h to the most exposed organism (Brown et al., 2008). These EMCL values allow for a rapid screening of radionuclide risk with minimal data needs. Scenarios where the summed quotient of radionuclide activity concentrations in the relevant environmental medium by their respective EMCL values is less than one are considered of negligible environmental concern with a high degree of confidence, due to the conservatism of their input parameters and comparison to dose rates where effects are known to occur (Larsson, 2008).

NORM-contaminated products in oil and gas infrastructure are unique because they form in disequilibrium with their progeny, become unsupported when the extraction of oil and gas products cease, and are isolated from marine receptors until the containing infrastructure corrodes (Nelson et al., 2015). This means that the ingrowth of the progeny of the products needs to be considered on timescales commensurate to the corrosion of the infrastructure in the marine environment, which may be hundreds to thousands of years (Melchers, 2021).

This study derives NORM-contaminated product-specific threshold values for radium (226Ra + 228Ra) contaminated scale, 210Pb films, and 210Po films. Threshold values can be used to inform initial screening assessments of radiological impacts to marine organisms in ecological risk assessments of subsea oil and gas infrastructure. These thresholds are calculated as the maximum initial activity concentration of the NORM-contaminated product’s head of chain radionuclides that when released to sediments will not exceed the screening dose rate criterion of 10 μGy/h. The influence of the NORM release time to the marine environment (i.e., radionuclide ingrowth and decay), and in the case of radium-contaminated scales the contribution of both 226Ra and 228Ra is investigated to account for temporal aspects of contaminant risk. These values may be used as screening values to demonstrate that levels of radioactivity in infrastructure are de minimis and thus suitable for in situ decommissioning, or whether further assessments are required.

2. Methods

2.1. Calculation of threshold values for NORM-contaminated products in marine sediment

A modelling approach was applied to calculate the activity concentrations of NORM-contaminated products that when released into marine sediments would result in a dose rate of 10 μGy/h to the most exposed marine organism, accounting for radionuclide ingrowth and decay over time. These activity concentrations are termed threshold values and were determined by combining ERICA Tier 1 calculations (and their related simplifications in dosimetry) with the Bateman Equation.

All decay constants were taken from ICRP Publication 107 nuclear decay data (Eckerman and Endo, 2008). Default EMCL values and the associated underlying parameter values including partition coefficients (K_p), concentration ratios (CR), organism occupancy factors, dose conversion coefficients (DCCs), and radiation weighting factors implemented in ERICA Tool 2.0 were used (Brown et al., 2016; Copplestone et al., 2013; ERICA Consortium, 2021). The most exposed organisms for the radionuclides investigated in this study were Phytoplankton (226Ra, 210Pb, 228Ra, and 232Th), and Sea anemones & True corals (210Po). The EMCL values for these radionuclides are given in Table 1.

Calculations were conducted in the open source statistical software R version 4.0.5 (R Core Team, 2016), using the Tidyverse extension packages (Wickham and RStudio, 2021). R scripts implementing Equations (3), (6) and (8) and the production of risk quotient figures are provided in Supplementary Information S1. A table of the half-lives and decay constants are given in Supplementary Information S2.

ERICA Tier 1 EMCLs are calculated by Equation (1) where SDR is the

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>EMCL (Bq/g dw)</th>
<th>Most exposed organism</th>
</tr>
</thead>
<tbody>
<tr>
<td>226Ra</td>
<td>0.020</td>
<td>Phytoplankton</td>
</tr>
<tr>
<td>210Pb</td>
<td>0.015</td>
<td>Phytoplankton</td>
</tr>
<tr>
<td>210Po</td>
<td>1.600</td>
<td>Sea anemones & True coral</td>
</tr>
<tr>
<td>228Ra</td>
<td>0.094</td>
<td>Phytoplankton</td>
</tr>
<tr>
<td>228Th</td>
<td>0.021</td>
<td>Phytoplankton</td>
</tr>
</tbody>
</table>
selected screening dose rate (here, 10 μGy/h) and F is the dose rate that an organism will receive for a unit activity concentration of a given radionuclide in an environmental medium (μGy/h per Bq/kg dry weight (dw) for sediment). F is calculated by an equation that accounts for the habitat of the organism, shown in Equation (2) for ‘Phytoplankton’ and ‘Sea anemones & True coral’ which are the most exposed organisms for the radionuclides investigated in this study (Table 1). Probability density functions based on lognormal distributions around K_d and CR values are used in Monte Carlo simulations to give the 95th percentile of the F value, which is then used in Equation (1).

$$EMCL = \frac{SDR}{F}$$ \hspace{1cm} (1)

$$F_{\text{Phytoplankton}} = DCC_{\text{cr}} \frac{CR}{K_d} + DCC_{\text{cr}} \frac{1}{K_d}$$

$$F_{\text{Sea anemones & True coral}} = DCC_{\text{cr}} \frac{CR}{K_d} + 0.5 \cdot DCC_{\text{cr}} \left(1 + \frac{1}{K_d} \right)$$ \hspace{1cm} (2)

A risk quotient was calculated following the Tier 1 approach in the ERICA Tool using Equation (3), where RQ_n is the risk quotient for the NORM-contaminated product at time t, A_n is the activity concentration of radionuclide n in the NORM-contaminated product at time t, and λ_n is the decay constant for radionuclide n. Substituting Equation (4) into Equation (3) for a risk quotient of 1 and rearranging for the initial activity concentration of radionuclide n at a dose rate reference level of 10 μGy/h.

$$RQ_n = \sum_{i=1}^{n} \frac{A_i}{EMCL_n}$$ \hspace{1cm} (3)

The radioactive decay equation, Equation (4), gives the activity concentration of radionuclide n at time t:

$$A_n = A_{n,0} e^{-\lambda_n t}$$ \hspace{1cm} (4)

where $A_{n,0}$ is the activity concentration of radionuclide n at time t, $A_{n,0}$ is the initial activity concentration of radionuclide n, and λ_n is the decay constant for radionuclide n. The solution of Equation (6) for the second radionuclide in a decay chain at time t is given in Equation (7). While the input of short-lived progeny are simplified in this manner, the output of ERICA assessments includes their individual contribution to dose rates to organisms following the updated approach from ICRP Publication 136 (ICRP, 2017). To calculate NORM-contaminated product threshold values for marine sediments, the radioactive decay and ingrowth equations were solved as follows.

The radionuclide activity concentrations into the ERICA Tool, decay chains for NORM-contaminated products as shown in Fig. 1. While the input of short-lived progeny are simplified in this manner, the output of ERICA assessments includes their individual contribution to dose rates to organisms following the updated approach from ICRP Publication 136 (ICRP, 2017). To calculate NORM-contaminated product threshold values for marine sediments, the radioactive decay and ingrowth equations were solved as follows.

The Bateman Equation can be used to calculate the activity concentration of any radionuclide in a decay chain at time t given the starting activity concentration of its head of chain radionuclide and their decay constants (Bateman, 1910). The general derivation shown in Equation (5) gives Equation (6) for the second radionuclide in a decay chain, i.e., 210Po films.

$$A_{n,0} = \frac{1}{\left(e^{-\lambda_n} \right) \left(\frac{1}{EMCL_n} \right)}$$ \hspace{1cm} (5)

$$A_{n,0} = A_{n,0} e^{-\lambda_n t}$$ \hspace{1cm} (6)

$$A_{n,0} = \frac{1}{\left(e^{-\lambda_n} \right) \left(\frac{1}{EMCL_n} \right) + \left(e^{-\lambda_n} - e^{-\lambda_n} \right) \left(\frac{1}{EMCL_n} \right)}$$ \hspace{1cm} (7)

$$A_{n,0} = \frac{1}{\left(e^{-\lambda_n} \right) \left(\frac{1}{EMCL_n} \right) + \left(e^{-\lambda_n} - e^{-\lambda_n} \right) \left(\frac{1}{EMCL_n} \right)}$$ \hspace{1cm} (8)

For radium-contaminated scale, the contribution of both 226Ra and 228Ra must be investigated. The 226Ra chain is a three-component decay chain.
chain (226Ra to 210Pb to 210Po), where short-lived progeny, i.e., with half-lives <10 d, are assumed to be in equilibrium with these chain segment parents, (Fig. 1). The third component can again be calculated using the Bateman Equation and combined with expressions for the first and second component, in Equation (3). This is shown in Equation (9).

$$A_{1,10} = \left(\frac{e^{-\lambda t}}{EMCL_1} + \frac{\lambda_1 A_0}{EMCL_2} \left(\frac{e^{-\lambda_1 t}}{EMCL_2} \right) \right) + \frac{\lambda_3 A_0}{EMCL_3} \left(\frac{e^{-\lambda_3 t}}{EMCL_3} \right)$$

(9)

The 228Ra chain is a two-component decay chain and is solved using Equation (8). The risk quotient for the radium-contaminated scale can thus be expressed as shown in Equation (10).

$$RQ_{10} = A_{1,10} \left(\frac{e^{-\lambda_4 t}}{EMCL_4} + \frac{\lambda_4 A_0}{EMCL_5} \left(\frac{e^{-\lambda_4 t}}{EMCL_5} \right) \right)$$

(10)

Equation (10) cannot be solved to calculate the initial activity concentration of 228Ra and 226Ra that would not exceed a risk quotient of 1 (as was done in Equation (5) and Equation (8)) because they can occur in different proportions in scale and have different decay rates. Therefore, threshold values were first calculated independently. 226Ra and 228Ra will ingrow progeny and reach a peak in radioactivity at approximately 122 years and 4 years, respectively. Therefore, the maximum starting activity concentration of 228Ra was calculated to give a risk quotient equal to 1 minus the risk quotient of 228Ra at year 4 starting at its minimum head of chain activity. As 226Ra decays faster, its contribution to the risk quotient of the radium scale will be insignificant at 122 years (corresponding to peak ingrowth of 226Ra), meaning its contribution could be ignored. For a given time, the bracketed component of Equation (10) can be solved to give a single value for 226Ra and 228Ra components of the equation. This is shown for $t = 4$ years in Equation (11).

The solution of Equation 10 for $t = 4$, $A_{1,0} = ^{226}$Ra, and $A_{2,0} = ^{228}$Ra

$$RQ_{10,4} = ^{226}Ra_{t=0} \times 57.3 + ^{228}Ra_{t=0} \times 34.4$$

For a RQ of 1, rearranged for 228Ra at 0:

$$^{228}Ra_{t=0} = 0.029 - 1.7 \times ^{226}Ra_{t=0}$$

(11)

The accuracy of these equations was confirmed using online calculators and the ERICA Tool (v2.0). The solutions of Equations (3), (6) and (7) for a given time were inputted to the World Information Service on Energy Uranium Project universal decay calculator (https://www.wiseuranium.org/rcr.html) to determine the activities of radionuclides in their decay chains at time t. These values were inputted to the ERICA Tool for a Tier 1 assessment and shown to give a risk quotient of 1.

2.2. Sensitivity analysis

The contribution of each radionuclide to the total dose rate to the two most exposed organisms for the NORM-contaminated products' head of chain radionuclides (Table 1), Phytoplankton and Sea Anemone & True corals, was investigated using a Tier 2 assessment in the ERICA Tool. Note that the output of ERICA assessments includes the contribution of all radionuclides, including those with half-lives <10 days. A sensitivity analysis was conducted using the Tier 3 functions of the ERICA Tool to investigate which parameter estimates contribute the greatest uncertainty to the total dose rate to each organism. To investigate how the provision of site-specific data affects threshold values, K_d values from seawater leach experiments with radium-contaminated scale collected from a subsea oil and gas pipeline measured by Cresswell et al. (2021) and reported in Macintosh et al. (2022) were used. The K_d values for radium, 1.5×10^6 L/kg, and polonium, 1.5×10^8 L/kg, were used to derive new EMCL values for radium-contaminated scales following the probabilistic Tier 1 approach specified in ERICA (Equation (1) and Equation (2)). The scale-specific EMCL values were inputted into Equation (10) and Equation (11) to calculate product-specific threshold values.

The K_d value for polonium is based on measured solid and aqueous activity concentrations whereas the limit of detection for the analytical approach was used for the radium aqueous concentrations. This means that the radium K_d value is a conservative estimate (i.e., will likely overestimate aqueous radium concentrations). Despite this, it is still 1000 times greater than the default value in ERICA of 2×10^3 L/kg. K_d values were also reported for lead and thorium; however, all values were below the limit of detection which did not have the sensitivity to detect the expected aqueous concentrations based on their default K_d values. For that reason, they were not used.

2.3. NORM-contaminated products and assessment assumptions

The three NORM-contaminated products assessed here are based on the types of NORM contamination reported in by-products in oil and gas systems (Ali et al., 2019; Koppel et al., 2022; Schmidt, 2000). In the assessment, the following assumptions are made about the products:

1. Contamination products are comprised of only their head of chain when oil and gas extraction has stopped. This assumption is used as a simplification as contamination products form to varying extents throughout the operational life of the oil and gas system (Yang et al., 2020).

2. There is no loss of radionuclide progeny. This is a conservative assumption that is likely to be true for closed pipe decommissioning scenarios following the cessation of operations, but unlikely to be true for contaminated material in the marine environment where soluble components may emanate or leach.
3. The speciation of NORM-contaminated products does not change between operations ceasing and its release to the marine environment, such as following corrosive breakthrough of pipelines. Decommissioned pipelines that are filled with seawater and capped may lead to reducing conditions that could promote speciation changes of NORM-contaminated products, such as reductive dissolution of sulfate minerals. However, this is not well understood, and the speciation of the contaminants will change to reflect its local receiving environment.

4. The values derived are for sediment concentrations and do not incorporate any mixing of the NORM-contaminated product into the sediment. Application of these values to real world scenarios should account for a conservative dilution of contaminated material in the environment. Dispersion modelling or other approaches should be considered to justify a selected mixing scenario.

5. The ERICA Tool includes default model parameters for radionuclide partitioning between sediments and seawater (K_s values) and from waters to biota (CR values). There is no CR value for \(^{226}\)Ra, \(^{210}\)Po, or \(^{210}\)Po to Sea anemones and True coral, so values from a taxonomically similar organism (polychaete worm) were used in line with the recommendations of Hosseini et al. (2008). Additionally, the default K_s value for polonium is based on a ‘periodically adjacent element’ (IAEA, 2004b). More information about the limitations of default ERICA parameter values for this exposure scenario can be found in recent publications from Koppel et al. (2022) and Macintosh et al. (2022).

3. Results and discussion

3.1. Threshold values for NORM-contaminated products in marine sediments

Threshold values are defined as the initial head of chain radionuclide activity concentration in the NORM-contaminated product that will result in a 10 μGy/h dose rate to the most exposed organism in the marine environment at a given time of exposure (i.e., at a given age of the NORM-contaminated product when released into the marine environment). As radionuclides ingrow and decay over time in NORM-contaminated products, their corresponding dose rate to organisms will increase and decrease, as visualised in Fig. 2 for \(^{226}\)Ra and \(^{228}\)Ra. Therefore, it is important to consider radiation risks over time, particularly where the release of radionuclides will occur well after any decision about their disposal.

The results presented here provide for the ability to calculate appropriate threshold values for a given release time. Alternatively, a set of minimum threshold values are provided that are calculated from the highest radiation dose rate that NORM contamination will deliver to a marine organism at any time, reflecting the balance between the increase in dose rate from radionuclide in-growth and the decrease in dose rate from the decay of the parent radionuclide (i.e., the peak of the sum curve in Fig. 2).

3.1.1. Radium-contaminated scale

The minimum threshold value for \(^{226}\)Ra was 0.009 Bq/g and for \(^{228}\)Ra was 0.029 Bq/g, when considered independently (Table 2). A key difference in the temporal extent of the risk of \(^{226}\)Ra and \(^{228}\)Ra relates to their half-lives. The ingrowth and decay of the \(^{228}\)Ra series is controlled by the 5.8-year half-life of \(^{228}\)Ra, which is much shorter than the 1600-year half-life of \(^{226}\)Ra. This means that the \(^{228}\)Ra series peaks and decays before the \(^{210}\)Po component of the \(^{228}\)Ra series comes to equilibrium. As a result, \(^{226}\)Ra reaches the peak of its ingrowth at 122 years compared to 4 years for \(^{228}\)Ra (Fig. 2).

It is likely that \(^{226}\)Ra and \(^{228}\)Ra will co-occur in a radium-contaminated scale, given their identical chemical behaviour (Nelson et al., 2015). As \(^{226}\)Ra has a longer half-life and radioactive peak from the ingrowth of \(^{210}\)Pb (Fig. 2) the joint risk quotient was determined to ensure that \(^{228}\)Ra when in the presence of \(^{226}\)Ra will not exceed a risk quotient of 1. \(^{228}\)Ra with an activity concentration of 0.009 Bq/g will contribute a risk quotient of 0.52 after 4 years – corresponding to peak radioactivity from \(^{226}\)Ra ingrowth. Therefore, the maximum initial

Table 2

Threshold values (TV) for the head of chain radionuclides of different NORM-contaminated products in sediments that would result in the most exposed marine organism receiving a dose rate of 10 μGy/h. All values reflect initial activity concentrations, and do not consider mixing and dispersion processes.

<table>
<thead>
<tr>
<th>NORM-contaminated product</th>
<th>Minimum threshold value (Bq/g)</th>
<th>Minimum threshold value (Bq/g)</th>
<th>Minimum threshold value (Bq/g)</th>
<th>Minimum threshold value (Bq/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{226})Ra in scale</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>(^{228})Ra in scale</td>
<td>0.029</td>
<td>3.99</td>
<td>4.98</td>
<td>>1000</td>
</tr>
<tr>
<td>(^{228})Ra in scale</td>
<td>0.014</td>
<td>3.99</td>
<td>0.014</td>
<td>>1000</td>
</tr>
<tr>
<td>(^{228})Ra in scale</td>
<td>0.015</td>
<td>0.069</td>
<td>0.330</td>
<td>>1000</td>
</tr>
<tr>
<td>(^{226})Ra in scale</td>
<td>1.6</td>
<td>0</td>
<td>>1000</td>
<td>>1000</td>
</tr>
</tbody>
</table>

a Note that the contribution of 228Ra is minimal at this stage due to its relatively short half-life of 5.8 years.
226Ra activity concentration that would give a risk quotient of 0.48 (calculated as 1 minus 0.52, the contribution of 226Ra) was calculated to be 0.014 Bq/g. The impact of 228Ra on the radioactivity peak from 226Ra ingrowth is not necessary because of the relatively short half-life of 226Ra. I.e., a starting 228Ra activity concentration of 0.014 Bq/g would contribute a risk quotient < 0.001 after 122 years. For release scenarios where 226Ra activity concentrations will be less than 0.009 Bq/g, a greater amount of 228Ra may be permissible than 0.014 Bq/g. More details on these results can be found in the code provided in Supplementary Information S1.

228Ra and its progeny are decayed >95% after 25 years meaning that on the time scale of pipeline corrosion rates (10s to >1000 of years (Melchers, 2021)) it is unlikely to be present in significant quantities to meaningfully contribute much radiation dose rate if it is isolated from environmental receptors in infrastructure (Fig. 2). In comparison, it will take approximately 8000 years for 226Ra to decay >95% of its initial activity meaning that the risk to the environment will be relevant on timescales relevant to pipeline corrosion. The consequence of these differences depends on the different 226Ra to 228Ra ratio and age of the NORM-contaminated product when released to the marine environment. At proportions of 226Ra < 0.4, or release times < 20 years the 228Ra ingrowth peak will result in a higher sum of risk quotient peak than the 226Ra ingrowth peak (see Fig. 2). This will reduce the ‘acceptable’ 228Ra activity concentration to < 0.009 Bq/g, and result in the 228Ra ingrowth peak being well below a risk quotient of 1. These temporal risk considerations will have to be considered if NORM-contaminated products are to be released at or shortly after operations cease, such as if they are stored open to the marine environment (e.g., uncapped or cut pipelines).

3.1.2. 210Pb and 210Po films

The minimum threshold value for 210Pb films was 0.015 Bq/g at 0 years due to the low EMCL of 210Pb (0.015 Bq/g) and high EMCL of its progeny 210Po (1.6 Bq/g) (Table 2). That is, the ingrowth of 210Po was less impactful to the risk quotient compared to the decay of 210Pb. This means that the risk from 210Pb films decreases at a rate proportional to the half-life of 210Pb (22.2 years).

210Po films have the highest EMCL of the radionuclides investigated in this study, a short half-life (t_{1/2} = 138 d) relative to 210Pb, 226Ra, or 228Ra, and no radioactive progeny. The minimum threshold value was equal to its EMCL at 1.6 Bq/g which increases at a rate proportional to the half-life of 210Pb. This means that unsupported 210Po is unlikely to be a radionuclide of concern in decommissioning contexts where operations have ceased for more than a few years, as shown in Fig. 3. This does not diminish the need to consider the risk of 210Po to human health and safety where public or occupational exposures are possible.

3.1.3. Sensitivity of radioecology parameters

The dose rate to the organisms Phytoplankton and Sea anemones & True corals were explored by a Tier 2 assessment. All NORM-contaminated products were investigated, and input activity concentrations were equal to those present in the NORM-contaminated products at the age that results in the minimum threshold value as defined in Table 2. Dose rates by NORM-contaminated product, organism, and radionuclide are given in Supplementary Information S3. In short, external dose rates are a negligible contribution to the total. For phytoplankton, 228Ac contributes the greatest dose in scale containing 226Ra and 228Ra (~75% of the total dose rate) followed by 228Th and 226Ra (~5% each). In the absence of 228Ra, 210Pb and 226Ra contribute

Fig. 3. Temporal patterns of risk for (a) 226Ra, (b) 228Ra, (c) 210Pb, and (d) 210Po at different initial activity concentrations and times. Risk quotients were determined as the sum of the quotient of each radionuclide in the products’ decay chains at a given time by their EMCL for a 10 μGy/h dose rate. Default parameters were used to calculate EMCLs in the ERICA Tool (v2.0). Note the different ranges for the age of the NORM contaminant (y axis).
approximately equivalent dose rates to phytoplankton.

A sensitivity analysis was undertaken using the Tier 3 function of the ERICA Tool. Input radionuclides were the \(^{226}\text{Ra}\) decay series (\(^{226}\text{Ra}, 210\text{Pb}, 210\text{Po}\)) or both the \(^{226}\text{Ra}\) and the \(^{228}\text{Ra}\) series (\(^{226}\text{Ra}\) and \(^{228}\text{Th}\)) and both Phytoplankton and Sea anemones & True Coral were investigated. The parameter and radionuclide pairs with the greatest Pearson correlation coefficients (positive or negative) are tabulated in Supplementary Information S4. Generally, CR values contribute the greatest variability with correlations between the parameter value and total dose rate to organism greatest for phytoplankton. For example, for phytoplankton exposed to scale with \(^{226}\text{Ra}\) and \(^{228}\text{Ra}\), the TH CR was the most impactful parameter with a positive coefficient of 0.33 followed by the \(K_d\) for TH with a negative coefficient of –0.11. For exposures of \(^{226}\text{Ra}\) in scale to phytoplankton, the CR of Pb was the most impactful parameter with a coefficient of 0.45 followed by \(K_d\) for Pb at –0.07. The relatively low sensitivity of \(K_d\) values relative to CR values likely reflects the approach adopted to create a distribution around the \(K_d\) estimate – where the 5th and 95th percentile values of the distribution are set as 10x lower and higher than the point estimate, respectively (Brown et al., 2022). This is a much narrower range of potential values than exists for CR values. It is unlikely that this range fully accounts for the possible partitioning of radionuclides from NORM-contaminated products. For example, mineral scales and their associated radionuclides may become more soluble in anoxic conditions (Phillips et al., 2001).

To understand how using NORM-contaminated product specific \(K_d\) values will affect EMCLs and TVs, radium-contaminated scale specific \(K_d\) and Po \(K_d\) values were used. The scale-specific \(K_d\) Po values were derived from a 30-day seawater leaching experiment of scale retrieved from a subsea oil and gas pipeline. These \(K_d\) Po values were used to derive new EMCL values using the same probabilistic Tier 1 approach in ERICA (all distribution parameters used to recalculate EMCL values are given in Supplementary Information S5). The use of scale-specific \(K_d\) values greatly increased the EMCL values for \(^{226}\text{Ra}\) and \(^{228}\text{Ra}\), increasing from 0.02 Bq/g to 16.3 Bq/g for \(^{226}\text{Ra}\) and increasing from 0.094 Bq/g to 70.2 Bq/g for \(^{228}\text{Ra}\). The EMCL for \(^{210}\text{Po}\) decreased from 1.6 Bq/g to 0.105 Bq/g (Table 3). The distribution of \(F\) values is given in Fig. 4.

The minimum TVs recalculated using the scale-specific \(K_d\) values for Ra and Po did not have the same substantial changes as the recalculated EMCL values (Table 4). For example, the minimum TV for \(^{226}\text{Ra}\) increased from 0.009 Bq/g to 0.015 Bq/g whereas the EMCL increased from 0.02 to 16.3 Bq/g (Table 4). This is likely because \(^{210}\text{Pb}\) and \(^{226}\text{Ac}\) contribute the largest doses from \(^{226}\text{Ra}\) and \(^{223}\text{Ra}\) decay chains, respectively, meaning that the ingrowth of progeny may be more important to the dose rate than the radium isotopes themselves (Supplementary Information S3). \(K_d\) values from the MacIntosh et al. (2022) study could not be calculated for all radionuclides detected in radium-contaminated scale due to the detection limits of the analytical approach (Cresswell et al., 2021). More detail is provided in Supplementary Information S5. However, the change in EMCL values for radium isotopes and \(^{210}\text{Po}\) demonstrate the benefit of using parameterisations relevant to the exposure scenario.

Unexplored in this study are other contaminant and site-specific considerations that may increase or decrease NORM bioavailability and mobility. Default \(K_d\) and CR parameter values assume radionuclide activities in the environment at an equilibrium between sediments, waters, and organisms. This assumption may not be true for point sources of contamination with different chemistries to environmental matrices such as radionuclides originating from NORM-contaminated products (Periánz et al., 2018). This is clearly the case for radium, which is known to be highly insoluble in oxic seawater due to the low solubility product of \(\text{RaSO}_4\) (\(\log_{10}(K_{sp})\) of –10.24) (Brown et al., 2022). This gives greater context to the high \(K_d\) value calculated from seawater leach experiments of radium in radium-contaminated barite scale, 1.5 × 10\(^6\) L/kg, which is ~800 times greater than the default Ra \(K_d\) value of 2 × 10\(^3\) (IAEA, 2004a).

Radioecology and radioecotoxicology data are limited for marine organisms compared to terrestrial and freshwater organisms. Seawater leaching tests to calculate \(K_d\) values are inexpensive and so should be actively considered by those managing infrastructure containing NORM-contaminated products.

3.2. Comparison to published radiation criteria and background activities

A comparison of the threshold values derived here to activity concentrations in NORM-contaminated products, background sediments (Koppel et al., 2022), and other criteria for radiation protection (Real and Garnier-Laplace, 2020), suggests that these derived threshold values are conservative. However, these values: are applied in addition to background radionuclide activity concentrations; account for the ingrowth of progeny over the radiological life of the NORM-contaminated product; do not incorporate dispersion or dilution of the NORM-contaminated products in the marine environment; and are proposed to be used as part of a graded approach to radiological protection.

The derived threshold values for radium-contaminated scales and \(^{210}\text{Pb}\) films are much lower than the commonly applied exemption criteria for NORM of 1 Bq/g (IAEA, 2014a). Various national jurisdictions apply the 1 Bq/g criterion to NORM-contaminated products from oil and gas extraction to identify material subject to regulatory control (Loy, 2015). This study suggests that the 1 Bq/g criterion may not be suitably protective of the marine ecosystem for this exposure scenario. For example, the peak risk quotient for NORM-contaminated product with a starting activity concentration of 1 Bq/g in sediments will be 111 for \(^{226}\text{Ra}\) at 122 years or 68 for \(^{226}\text{Pb}\) at 0 years. For \(^{228}\text{Ra}\), risk quotients will persist above a value of 1 for 100–1000s of years (Fig. 3). Threshold values that reflect release scenarios commensurate with corrosion times for pipelines would be much higher, particularly for \(^{210}\text{Pb}\) and \(^{228}\text{Ra}\) decay series, which will have undergone significant decay. For example, for a release time 100 years after contaminated-product formation and oil and gas operations ceasing there may be no need to consider \(^{210}\text{Po}\) films or \(^{228}\text{Ra}\) in scale as many half-lives of decay will substantially reduce their activity concentration (Table 2). Where the corrosion of pipelines is expected to take >200 years, there may be no need to consider the risk of \(^{210}\text{Pb}\) films. However, this should be considered carefully against expected corrosion timeframes.

3.3. Environmental management of NORM-contaminated products in subsea oil and gas infrastructure

The approach adopted in this study solves a challenge faced by the oil and gas industry and their regulators around the need to understand the radiological risk of NORM-contaminated products to the marine environment over their radiological life. Coupling risk and ingrowth models for exposure scenarios where the radioactive source is not being regenerated, and is at disequilibrium from its progeny, has been adopted in
other jurisdictions. For example, with the US EPA’s peak preliminary remediation goal model for Superfund sites (Galloway et al., 2020).

3.3.1. Applying the threshold values

The threshold values derived here represent the head of chain activity concentration for NORM radionuclides in marine sediments that will prevent exceedance of the screening dose rate of 10 μGy/h and thus pose a negligible radiological risk to the marine ecosystem. These values represent activity concentrations that may be added to the natural background activity concentration of marine sediments, rather than limits on the activity concentrations of the NORM-contaminated products themselves. As such, threshold values could be applied to predicted sediment activity concentrations following the products’ dispersion and mixing in the environment.

Exceedances of threshold values do not indicate that there will be radiological effects to organisms. Rather, exceedances should warrant a more detailed investigation. This may include incorporating site-specific data that can be used to better quantify radionuclide partitioning and bioavailability for a specific environment. This could then be assessed against other environmental dose rate reference levels such as the ICRP DCRL bands of 40–400 μGy/h for flatfish and seaweed (ICRP, 2008) or the UNSCEAR marine benchmark dose rate of 400 μGy/h (UNSCEAR, 2008).

For the context of offshore decommissioning, the use of the lower level of a relevant DCRL band (e.g. 40 μGy/h for flatfish and seaweed) may be particularly appropriate given the definition of *de minimis* radiation levels from IAEA (2016) for the London Convention. *De minimis* subsumes the IAEA criteria of exemption and exclusion (IAEA, 2004b). As it relates to NORM contamination in subsea oil and gas infrastructure, a release of NORM-contaminated products that would substantially increase radioactivity at the site requires a specific assessment for marine flora and fauna protection. In the specific assessment, DCRL are used as the radiological criteria for marine biota. Threshold values derived here can be recalculated for a DCRL of 40 μGy/h by multiplying by 4.

3.3.2. The need for a holistic approach to radiological assessments

Only exposure scenarios where NORM is released to the marine environment were considered here. NORM-contaminated products may also pose a risk to sessile organisms by external-only radiation exposures. For example, the radionuclides 226Ra, 214Bi, 214Pb of the 226Ra decay chain and 228Ac, 212Bi, 212Pb, 224Ra, and 208Tl from the 228Ra decay chain have gamma emissions with emission probabilities >1% and energies >100 keV (Supplementary Information S6), which may result in a radiological dose rate to organisms colonising the external surfaces of contaminated pipelines (Macintosh et al., 2022).

The derived threshold values represent a single line of evidence, radiological contamination of sediments, based on an impact of dose rates to marine organisms. A holistic understanding of all impacts and risks from a decommissioning scenario should be considered in an ecological risk assessment (Chapman et al., 2002). This should include the risk of other contaminants, such as mercury (Kho et al., 2022), plastics (Testoff et al., 2022), steel corrosion by-products, and mixtures therein (Koppel et al., 2018). Nonetheless, the derived threshold values provide a quick assessment method to determine whether NORM-contaminated products from oil and gas infrastructure pose a negligible radiological risk for a given release scenario. Importantly, this assessment aligns with IAEA and ICRP recommendations for radiological protection of the environment in a planned exposure scenario (IAEA, 2014b; ICRP, 2014). This approach may also be useful in determining the suitability of disposing NORM-contaminated infrastructure at sea under the ‘de minimis’ standard of the London Convention and Protocol.

Table 4

Minimum threshold values re-calculated using scale-specific K_d values for Ra and Po. Age at minimum threshold value (corresponding to the peak radiological dose to the most exposed organism balancing radionuclide ingrowth and decay) is given in brackets.

<table>
<thead>
<tr>
<th>NORM-contaminated product</th>
<th>Default minimum threshold value (Bq/g)</th>
<th>Updated minimum threshold value (Bq/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>226Ra in scale</td>
<td>0.009 (122 years)</td>
<td>0.014 (139 years)</td>
</tr>
<tr>
<td>226Ra in scale (xu228Ra)</td>
<td>0.029 (4 years)</td>
<td>0.036 (4.5 years)</td>
</tr>
<tr>
<td>228Ra in scale (with226Ra)</td>
<td>0.14 (4 and 122 years)</td>
<td>0.031 (4.5 and 139 years)</td>
</tr>
<tr>
<td>210Pb Films</td>
<td>0.015 (0 years)</td>
<td>0.014 (1.1 years)</td>
</tr>
<tr>
<td>210Po films</td>
<td>1.6 (0 years)</td>
<td>0.105 (0 years)</td>
</tr>
</tbody>
</table>

For the context of offshore decommissioning, the use of the lower level of a relevant DCRL band (e.g. 40 μGy/h for flatfish and seaweed) may be particularly appropriate given the definition of *de minimis* radiation levels from IAEA (2016) for the London Convention. *De minimis* subsumes the IAEA criteria of exemption and exclusion (IAEA, 2004b). As it relates to NORM contamination in subsea oil and gas infrastructure, a release of NORM-contaminated products that would substantially increase radioactivity at the site requires a specific assessment for marine flora and fauna protection. In the specific assessment, DCRL are used as the radiological criteria for marine biota. Threshold values derived here can be recalculated for a DCRL of 40 μGy/h by multiplying by 4.

3.3.2. The need for a holistic approach to radiological assessments

Only exposure scenarios where NORM is released to the marine environment were considered here. NORM-contaminated products may also pose a risk to sessile organisms by external-only radiation exposures. For example, the radionuclides 226Ra, 214Bi, 214Pb of the 226Ra decay chain and 228Ac, 212Bi, 212Pb, 224Ra, and 208Tl from the 228Ra decay chain have gamma emissions with emission probabilities >1% and energies >100 keV (Supplementary Information S6), which may result in a radiological dose rate to organisms colonising the external surfaces of contaminated pipelines (Macintosh et al., 2022).

The derived threshold values represent a single line of evidence, radiological contamination of sediments, based on an impact of dose rates to marine organisms. A holistic understanding of all impacts and risks from a decommissioning scenario should be considered in an ecological risk assessment (Chapman et al., 2002). This should include the risk of other contaminants, such as mercury (Kho et al., 2022), plastics (Testoff et al., 2022), steel corrosion by-products, and mixtures therein (Koppel et al., 2018). Nonetheless, the derived threshold values provide a quick assessment method to determine whether NORM-contaminated products from oil and gas infrastructure pose a negligible radiological risk for a given release scenario. Importantly, this assessment aligns with IAEA and ICRP recommendations for radiological protection of the environment in a planned exposure scenario (IAEA, 2014b; ICRP, 2014). This approach may also be useful in determining the suitability of disposing NORM-contaminated infrastructure at sea under the ‘de minimis’ standard of the London Convention and Protocol.
3.4. Case study

To illustrate how these threshold values can be applied, two fictional case studies are considered here: (1) an export gas pipeline containing films of ^{210}Pb at 10 Bq/g; and (2) a flexible flowline containing radium-contaminated scale in a barite matrix at an activity concentration of 5 Bq/g ^{226}Ra and 5 Bq/g ^{228}Ra. In these hypothetical examples, an oil and gas operator is investigating the possibility of decommissioning their pipeline containing residual NORM contamination by leaving them in situ. The proposed assessment approach is visualised in Fig. 5.

3.4.1. Lead film in gas export pipeline

Gas export pipelines may carry traces of ^{222}Rn which decay into the longer lived ^{210}Pb ($t_{1/2} = 22$ years) leading to the formation of thin lead films on the internal surface of pipes. For this hypothetical case study, a 10 Bq/g ^{210}Pb film has been measured in a pipeline that will experience corrosive breakthrough (the point where pipeline corrosion leads to the ingress of seawater) after 200 years.

Step 1: The TV$_D$ for ^{210}Pb films is 0.015 Bq/g (Table 2). As the activity concentration of ^{210}Pb in the film is greater than the TV$_D$ the assessment moves to step 2.

Step 2: Gas-export pipelines are often made of carbon steel. Typical corrosion rates mean that corrosive breakthrough may occur after approximately 200 years. This is the point where corrosion penetrates the pipe wall allowing seawater/sediment to contact the scale contamination. For a real scenario, an understanding of the pipeline material and its corrosion rates in its environment would be necessary.

The TV$_R$ for ^{210}Pb with a release time of 200 years is 7.5 Bq/g (i.e., the solution for Equation (8) at $t = 200$ years). The ^{210}Pb film activity concentration is above the TV$_R$ the assessment moves to step 3.

Step 3: A 10 Bq/g film requires a dilution factor of 1.3 to reduce to 7.5 Bq/g. A highly conservative mixing factor could be 1:1 pipeline to sediment, with the lead film being a small component of overall pipeline mass. This suggests that the resulting release to the marine environment is unlikely to lead to dose rates $>10 \mu\text{Gy/h}$. A persuasive argument could thus be made that the radiological component of the ecological risk assessment for the release of NORM from this pipeline is low.

3.4.2. Radium-contaminated scale in production flowlines

Flexible production flowlines can connect subsea wells to floating production storage and offloading vessels. They carry raw well fluids and so may accumulate NORM residues over their production life.

Step 1: The TV$_D$ for ^{226}Ra is 0.009 Bq/g and ^{228}Ra is 0.014 Bq/g (Table 2). As the activity concentration of the radium scale is greater than the TV$_D$ the assessment moves to step 2.

Step 2: Flexible flowlines often contain coatings and corrosion resistant steels. So corrosive breakthrough is expected after approximately 1000 years.

Step 3: The TV$_D$ for ^{226}Ra is 0.009 Bq/g and ^{228}Ra is 0.014 Bq/g (Table 2). As the activity concentration of the radium scale is greater than the TV$_D$ the assessment moves to step 2.

Step 2: Flexible flowlines often contain coatings and corrosion resistant steels. So corrosive breakthrough is expected after approximately 1000 years.

The release-time adjusted screening value, TV$_R$, is 0.013 Bq/g for ^{226}Ra and >1000 Bq/g for ^{228}Ra due to its 5.8-year half-life (i.e. the solutions to Equation (9) and Equation (8), respectively). This means that the time-adjusted screening value TV$_R$ is now 0.013 Bq/g for ^{226}Ra and ^{228}Ra no longer needs to be considered.

As the activity concentration of ^{226}Ra in the radium scale is greater than the TV$_R$ the assessment moves to step 3.
Step 3: In Step 3, the mixing and dispersion of the scale is considered. This requires some understanding of the local environment. For an activity concentration of 5 Bq/g of Ra in NORM-contaminated scale, a dilution factor of 152 is required to dilute the activity concentration to 0.033 Bq/g. Assuming a 10 mm thick scale with a density of 4.5 g/cm² in a 6-inch pipeline with a 10 mm thick wall, this would mean diluting 283 g scale in 43 kg for every meter of pipeline. A number of dispersion models exist that could be used to investigate the spatial extent of possible impact (see Periñez et al. (2015) for a comparison of model performance for radionuclide release from Fukushima Daiichi nuclear power plant).

Additional investigation is required to demonstrate the acceptability of this release scenario. The use of by-product-specific Kd values from leach studies (Fig. 4), marine organism specific CR values from bioaccumulation studies, or more refined dispersion or mixing models should be considered.

4. Conclusions

The preservation of marine sediment quality is an important management objective for oil and gas operators decommissioning offshore infrastructure. This study contextualises the 10 μGy/h dose rate screening criterion into threshold values for the types of NORM-contaminated products commonly reported in offshore oil and gas systems. Minimum threshold values provide an activity concentration for a NORM-contaminated product that when released to the sediment at any age will not exceed 10 μGy/h to the most exposed organisms. Minimum threshold values derived were 0.009 Bq/g for Ra in scales; 0.029 Bq/g for Ra in the absence of Ra or 0.014 Bq/g for Ra in the presence of Ra; 0.015 Bq/g for Pb films, and; 1.6 Bq/g for Po films. Threshold values may also be calculated for any given NORM-contaminated product age. This may assist risk assessments if the time between the formation of the NORM-contaminated product and its release environment following the corrosion of containing infrastructure can be estimated.

The greatest contribution of dose rates to the most exposed organisms from NORM-contaminated product exposures are modelled to be from the internal dose from the radionuclides Ac, Th, Ra, and Pb. CR values were the most sensitive parameters according to the ERICA Tier 3 assessment. However, the true variability of Kd values from NORM-contaminated products may not be accounted for in the default parameter ranges. Using Kd values for radium and polonium derived from seawater leach experiments with radium-contaminated barite increased the EMCLs of Ra from 0.02 to 16.3 Bq/g, Ra from 0.094 to 75.2 Bq/g and decreased the EMCL for Po from 1.6 to 0.105 Bq/g. Recalculated threshold values for NORM-contaminated products based on the updated EMCLs did not change as much as the EMCL values themselves, particularly for radium-contaminated scales. This is because the progeny of Ra and Ra contribute the greatest proportion of dose. This demonstrates the need to derive specific parameters for all radionuclides of NORM-contaminated products to improve the environmental relevance of radiological assessments.

The derived values suggest that contamination with Ra and Pb may pose a long-term risk on timescales commensurate with the corrosion of infrastructure. In contrast, Ra and Pb (if unsupported by Pb) will decay on shorter time scales of <50 years and may not pose long-term risks. Depending on the dilution and dispersion of NORM-contaminated products, the IAEA exemption criteria of 1 Bq/g may not be protective of marine environments for these types of NORM-contaminated products and may not satisfy de minimis criteria under the London Convention and Protocol.

Funding

This research was funded by the Australian Government’s Industry Growth Centre National Energy Resources Australia (NERA) through a National Decommissioning Research Initiative (NNDRI) grant to Curtin University. AH was funded by the University of Aberdeen and AH and RvH were partly funded by the UK Research and Innovation Energy Programme under grant number EP/S029575/1. AM was funded by an Australian Government Research Training Program scholarship and a New South Wales FutureNow Scholarship.

Declaration of competing interest

NERA, an independent scientific advisory board, and industry partners provided insights to the authors from their respective experience and provided comments to a report from which this manuscript was drafted. The NNDRI project was funded by eight industry partners including Shell Australia, Esso Australia, Chevron Australia, BHP Petroleum, Woodside Energy, Santos Limited, ConocoPhillips Pipeline Australia, and Vermillion Oil and Gas Australia. This funding source has not influenced any of the authors objectivity. All views expressed within the paper are those of the authors.

Data availability

No data was used for the research described in the article.

Acknowledgements

We thank Dr Rebecca Fisher (AIMS) for assistance conducting the probabilistic assessment of scale-specific Kd values; Professor Claus Otto (Curtin University) and Professor Richard Neilson (National Decommissioning Centre, Aberdeen, UK) for comments and support to the project team; Sam Jarvis (National Environment Resources Australia), Dr Rick Tinker, and the industry partners of the National Decommissioning Research Initiative for helpful comments to this project; and, the reviewers and handling editor of the journal for their thoughtful comments and reviews.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jenvrad.2022.107093.

References

