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Abstract 

Background People with kidney failure often require surgery and experience worse postoperative outcomes com-
pared to the general population, but existing risk prediction tools have excluded those with kidney failure during 
development or exhibit poor performance. Our objective was to derive, internally validate, and estimate the clinical 
utility of risk prediction models for people with kidney failure undergoing non-cardiac surgery.

Design, setting, participants, and measures This study involved derivation and internal validation of prognostic 
risk prediction models using a retrospective, population-based cohort. We identified adults from Alberta, Canada with 
pre-existing kidney failure (estimated glomerular filtration rate [eGFR] < 15 mL/min/1.73m2 or receipt of maintenance 
dialysis) undergoing non-cardiac surgery between 2005–2019. Three nested prognostic risk prediction models were 
assembled using clinical and logistical rationale. Model 1 included age, sex, dialysis modality, surgery type and setting. 
Model 2 added comorbidities, and Model 3 added preoperative hemoglobin and albumin. Death or major cardiac 
events (acute myocardial infarction or nonfatal ventricular arrhythmia) within 30 days after surgery were modelled 
using logistic regression models.

Results The development cohort included 38,541 surgeries, with 1,204 outcomes (after 3.1% of surgeries); 61% were 
performed in males, the median age was 64 years (interquartile range [IQR]: 53, 73), and 61% were receiving hemodi-
alysis at the time of surgery. All three internally validated models performed well, with c-statistics ranging from 0.783 
(95% Confidence Interval [CI]: 0.770, 0.797) for Model 1 to 0.818 (95%CI: 0.803, 0.826) for Model 3. Calibration slopes 
and intercepts were excellent for all models, though Models 2 and 3 demonstrated improvement in net reclassifica-
tion. Decision curve analysis estimated that use of any model to guide perioperative interventions such as cardiac 
monitoring would result in potential net benefit over default strategies.

Conclusions We developed and internally validated three novel models to predict major clinical events for peo-
ple with kidney failure having surgery. Models including comorbidities and laboratory variables showed improved 
accuracy of risk stratification and provided the greatest potential net benefit for guiding perioperative decisions. Once 
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externally validated, these models may inform perioperative shared decision making and risk-guided strategies for 
this population.

Keywords Kidney disease, Perioperative, Surgery, Risk prediction, Outcomes

Introduction
Kidney failure is marked by an estimated glomerular 
filtration rate (eGFR) less than 15  mL/min/1.73m2 or 
receipt of chronic kidney replacement therapy [1], and 
is associated with high health care utilization and poor 
health outcomes [2–5]. Surgery is an important compo-
nent of the health care burden for people with kidney 
failure, occurring up to 16 times more often than among 
people with normal kidney function [6]. People with kid-
ney failure additionally have higher risks of death, car-
diovascular events, and other complications following 
inpatient and ambulatory surgery [7–9].

Characterization of the perioperative risk through risk 
prediction models may inform several decisions in the 
perioperative period depending on the clinical context, 
surgical indications and technique, and goals of the pro-
cedure (ranging from life-preserving to cosmetic pur-
poses) [10]. Further, risk prediction models may also be 
useful for guiding allocation of scarce surgical resources, 
planning additional perioperative interventions for the 
highest risk individuals who may warrant more inten-
sive care strategies, and for risk adjustment when bench-
marking outcomes of surgical centers or individuals. As 
an example, postoperative cardiac monitoring strategies 
have been suggested by major perioperative guidelines 
based on estimated risk from the Revised Cardiac Risk 
Index (RCRI), which predicts risk of postoperative events 
within 30 days of surgery [11]. Tools such as the RCRI are 
widely used, but their value is limited in estimating the 
risk of major postoperative events for people with kidney 
failure, because they excluded people with kidney failure 
during development, exhibit poor performance when 
applied to people with kidney failure, and omit kidney 
failure specific variables that are associated with risk [12].

In this study, we derived and internally validated a 
series of multivariable risk prediction models to predict 
the risk of major cardiac events or death within 30 days 
of non-cardiac surgery for people with kidney failure. We 
then estimated the clinical utility of these models using 
decision curve analysis.

Methods
Study design and source of data
We used the Alberta Kidney Disease Network (AKDN) 
database to derive a retrospective, population-based 
cohort using linked administrative health, laboratory, 

and kidney failure datasets from Alberta, Canada [13]. 
These data were used to derive and internally validate 
our multivariable risk prediction models. We con-
ducted this study using a prespecified protocol in 
accordance with the transparent reporting of a multi-
variable prediction model for individual prognosis or 
diagnosis (TRIPOD) Checklist for Prediction model 
development (Supplementary Table  1). The University 
of Calgary and the University of Alberta granted ethics 
approval and waived the need for informed consent.

Participants
We included all adults (≥ 18  years) with an inpatient 
or ambulatory surgery performed between April 1 
2005 and February 28 2019 in Alberta, Canada. Surger-
ies were identified using the Canadian Classification 
of Health Interventions (CCI) coding [14], which is a 
standardized coding system for procedures. Radiologic 
or non-surgical procedures were excluded (e.g., endos-
copy, hemodialysis catheter insertion, arteriovenous 
[AV] fistulogram, etc.). Further, we included only 
those with preoperative kidney failure, defined as an 
eGFR < 15 mL/min/1.73m2 or receiving hemodialysis or 
peritoneal dialysis for at least 90 days as an outpatient 
before the index surgical procedure. For non-dialysis 
participants, at least two outpatient measures of serum 
creatinine between 7–365 days were necessary prior to 
surgery to avoid misclassification of people with preop-
erative acute kidney injury, per a validated algorithm 
[15]. We estimated eGFR using the Chronic Kidney 
Disease Epidemiology Collaboration (CKD-EPI) equa-
tion without including the Black race coefficient [16]. 
We excluded people that left Alberta within 30 days of 
their surgery, and those without available demographic 
data.

Outcome
The outcome was a composite of all-cause mortal-
ity or major cardiac events within 30 days of the index 
surgical procedure, which included acute myocardial 
infarction (AMI) and non-fatal ventricular arrhythmias 
identified using validated algorithms (Supplementary 
Table  2). This composite outcome is similar to other 
postoperative risk tools and was informed by periop-
erative cardiac risk assessment guidelines [11].
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Predictors
We identified candidate predictors from the literature 
and input from clinicians with expertise in kidney fail-
ure and perioperative medicine. The final list of variables 
included demographics of age and sex. Surgeries were 
categorized into 11 surgery types based on CCI codes, 
including categories that are specific to people with kid-
ney failure (kidney transplant, peritoneal dialysis catheter 
insertion, and AV fistula creation). Surgery setting was 
classified using the administrative data as ambulatory 
elective, inpatient elective, or inpatient urgent/emergent. 
We considered comorbidities of previous AMI, cancer, 
chronic pulmonary disease, dementia, diabetes, heart 
failure, hypertension, liver disease, obesity, peripheral 
vascular disease, and stroke. These were defined using 
validated algorithms of International Statistical Classi-
fication of Diseases and Related Health Problems Ninth 
and Tenth Revision (ICD-9-CM and ICD-10-CA) codes 
[17] with an unrestricted lookback period for permanent 
conditions and 3 years for temporary conditions (Supple-
mentary Tables 3 and 4). Kidney failure treatment modal-
ity was categorized as non-dialysis, hemodialysis, or 
peritoneal dialysis. Preoperative outpatient serum albu-
min (in g/L) and serum hemoglobin (in g/L) within the 
year before surgery were included as candidates. There 
were no missing values for variables except for albumin 
(15%) and hemoglobin (0.2%), which were imputed using 
multivariable normal regression with an iterative Markov 
chain Monte Carlo method.

Sample Size
We performed sample size calculations recommended 
for binary outcomes [18], using the ‘pmsampsize’ mod-
ule in Stata software version 16 and 17 (StataCorp) [19]. 
For these calculations, we used an expected  R2 of 0.072 
from a recent study with a similar model [20], expected 
outcome incidences ranging from 1.7% for ambulatory 
surgery [9] and 8.0% for inpatient surgery [20], and the 
maximum candidate predictor parameters of 32. The 
minimum sample size ranged from 3838 to 3881 partici-
pants with 66 to 308 events depending on the incidence 
values used for the expected outcomes (Supplementary 
Table 5).

Statistical analysis methods
For all analyses we used Stata software v16 and 17 (Stata-
Corp). Baseline characteristics were summarized with 
counts for categorical or dichotomous variables, and 
medians and interquartile ranges (IQR) for continuous 
variables. We examined all candidate variables for col-
linearity and did not identify any. Age was centred at 
18 years, and then examined for a non-linear relationship 

with our outcome, first visually and with the ‘lincheck’ 
and ‘boxtid’ modules in Stata [21, 22]. Serum hemoglobin 
and albumin were examined prior to imputation, and 
there was no evidence of non-linearity for any of the con-
tinuous variables.

We developed three nested logistic regression models 
with prespecified sets of variables with increasing com-
plexity, taking into consideration their availability in dif-
ferent perioperative settings. Standard errors of each 
variable included in the models were adjusted for clus-
tering of surgeries within cohort participants. We first 
developed a minimum model with only age, sex, sur-
gery type, surgery setting, and kidney failure type. We 
then developed a second model including all variables 
from the first model with the addition of comorbidities, 
which would likely only be available in perioperative con-
sultative settings. Our final model included all variables 
included in the second model and also preoperative albu-
min and hemoglobin, as these may be available in some 
but not all perioperative settings. For each model, we 
estimated the apparent discrimination with c-statistics 
(with accompanying 95% confidence intervals [CI]), and 
the area under the precision recall curve (AUPRC), as it 
is more informative with infrequent outcomes [23]. We 
internally validated each model using bootstrap resam-
pling with 1000 samples, using the ‘bsvalidation’ package 
in Stata [24]. We compared bootstrap model discrimina-
tion using c-statistics, and calibration with calibration 
slopes and intercepts, and with visual inspection of cali-
bration curves across deciles of predicted risk. An ideal 
calibration slope is 1, and intercept is 0 [25]. To examine 
whether performance estimates were robust to the poten-
tial bias introduced by including multiple procedures per 
participant, we examined the performance of all model 
predictions limited to one surgery per participant.

We compared model fit with Akaike’s and Bayesian 
Information Criteria (AIC and BIC). To evaluate whether 
there was an incremental improvement in reclassifica-
tion of risk in more complex models, we estimated the 
categorical Net Reclassification Improvement (NRI) and 
Integrated Discrimination Improvement (IDI) index. 
If well-calibrated, estimating the NRI for a model with 
added variables to a simpler nested model may provide 
insight into whether the more complex model improved 
overall prediction [26]. We estimated the NRI by examin-
ing reclassification for people with events and non-events 
with clinically important categories of < 5%, 5–15%, 
and > 15%, which are thresholds used and suggested in 
perioperative prognostic literature as being relevant to 
patients and care providers [27, 28]. Risk classification 
tables were also generated, stratified by event and non-
event status, as per the categories listed above. We calcu-
lated a Net Absolute Reclassification Index (NARI) using 
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the same risk categories, estimated as the net number of 
correctly reclassified per 1000 patients.

Finally, we estimated the clinical usefulness of each 
model using decision curve analyses (DCA) [29, 30]. 
DCA graphically estimate the net benefit of each model 
across a range of thresholds for acting on prediction 
model results, with net benefit representing the weighted 
balance of identifying true positives against the harms of 
false positive results [30, 31]. The net benefit at the spe-
cific predicted risk threshold can be compared between 
models. Current perioperative guidelines [11] (though 
not specific to kidney failure populations) recommend 
that if an estimated risk for surgical inpatients is greater 
than 6.0% (based on the corresponding risk of 1 point 
on the RCRI), preoperative natriuretic peptides should 
be measured, and if elevated, postoperative troponins 
should be monitored to detect myocardial injury. There-
fore, we focused on net benefit at this threshold for our 
DCA. As elective surgery settings are more likely to pro-
vide the necessary time for interventions to be applied, 
we performed a sensitivity analysis where the DCA was 
restricted to patients who received elective surgery.

Results
Cohort participants
We identified 38,541 surgeries performed in 8,997 par-
ticipants (Fig.  1). The median number of procedures 
per person was 3 (IQR 1, 5). Most were performed in 
males (61%), with a median age of 64  years (IQR: 53, 
73) (Table 1). The most common surgery type was AV 
fistula (26%), followed by vascular (21%), and skin and 
soft tissue surgery (14%). Seventy-four percent were 
performed in an ambulatory setting and in people 
receiving chronic hemodialysis (67%). The most com-
mon comorbidities were hypertension (96%), diabetes 
mellitus (66%), and heart failure (47%). The median 
(IQR) preoperative hemoglobin was 109  g/L (100,118) 
and albumin was 35  g/L 31, 32. Overall, there were 
1,204 surgeries (3.1%) where death or a major cardiac 
event was recorded within 30 days of the surgery. The 
most common causes of death are summarized in Sup-
plemental Table  6, and were most frequently cardiac, 
vascular, or a series of unspecified codes associated 
with diabetes or kidney failure.

Fig. 1 Cohort flow diagram. The number of patients that were included and excluded at each step of cohort formation are identified
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Model development, fit, and performance
Each model included all participants. Variable coef-
ficients (odds ratios) and accompanying 95% confi-
dence intervals are included in Table 2. Models 2 and 3 
had similar estimates of AIC and BIC, indicating simi-
lar goodness of fit despite the inclusion of more vari-
ables (Table  2). The apparent c-statistics ranged from 
0.785 (95% CI: 0.771, 0.800) for Model 1 to 0.818 (95% 

CI: 0.806, 0.831) for Model 3. The AUPRC was highest 
for Model 3 at 0.159. Apparent calibration slopes were 
estimated to be 1.00 (95% CI: 0.95, 1.05) for all models. 
Apparent performance was similar when restricted to 
only the first surgery per cohort participant (Supplemen-
tary Table 7).

Following internal validation, c-statistics derived 
through bootstrapping ranged from 0.783 (95% CI: 0.770, 
0.797) for Model 1 to 0.814 (95% CI: 0.803, 0.826) for 
Model 3 (Table 2). The calibration slope point estimates 
ranged from 0.98 (Models 2 and 3) to 0.99 (Models 1) and 
calibration intercepts were near 0 for all models. Exami-
nation of the calibration plot for Models 1 showed excel-
lent calibration across all predicted risks (Fig. 2a), and for 
models 2 and 3 predictions were well calibrated except 
for overestimation at the highest predicted risks (above 
30%) (Fig. 2b-c). The addition of variables from Model 1 
to Model 2 led to statistically significant and improved 
reclassification of individuals, with a categorical NRI of 
0.1 (95%CI: 0.06, 0.12; p < 0.00001) and a NARI of 7.8 
per 1000 patients. The addition of hemoglobin and albu-
min to Model 3 resulted in a small but not significant 
improvement in reclassification when compared with 
Model 2, with a categorical NRI of 0.02 (95% CI: -0.004, 
0.04; p = 0.12) and a NARI of 0.8 per 1000 patients. The 
estimated IDI’s also significantly improved when com-
paring Model 2 with Model 1, and Model 3 with Model 
2. Improvement in classification, stratified by those 
with and without events, is presented in Supplementary 
Table 8.

We estimated the potential clinical usefulness of all 
three models using DCA. All three models had similar 
positive net benefit (at the prespecified 6.0% predicted 
risk threshold) over strategies where all or none of the 
participants received a perioperative cardiac monitoring 
intervention, with all models having net benefit if used 
to guide perioperative cardiac monitoring based on pre-
dicted risk thresholds from 0 and 20% (Fig. 3). When we 
applied the models only to surgeries performed in ambu-
latory or inpatient elective settings, we found similar net 
benefit (Supplementary Fig. 1).

Discussion
In this study, we derived and internally validated three 
multivariable risk prediction models to estimate the risk 
of major postoperative events for people with kidney fail-
ure. Our models included sets of surgical, demographic, 
comorbidity, and laboratory predictors that are prevalent 
and frequently measured in the kidney failure popula-
tion and common perioperative clinical scenarios. All 
three models performed well and were estimated to be 
clinically useful to inform perioperative decision making 
when examined using DCA. The models that included 

Table 1 Cohort baseline characteristics

No. (%)

Total Surgeries 38,541

Female Sex 14,949 (39)

Age, years (median, IQR) 64 (53, 73)

Surgery Type
 Arteriovenous fistula 9,889 (26)

 Head & Neck 596 (2)

 Intra-abdominal 1,737 (5)

 Kidney Transplant 1,805 (5)

 Musculoskeletal 2,083 (5)

 Neurosurgery 306 (0.8)

 Peritoneal Dialysis Catheter 4,014 (10)

 Skin & Soft Tissue 5,336 (14)

 Vascular 7,952 (21)

 Low-risk Other 3,925 (10)

 More than one 898 (2)

Surgery Setting
 Ambulatory 28,624 (74)

 Major Elective 3,701 (10)

 Major Urgent/Emergent 6,216 (16)

Kidney Failure Type
 Non-dialysis 9,781 (25)

 Hemodialysis 25,706 (67)

 Peritoneal Dialysis 3,054 (8)

Comorbidities
 Cancer 3,282 (9)

 Cerebrovascular Disease 25,068 (65)

 Chronic pulmonary disease 24,797 (64)

 Dementia 2,399 (6)

 Diabetes 25,424 (66)

 Heart Failure 18,002 (47)

 History of Myocardial Infarction 4,879 (13)

 Hypertension 36,958 (96)

 Liver disease 893 (2)

 Obesity 9,186 (24)

 Peripheral Vascular Disease 14,142 (37)

Serum Hemoglobin, g/L (IQR) 109 (100, 118)

 Missing, imputed 78 (0.2)

Serum Albumin, g/L (IQR) 35 (31, 38)

 Missing, imputed 5,589 (15)



Page 6 of 11Harrison et al. BMC Nephrology           (2023) 24:49 

Table 2 Variable coefficients and overall model performance for each risk prediction model

Model 1 Model 2 Model 3

Variable Name and Categories OR (95%CI) OR (95%CI) OR (95%CI)

Age (per year above age 18) 1.03 (1.02, 1.03) 1.02 (1.01, 1.03) 1.02 (1.01, 1.03)

Female Sex 0.98 (0.86, 1.12) 1.02 (0.89, 1.17) 1.00 (0.87, 1.15)

Surgery Type

Intra-abdominal Ref Ref Ref

 Head and Neck 1.01 (0.65, 1.57) 1.04 (0.67, 1.61) 1.09 (0.70, 1.69)

 Vascular 1.17 (0.91, 1.51) 1.07 (0.83, 1.38) 1.10 (0.85, 1.42)

 Skin and Soft Tissue 0.99 (0.74, 1.32) 0.89 (0.66, 1.19) 0.82 (0.61, 1.11)

 Neurosurgery 1.94 (1.16, 3.22) 2.04 (1.22, 3.41) 2.09 (1.25, 3.50)

 Peritoneal Dialysis Catheter 0.52 (0.38, 0.72) 0.56 (0.41, 0.78) 0.54 (0.39, 0.75)

 Arteriovenous Fistula 0.61 (0.47, 0.80) 0.60 (0.46, 0.79) 0.60 (0.46, 0.79)

 Kidney Transplant 0.28 (0.19, 0.43) 0.37 (0.24, 0.56) 0.42 (0.28, 0.65)

 Low risk –  Othera 0.46 (0.32, 0.66) 0.44 (0.31, 0.64) 0.45 (0.31, 0.65)

 More than one type 1.30 (0.97, 1.75) 1.23 (0.91, 1.66) 1.19 (0.88, 1.62)

 Musculoskeletal 0.87 (0.67, 1.13) 0.84 (0.65, 1.10) 0.83 (0.64, 1.08)

Surgery Setting

 Ambulatory Surgery Ref Ref Ref

 Major Elective 3.37 (2.68, 4.24) 3.40 (2.69, 4.28) 3.36 (2.66, 4.25)

 Major Urgent/Emergent 8.73 (7.55, 10.09) 7.69 (6.63, 8.92) 7.24 (6.23, 8.43)

Kidney Failure Type

 Hemodialysis 1.19 (1.00, 1.40) 1.06 (0.90, 1.27) 1.04 (0.87, 1.23)

 Peritoneal Dialysis 1.35 (1.06, 1.70) 1.34 (1.05, 1.70) 1.13 (0.88, 1.44)

 Non-dialysis Ref Ref Ref

Comorbidities

 Cancer 1.28 (1.04, 1.57) 1.24 (1.01, 1.52)

 Cerebrovascular disease 1.14 (0.99, 1.32) 1.12 (0.97, 1.29)

 Chronic Pulmonary Disease 1.22 (1.06, 1.40) 1.23 (1.07, 1.42)

 Dementia 1.20 (0.95, 1.50) 1.15 (0.91, 1.45)

 Diabetes 1.22 (1.04, 1.43) 1.16 (0.99, 1.36)

 Heart Failure 1.68 (1.44, 1.96) 1.64 (1.41, 1.91)

 History of Myocardial Infarction 2.03 (1.72, 2.39) 2.02 (1.71, 2.38)

 Hypertension 1.11 (0.70, 1.78) 1.14 (0.72, 1.81)

 Liver disease 1.25 (0.87, 1.78) 1.15 (0.81, 1.63))

 Obesity 0.83 (0.70, 0.99) 0.83 (0.69, 0.99)

 Peripheral vascular disease 0.93 (0.80, 1.08) 0.87 (0.75, 1.01)

Serum Albumin (per one unit change in g/L) 0.95 (0.94, 0.96)

Serum Hemoglobin (per one unit change in g/L) 1.00 (1.00, 1.01)

Constant (baseline odds) 0.0041 (0.0028, 0.0060) 0.0030 (0.0016, 0.0054) 0.015 (0.0066, 0.035)

Model Fit and Performance
Number of surgeries included 38,541 38,541 38,541

Number of outcomes included 1,204 1,204 1,204

Akaike’s Information Criteria (AIC) 9237 8996 8934

Bayesian Information Criteria (BIC) 9383 9236 9192

Apparent Performance

 C-statistic (95%CI) 0.785 (0.771, 0.800) 0.813 (0.800, 0.826) 0.818 (0.806, 0.831)

 Area under precision recall curve 0.133 0.150 0.159

 Calibration Slope (95%CI) 1.00 (0.95, 1.05) 1.00 (0.95, 1.05) 1.00 (0.95, 1.05)

Optimism-adjusted Performance

 C-statistic (95%CI) 0.783 (0.770, 0.797) 0.809 (0.798, 0.823) 0.814 (0.803, 0.826)
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comorbidities and laboratory variables had the best dis-
crimination and resulted in improvement in reclassifica-
tion of patients with and without events into higher or 
lower risk categories when compared with the simplest 
model, suggesting that this full model (Model 3) is pre-
ferred for perioperative risk assessment of patients with 
kidney failure when comorbidity and laboratory data are 
available.

This work has important implications for the care 
of people with kidney failure since people with kidney 
failure frequently require surgery, and have a high risk 
of adverse postoperative outcomes [6]. These models 
address many of the limitations of current perioperative 
risk prediction tools for people with kidney failure by 
including predictors that are relevant and unique to peo-
ple with kidney failure. Though comorbidities are often 
included in postoperative outcome models, we found it 
interesting that inclusion of preoperative hemoglobin 
and albumin improved model performance. Preoperative 
anemia is well known to be associated with postopera-
tive major outcomes such as death [32], and preoperative 
hypoalbuminemia as a marker of frailty or volume over-
load has been identified as a risk factor for postoperative 
death and many cardiac outcomes [33]. When we com-
pare our models to those commonly used in the periop-
erative realm, there are several notable differences. North 
American preoperative risk stratification guidelines rec-
ommend the use of tools such as the Revised Cardiac 
Risk Index (RCRI) [34], the National Surgical Quality 
Improvement Program (NSQIP) American College of 
Surgery (ACS) tool [35, 36], and the NSQIP Myocardial 
Infarction or Cardiac Arrest (MICA) tool [37]. Many 
other tools have also been developed for the predic-
tion of death and/or major cardiac events after surgery 
[10]. The ACS tool includes a variable for preoperative 

dialysis but does not discriminate between people receiv-
ing maintenance dialysis from those with acute kidney 
injury (AKI). The widely used RCRI and MICA include 
dichotomized variables for a serum creatinine above 
177  μmol/L and 133  μmol/L, respectively, which does 
not discriminate risk between moderate CKD and kidney 
failure. As the nephrology community has used eGFR 
coupled with albuminuria to categorize kidney function 
rather than serum creatinine for some time [38], there 
is work underway to update the RCRI to include eGFR 
in place of serum creatinine [28]. However, the valid-
ity of this updated RCRI for people with kidney failure 
receiving dialysis is unclear. We have recently found that 
the performance of the RCRI in a kidney failure cohort 
was poor, with significant overestimation of risk, and 
modest improvement with re-estimation of model coef-
ficients [12]. Comparison of the original and updated 
RCRI, MICA, and ACS tools with our models externally 
in independent cohorts of people with kidney failure may 
identify the best models to adopt within perioperative 
settings for patients with kidney failure.

After evaluating model performance, we estimated the 
clinical usefulness of each model using DCA. With this 
technique, the net benefit of risk stratification repre-
sents the net proportion of true positives that would be 
identified, balancing the risk of false positive identifica-
tion at each probability threshold [30]. In the setting of 
perioperative care, risk prediction models could be used 
to guide planned admission to hospital following elective 
surgery, postoperative cardiac monitoring with electro-
cardiograms and systematic troponin measurement, opti-
mization of risk factors for postoperative events (such as 
anemia), tailoring anesthetic strategies, or consideration 
of specific medications that may reduce the risk of post-
operative events. As our cohort included only people that 

CI confidence interval, OR odds ratio, Ref reference group for respective variable
a  Low-risk other surgery includes Anorectal, Breast, Lower Urologic and Gynecologic, Ophthalmology, Retroperitoneal, and Thoracic surgery types
b  Indicates that the comparison is between Model 2 and the more simple nested Model 1
c  Indicates that the comparison is between Model 3 and the more simple nested Model 2
d NARI is the Net Absolute Reclassification Index in number per 1000 patients, and is calculated as: (Proportion of reclassification for patients with events x event 
rate) + (proportion reclassification for patients without events x non-event rate) × 1000

Table 2 (continued)

Model 1 Model 2 Model 3

 Expected to Observed Ratio (95%CI) 1.01 (0.97, 1.07) 1.01 (0.97, 1.07) 1.01 (0.97, 1.07)

 Calibration intercept (95%CI) 0.00 (-0.06, 0.06) 0.00 (-0.06, 0.06) 0.00 (-0.06, 0.06)

 Calibration slope (95%CI) 0.99 (0.94, 1.04) 0.98 (0.94, 1.03) 0.98 (0.94, 1.03)

Comparison with simpler nested model

Net Reclassification Index (NRI)

 Total (95% CI), p-value - 0.095 (0.063, 0.12), p < 0.00001b 0.016 (-0.004, 0.035), p = 0.12c

 NARI (per 1000 patients)d - 7.8 0.8

 Integrated Discrimination Index (IDI) - 0.016, p < 0.00001b 0.004, p < 0.00001c
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a

b

c

Fig. 2 Calibration plots for each perioperative prediction model for people with kidney failure. The observed risk of 30-day cardiac or death events 
is plotted against the predicted risk in these calibration plots. The calibration plot for Model 1 is presented in Fig. 2a, Model 2 in Fig. 2b, Model 3 in 
Fig. 2c. The dashed line represents perfect calibration (with a slope of 1), and the solid line represents the lowess smoothed calibration curve. Each 
decile grouping of predicted risk is represented with an open circle along this calibration curve with accompanying 95% confidence intervals
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had surgery performed, the application of our DCA is 
most relevant to decisions regarding interventions aimed 
at reducing perioperative risk and not for determining 
surgical eligibility. Recent guidelines recommend that 
a perioperative cardiac risk above approximately 6.0% 
should be used to guide perioperative cardiac moni-
toring, which is a threshold at which decision making 
based on our models would have net benefit. Future 
work should examine whether these thresholds deter-
mined for the general population are appropriate to this 
patient population with kidney failure, and whether other 
thresholds to inform alternative perioperative interven-
tions are priorities. It is possible that different thresholds 
would be prioritized by people with kidney failure and 
their care providers for other perioperative decisions (e.g. 
admission to hospital).

There are limitations to this study. First, though we 
used validated case definitions for comorbidities and 
our outcomes, these algorithms may be specific but not 
very sensitive (especially for non-fatal outcomes), and 
may lead to underestimation of overall risk. Preoperative 
natriuretic peptides, although helpful for prognosticat-
ing patients at risk of postoperative events in the general 
population [27], are difficult to interpret in the setting 
of kidney failure [39], and administrative data sources 
cannot determine whether such tests were ordered for 
perioperative indications rather than evaluation of heart 
failure or dyspnea. Further, some risk factors for intraop-
erative hypotension such as mode of anesthesia delivery 
could not be ascertained from our administrative data 
sources. Finally, even within some predictors with many 
categories, such as surgery type, each category still will 

have significant outcome risk variability within it which 
will not be accounted for in the model estimates. As an 
example, postoperative mortality following a subarach-
noid hemorrhage surgery may in reality be much higher 
than an urgent brain tumor resection. Though our model 
calibration was excellent overall, calibration in each pre-
dictor category is a separate consideration which may 
have impact on interpretability of each risk estimate for 
each patient context.

There are several future directions for this work. First, 
these models need to be externally validated either using 
existing data to establish their generalizability before they 
could be implemented and evaluated further. Ideally, we 
could validate our models in a prospective perioperative 
cohort of people with kidney failure, which could also 
allow for the incorporation of other variables not yet fea-
sible in a retrospective administrative data cohort and 
could improve model performance. Formal comparison 
of our models with perioperative models not specific 
to people with kidney failure using DCA could be com-
pleted, with kidney failure specific decision thresholds, 
as mentioned above. Finally, before widespread use and 
implementation, evaluation of perioperative strate-
gies informed by our risk prediction models could be 
completed in interventional (ideally randomized) study 
designs.

In summary, we derived and internally validated three 
well-performing and clinically useful risk prediction 
models to predict the risk of cardiac events and death 
within 30 days of surgery for people with kidney failure. 
Once externally validated, these models may inform 

Fig. 3 Decision curve analysis comparing the clinical usefulness for the three risk prediction models versus strategies where perioperative 
interventions were applied in all or no participants
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perioperative shared decision making and guide the use 
of perioperative interventions for this important group 
with frequent surgeries and higher risk of poor postop-
erative outcomes.
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