Seismic structure of the Eastern European crust and upper mantle from probabilistic ambient noise tomography

Laura Petrescu a,⇑, Felix Borleanu a, Emanuel Kästle b, Randell Stephenson c, Anica Plăcintă a, Oleksandr Ivanovich Liashchuk d

a National Institute for Earth Physics, Magurele, Romania
b Freie Universität Berlin, Institute of Geological Sciences, Berlin, Germany
c University of Aberdeen, School of Geosciences, Aberdeen, United Kingdom
d Main Center of the Special Monitoring, State Space Agency of Ukraine, Kyiv, Ukraine

Article info
Article history:
Received 31 August 2022
Revised 3 August 2023
Accepted 14 August 2023
Handling Editor: N. Rawlinson

Keywords:
Seismic tomography
Cratons
TESZ
Precambrian

Abstract
The Eastern European lithosphere is a natural laboratory to study continental formation and evolution through time, comprising Archean continental remnants, Proterozoic rifts and belts, and younger accreted terranes. We investigate the seismic structure of the East European Craton (EEC) crust and uppermost mantle, and the transition from Precambrian to Phanerozoic Europe across the Trans European Suture Zone (TESZ) using probabilistic transdimensional ambient noise tomography. We cross-correlate noise recorded at broadband seismic stations from Eastern, Northern, and Central Europe, remove earthquake signals using continuous wavelet transform, and extract Rayleigh wave phase velocity dispersion curves. We invert these for the highest resolution shear wave velocity model of the Eastern European lithosphere to date, using Markov chain Monte Carlo Bayesian inversion. Our shear wave velocity model exhibits spatial correlation with major tectonic units and bears similarities with active seismic survey profiles in terms of seismic velocity patterns and main discontinuities. The crust thickens across the TESZ boundary and the mantle is seismically faster than beneath younger terranes, consistent with a less dense Precambrian lithosphere in the EEC. The crust and lithosphere beneath the Pannonian region is hyper-extended but the adjacent Transylvanian basin crust shows significant heterogeneity. The Precambrian building blocks of the EEC exhibit contrasting seismic fabrics. The Baltic orogens of Fennoscandia are underlain by uniform crust with a flat Moho, while Sarmatia shows alternating high and low velocity layers and a regional south-dipping crustal boundary from beneath the Ukrainian Shield towards the Crimean Peninsula. The last observation supports a geodynamic style driven by horizontal rather than vertical tectonics, with fundamental implications for the formation and evolution of early continents.

1. Background

The Precambrian nuclei of continents, such as the East European Craton, display anomalously thick present-day lithosphere and distinct crustal structure and composition. These continental nuclei were consolidated and assembled over a long period of Earth history, from the Archean when the Earth was likely too hot to sustain modern plate tectonics through a transition into the Paleoproterozoic, when accretionary processes similar to those observed in the Phanerzoic were initiated (e.g. Stern, 2005; Hamilton, 2011). The Precambrian lithosphere displays a spectrum of different tectonic styles that have been, in turn, overprinted by those that are representative of a younger Earth. Secular changes in mantle properties might have facilitated continental crustal growth in either a vertical or a lateral sense, depending on the dominant geodynamic process that operated at different times (e.g. Durrheim and Mooney, 1991) generating distinct crustal structures, compositions and deformation fabrics (e.g. Zegers and Van Keken, 2001). For example, Archean crust may be thinner and have a more felsic composition than Proterozoic crust (e.g. Petrescu et al., 2016), which could reflect secular cooling of Earth’s mantle (Yuan, 2015). Plate tectonics whose onset time has not been precisely determined (Korenaga, 2013) likely played a fundamental role in changing the style of crustal growth within and around the Earth’s surviving cratons.
The European continent evolved throughout several cycles of continental break-up and accretion at the margins of the East European Craton (Fig. 1a, Nikishin et al., 1996; Bogdanova et al., 2008; Ustaszewski et al., 2008; Mints, 2015) at present bordered by the Ural Mountains in the east (e.g. Stephenson et al., 2006), the Trans-European Suture Zone and the Carpathian Mountains in the west (Pharaoh et al., 2006) and the Alpine-Tethys belt to the south (Gee and Stephenson, 2006). The EEC is a thick and seismically fast craton comprising several Archean cores and Proterozoic belts and paleorifts (Bogdanova et al., 1996; Claesson et al., 2006; Stephenson et al., 2021). Investigating the crustal structure of these cores and how they transition into younger continental crust can offer fundamental clues on the Earth’s evolution through geological history, the onset of plate tectonics or the kind of processes that regulate crustal growth (e.g. Durrheim and Mooney, 1991; Mints, 2018).

We investigate the crustal and uppermost mantle seismic structure using ambient seismic noise and the most recent noise processing tools and methods, using data from broadband permanent and temporary seismic stations that operated in Central, Northern and Eastern Europe between 1999 and 2020 (Fig. 1b). We cross-correlate ambient seismic noise records and stack these to obtain virtual impulse response functions between pairs of stations. We then extract Rayleigh wave phase velocity dispersion curves from each inter-station virtual Green’s function (Kästle et al., 2016) and combine them to determine the isotropic phase velocity and azimuthal anisotropy at discrete periods (e.g. Darbyshire and Lebedev, 2009). We then invert these data using a transdimensional Hierarchical Bayesian algorithm (Bodin et al., 2012) to obtain a 3D shear wave velocity model of the East European Craton, the Trans-European Suture Zone, and the adjacent accreted tectonic microplates down to ~60 km depth. Our new results provide the first 3D crustal seismic images of an area that has not been explored before at such high resolution and wide spatial extent. Additionally, azimuthal anisotropy can offer fundamental clues on deformation patterns frozen in the crust due to past tectonic events (e.g. Wüstefeld et al., 2010).

2. Tectonic setting

The East European Craton, which approximates the proto-continent known as Baltica (e.g. Bogdanova et al., 2008), is a tectonic collage of three Precambrian continental nuclei with...
Archean cores (Mints, 2015) separated by Proterozoic belts and paleorifts: Fennoscandia, Sarmatia, and Volgo-Uralia (Fig. 1a). Sarmatia, which is of Archean-Proterozoic age, is exposed in the Ukrainian Shield and Voronezh Massif. Sarmatia and Fennoscandia are sutured along the Central Belarus Suture Zone and the 2–1.95 Ga Osnitsk-Mikahshev Igneous Belt (OMIB, Bogdanova et al., 2006), which subsequently became the site of extension and rifting forming the Central Russian Rift System (Gorbatschev and Bogdanova, 1993; Krzeminska et al., 2022). Northwest of the Central Belarus Suture Zone, Fennoscandia comprises a series of Baltic orogenic belts formed between 2.1 Ga and 1.9 Ga that are partly submerged beneath the Baltic Sea and can be traced onto the Scandinavian Peninsula (Bogdanova et al., 2015). The EEC was involved in multiple supercontinent cycles and survived the impacts of several mantle plumes. Sarmatia records magmatic intrusions such as the Korosten Pluton, a 1.8–1.7 Ga large igneous complex that may extend down to ~20 km (Thybo et al., 2003). The break-up of the Neoproterozoic supercontinent Rodinia led to the formation of the western boundary of Baltica at the TESZ inducing widespread flood basalt volcanism, remnants of which are preserved in the Volyn large igneous province (Krzeminska et al., 2022; Shumlyanskyy et al., 2007), spanning ~200,000 km² across western Ukraine, eastern Poland, and south-western Belarus, and cross-cutting the OMIB (Fig. 1a). The Pripyat- Dnieper-Donets graben, a palaeorift hosting Paleozoic-aged basins (Stephenson et al., 2021), cross-cuts Sarmatia and superimposes on the OMIB, and may be the consequence of another mantle plume that thermo-chemically eroded the cratonic lithosphere (Wilson and Lyashkevich, 1996).

The western margin of Baltica acted as a buffer zone for multiple continental collisions, remnants of which are collectively termed the Trans-European Suture Zone (TESZ, Pharaoh, 1999; Grad et al., 2002). The TESZ is the most important geological boundary zone in Europe (Fig. 1), extending from the Baltic to the Black Sea beneath the Carpathians (Borleanu et al., 2021). The TESZ separates Precambrian aged terranes of the EEC from younger microplates and oceanic tracts progressively to its western margin. Several orogenic fronts advanced towards the craton, but deformation typically terminated parallel to the TESZ: the Caledonian front marks the collision between Baltica (present-day EEC) and the Avalonia paleo-continent roughly 490–390 million years ago, resulting in the accretion of Avalonia-affined terranes (e.g. Oczlon et al., 2007) and the development of the peri-Tornquist sedimentary Basins (Poprawa, 2019) on the passive margin of Baltica (Fig. 1c). The Variscan Front (Fig. 1a) marks the collision between the extended Baltic margin with Gondwana approximately 370–290 million years ago, contributing to the growth of the European continent westwards and southwards (Behr et al., 1984). The Alpine-Carpathian Front marks the limit of Neogene deformation due to the northward migration of Africa and its Adriatic promontory, resulting in the accretion of the Alcapa, Tisza, and Dacia terranes (Fig. 1a), as well as several neo-Tethys oceanic tracts to the southwestern margin of the EEC (Üstaszewski et al., 2008). Finally, the hyper-extended Pannonian Basin (Horváth et al., 2006) and the Transylvanian Basin (Fig. 1c) evolved in the back-arc region relative to the Carpathians, subsequently experiencing sporadic post-collisional volcanism over the last 12 million years (e.g. Seghedi et al., 2004; Bracco Gartner and McKenzie, 2020).

The structure of the EEC crust and upper mantle, the TESZ and the younger terranes to the west have been investigated with a plethora of seismic imaging tools, including seismic tomography (e.g. Zielhuis and Nolet, 1994; Zhu et al., 2012), receiver functions (e.g. Knapmeyer-Endrun et al., 2013; Kalmár et al., 2023) and active seismic techniques such as modern deep seismic sounding and wide angle reflection and refraction seismic surveys (Fig. 1d): BABEL (BABEL Working Group, 1993), POLONAISE97 (P4, e.g. Guterch et al., 1999; Grad et al., 2002), EUROBRIDGE’94–97 (EB’97, e.g. EUROBRIDGE Seismic Working Group, 1999; Yliniemi et al., 2001), CELEBRATION2000 (CEL01, CEL05, e.g. Grad et al., 2006; ÅLsroda et al., 2006), VRANCEA’99–01 (Hauser et al., 2001, 2007), PANCAKE (Starostenko et al., 2013), and RomUkrSeis (Starostenko et al., 2020). Seismic surveys, however, have the limitation of a 2D view of local-sized cross-sections and may not be able to capture the complexities of structural heterogeneity and deformation that shaped the EEC margin. A large-scale 3D seismic tomography of the crust and upper mantle can provide significant added-value to reveal the nature and evolution of the European continent through time.

3. Data and methods

To investigate the structure of the East European Craton and the transition from Precambrian crust and lithospheric mantle into Phanerozoic terranes accreted to its western flanks, we use the most recently developed ambient seismic noise tomography techniques. Ambient noise tomography (ANT) has been an increasingly popular seismic imaging tool in the last few decades thanks to the widespread availability of continuous seismic records from dense arrays and an increase in computing power. ANT relies on the principle that cross-correlating ambient noise recorded at pairs of seismic receivers yields impulse response functions of the Earth’s structure, known as empirical Green’s functions. These are similar to real seismograms and include virtual Rayleigh waves, whose properties can be used to infer information on subsurface structures (e.g. Ritzwoller and Levshin, 1998). ANT removes the need to record unevenly distributed earthquakes, offering the possibility to improve azimuthal ray coverage and, implicitly, resolution, by turning stations into virtual sources (Curtis et al., 2006). Previous models of the crust and lithosphere in the EEC based on earthquake data (e.g. Bijwaard and Spakman, 2000; Zhu et al., 2012) suffer from this azimuthal coverage deficiency which automatically lowers model resolution and impedes accurate estimation of seismic velocities and their directional variation, a crucial additional parameter that can help constrain past deformational features and/or active mantle flow (e.g. Petrescu et al., 2022).

Bensen et al. (2007) developed a reference procedure for processing and analysing ambient noise data, which was progressively modified and improved (e.g. Yang et al., 2020). Here we follow the general procedure of Bensen et al. (2007) with several modifications. The ANT is done in multiple steps: 1. Continuous ground motion cross-correlation and stacking; 2. Extraction of inter-station Rayleigh wave dispersion curves; 3. Estimation of phase velocity lateral distribution in frequency domain (e.g. Darbyshire and Lebedev, 2009; Petrescu et al., 2017); 4. Inversion of phase velocity maps into 3D shear wave velocity tomography (e.g. Petrescu et al., 2022). Recently developed processing tools and the wealth of both permanent and temporary seismic networks in Eastern Europe (Fig. 1) provide an excellent opportunity to illuminate crustal and uppermost mantle structure of a complexly evolved continent using ambient noise.

3.1. Ambient noise processing

We use continuous noise records from 1477 broadband permanent and temporary seismic stations located throughout Central, Northern and Eastern Europe (Fig. 1), out of which 338 stations belong to temporary networks including the CALIXTO seismic experiment in 1999 (Martin et al., 2005), the Carpathians Basins
We extract Rayleigh wave phase velocity dispersion curves using an automatic phase-picking algorithm (Fig. 2), which assumes that vertical cross-correlograms take the form of Bessel functions (Kästle et al., 2016; Magrini et al., 2022). In this method, consecutive null values of the cross-correlation spectrum yield well-defined Rayleigh wave packets (Fig. 2). Finally, from the available simultaneously operating station pairs, we obtained 75,012 empirical Green’s functions for inter-station distances between 32 km and 2901 km. Possible methods to reconstruct Green’s functions between stations that did not operate at the same time might include the correlation of coherences (e.g. Chen et al., 2023).

3.2. Surface wave dispersion

The Rayleigh wave dispersion curves are combined into a damped and gridded phase velocity tomography in a discrete period interval from 4 s to 50 s. At these periods, Rayleigh waves sample predominantly crustal and uppermost mantle depths. Each grid cell is defined by its total phase velocity anomaly, which is deconstructed via Fourier expansion into isotropic and azimuthally anisotropic terms:

\[\delta C = \delta C_{\text{iso}} + A_{2\omega} \cos(2\psi) + B_{2\omega} \sin(2\psi) + A_{4\omega} \cos(4\psi) + B_{4\omega} \sin(4\psi) \]

where \(\psi \) is the horizontal wave-number azimuth and \(\delta C \) is the total phase velocity anomaly at the considered grid knot. This equation is similar to a Fourier expansion (Deschamps et al., 2008) and the azimuthal anisotropy amplitude and direction are a linear combination of the equation’s coefficients A and B (e.g. Petrescu et al., 2017). These coefficients are estimated using a damped LSQR procedure (Paige and Saunders, 1982; Darbyshire and Lebedev, 2009). This type of geophysical inversion algorithm does not yield covariance matrices. Deschamps et al. (2008) adopted a Monte Carlo approach to estimate standard deviation errors from a dataset of 60 paths, obtaining values between 8 and 12 m/s which are insignificant compared to mapped phase velocity heterogeneities. Considering our dataset is much larger, we would not expect the error on our dispersion curve data to be higher.

The model is parametrized on a triangular grid using spherical splines (Wang and Dahlen, 1995) covering the Earth’s surface with an approximately equal interknot spacing of 60 km. This is similar to previous surface wave tomography models using interknot spacings between 50 km and 100 km depending on area and ray coverage (e.g. Li et al., 2010; Legendre et al., 2012, 2015; Shen et al., 2016). The 3-D perturbations of phase velocities are estimated at each grid knot and interpolated on a denser triangular grid, with knot spacing about a third of the original model grid. The period interval for which dispersion functions are estimated vary, resulting in different ray path coverage at each period. Consequently, the size of the grid is different for each period. A good coverage such as that for the 30 s period results in a grid of 1180 knots, while for the 10 s period, the grid size is under 1000 knots.

Our preferred damping and smoothing parameter combination is based on trade-off curves between model roughness and the ability to explain the observed data, defined through variance reduction (Figure 52 in the Supplementary Material). This LSQR procedure requires two types of damping. The primary type of damping (or lateral smoothing) minimizes the difference between a grid point and the average over the surrounding points. The second type of damping penalizes the second spatial derivative of each term. Increased damping and smoothing parameters thus decrease anomaly values and lateral gradients, but also decrease data fit. To find the damping parameters, we plot trade-off curves between smoothing and variance, and roughness versus variance, respectively, for each period, for very low damping parameters, while keeping the anisotropic term damping values constant. The knee of the resulting curves and their approximate intersection yields optimum smoothing values. We proceed similarly for the lateral smoothing parameters.
gradient damping. We test a range of damping values under fixed smoothing and choose the value from the knee of the trade-off curve. The chosen values also depend on a visual analysis of resolution tests, aiming to suppress the leakage between mapped isotropic and anisotropic heterogeneities while not oversmoothing the maps (e.g. Darbyshire and Lebedev, 2009). The resulting values are similar for our period interval, ranging between 1 and 2 for lateral smoothing and 0.2 and 0.5 for gradient damping, respectively.

3.4. Probabilistic inversion

The phase velocity model is converted to the depth domain via a Markov chain Monte Carlo transdimensional Bayesian inversion (Bodin et al., 2012), which iteratively samples the model space and produces a final probability distribution on the model parameters (Fig. 3). We extract phase velocities from each grid knot at all periods and construct pseudo-dispersion curves at all coordinates of our model. Each pseudo-dispersion curve is inverted individually using the probabilistic algorithm for a 1D shear wave velocity-depth profile. 1D profiles are then combined into a 3D shear wave velocity model.

We use the implementation of Dreiling and Tilmann (2019) where the search parameters include the shear-velocity in each layer, the average Vp/Vs ratio, the data noise level, expressed as the width, σ, of a Gaussian uncertainty distribution, and the number of layers. In the absence of a priori phase velocity measurement errors, the algorithm thus treats them as unknown hyperparameters to be determined in the Monte Carlo search. Errors (or alternatively referred to as noise) are assumed to be uncorrelated between data points at adjacent periods on the input dispersion function. The dimension of the model space (i.e. the number of layers) is itself a variable, making the posterior probability a transdimensional function. The model is allowed to vary between 2 km/s and 5 km/s without supplying a priori starting models,
measurement error bounds, or discontinuity depths. Other prior information consists of a user-set depth range between 0 and 60 km, a Vp/Vs interval of 1.5–2.0, a noise Gaussian width of 0–0.05 km/s and layer number of 3–20.

The inversion, or more accurately referred to as the forward model search, is carried out by running 5 separate model space samplers in parallel, each with a maximum of 50,000 iterations and a burn-in set of 10000. Each chain starts at different random points and samples the dynamic model space simultaneously and independently. The models explored in the burn-in set are discarded and those obtained in the exploration phase from each chain should achieve stability. The convergence of the algorithm is monitored via several metrics including acceptance rates, the evolution of the likelihood function or the misfit with iteration number (Figure S4 in the Supplementary Material). The outputs are combined in the end in an ensemble posterior probability that yields the best-fit velocity-depth profile. The expected value and associated uncertainty for each hyper-parameter (including Vs) are extracted as the mean and standard deviation of the posterior distribution (Figure S5 in the Supplementary Material).

Compared to a linear inversion with a high number of thin layers, the output models from the transdimensional inversion might yield profiles with sharp velocity-depth gradients especially when a lower number of layers is preferred. When the uncertainty is high, the algorithm tends to fit less complex models. Very thick layers as in Fig. 3e (30–55 km) are thus constrained and will thus show little variance because even a small change in Vs will have a relatively large impact on the data fit. A higher data noise region might result in a less complex model (with fewer layers) that might appear better constrained (lower standard deviation), because the sampler tends to fit only a few models. Such might be the case in the Ukrainian Shield inversion example (Fig. 3). On the other hand, a lower data noise region (e.g. the Pannonian Basin) results in a more complex model with apparently higher uncertainty and lower discontinuity of probability at depths where changes in layer interface depths and velocity contrasts yield a similar data fit. We note, however, that surface waves are best at estimating absolute velocities, but lack the ability to resolve sharp vertical velocity changes, especially in the absence of an additional data type such as receiver functions. Additional bias may stem from inappropriate modeling assumptions such as the possibility of dipping layers or anisotropy. In the depth inversion, we only take the isotropic velocity components into account and do not model the azimuthal or radial anisotropy. These simplifications imply that we will not be able to perfectly fit the dispersion curves which may slightly increase the data uncertainty estimated during the model search.

Fig. 3. Rayleigh wave phase velocity dispersion curves (a–c) and shear wave velocity (Vs) - depth profiles (d–f) for three selected regions in our study area. Dispersion curve data (black lines) are extracted from the phase velocity tomography and are converted to Vs-depth profiles with the McMC Bayesian inversion method. Pink lines are the best fit dispersion curve (a–c) and the median shear wave velocity profile (d–f) from the models ensemble. The shaded grey area is marked by the minimum and maximum standard deviation. Histograms represent the ensemble probability distribution that may be regarded as a discontinuity probability. The posterior probability distribution of data noise for each inversion (g–i). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
4. Results

4.1. Resolution and leakage tests

Fig. 4 shows selected synthetic tests of phase velocity tomography demonstrating the ability of the inversion, model setup, and station configuration to recover various checkerboard anomaly patterns as well as possible rifting and deformation front anomalies. We define checkerboard patterns as low velocity anomalies (-2.5%) varying roughly between 200 km and 500 km in diameter embedded in a high velocity anomaly background (2.5%). We allow the inversion to produce anisotropy to also test for leakage between isotropic and anisotropic terms of Equation (1). In other words, we construct a purely isotropic model and check whether the inversion will create artefacts in azimuthal anisotropy.

The output synthetic models show variable recovery for different period maps, depending on ray coverage and azimuthal distribution. For the 40 s period, checkerboard patterns are well-recovered throughout Southern, Eastern, and Northern Europe, and the Black Sea. Model resolution decreases at the edge of the Scandinavian Peninsula, across the Baltic Sea, in northeast Belarus and Eastern Ukraine. Here, the shape of the smaller checkerboard patterns are still recovered, but anomalies show half the original amplitudes (Fig. 4). The larger checkerboards show a better anomaly recovery in Eastern Ukraine compared to smaller checkerboards. For the 10 s period map, the amplitude of small-scale anomalies decrease to half of the original value in Ukraine, Poland and fade completely to the north-east. At lower periods, the Black Sea synthetic anomalies are smeared towards the east along the dominantly E-W trending ray paths (<15 s). Artifact anisotropy produced in the inversion is negligible at all periods.

We also test the resolution of possible low velocity anomaly features simulating the general trends of the TESZ, the Central Russian Rift System, and the Dnieper-Donets Rift (Fig. 1). Fig. 4 shows near-perfect recovery of the synthetic TESZ anomaly at both short and long periods, as well as the intersecting region with the Central Russian Rift System, while its northeastern section and the Dnieper-Donets Rift shapes are preserved, albeit with reduced...
amplitude at longer periods. Anisotropy artefacts are insignificant throughout the model region for this specific anomaly pattern.

4.2. Phase velocities - isotropic variations and azimuthal anisotropy

Models of phase velocity anomalies and azimuthal anisotropy are shown in Fig. 5. Since the grid area varies with period, isotropic phase velocities are only determined at grid knots along interstation ray paths. However, model resolution decreases especially in areas with low ray density and/or uneven azimuthal distribution (see insets in Fig. 5 for each period). We mask phase velocity and anisotropy regions with low model credibility using these criteria, in conjunction with checkerboard recovery tests at each period.

Phase velocities show excellent correlation between negative anomalies and known sedimentary basins at short periods (5–10 s) sensitive to uppermost crustal depths (depths ~5-15 km, Fig. 5), demonstrating the power of ambient noise to resolve near-surface structures. Low velocities follow the arcuate Carpathian foreland basins, the South Carpathian foredeep and the Paleozoic cover of the Moesian Platform, the Pannonian Basin, the Transylvanian Basin, the Western Black Sea Basin, as well as the peri-Tornquist Basins. The surface expression of the TESZ roughly corresponds to an elongated low-velocity zone at periods of 5 s and 10 s, with parallel NW-SE oriented azimuthal anisotropy in the Polish sector and oblique-to-perpendicular across the Carpathians (Fig. 5). The negative velocity patch seems to join the Eastern Carpathians foredeep low velocity signature arching around the orogen. At longer periods (15–25 s; depths ~15-30 km), the TESZ seems to separate low velocities on its western side and higher velocities to the eastern side, especially across the Carpathian sector.

At periods of 20 s–30 s (depths ~15–35 km), another NW-SE oriented elongated low velocity anomaly, quasi-parallel to the TESZ, emerges within the East European Craton. This anomaly as well as anisotropy directions appear to wrap around high velocity centers that correspond to exposed Archean and Paleoproterozoic basement of Sarmatia (yellow contours in Fig. 5).

At longer periods (40 s–50 s; depths ~35-60 km), indicative of lower crust-uppermost mantle depths, maps are dominated by increased heterogeneity. Consistently low velocities follow the surface expression of the Dnieper-Donets Rift (Fig. 1) and anisotropy seems mostly oblique to the general rift axis.

Fig. 5. Phase velocity maps of Central, Eastern and Northern Europe at periods between 5 s and 50 s. The colour scale indicates isotropic phase velocities and changes with period, and lines mark the amplitude and direction of azimuthal anisotropy. The 5 s and 10 s maps are overlain with the approximate boundaries of the main sedimentary basins in Europe after Fig. 1d. Abbreviations are. PMB - Paleozoic-Mesozoic Basins, CF - Carpathian Forearc, MP - Moesian Paleozoic Basin, PB - Pannonian Basin, TB - Transylvanian Basin, PT - Peri-Tornquist Basins, WBS - West Black Sea Basin. Longer period maps are overlain with the main geological boundaries and tectonic regions as in Fig. 1a. Insets show the virtual ray coverage at each period. Bottom right. Rayleigh wave depth-sensitivity kernels to isotropic shear wave speed for selected periods (shown for reference, not used in the inversion).
4.3. Shear wave velocity tomography

Fig. 6 shows the shear wave velocity model estimated with the probabilistic transdimensional inversion algorithm. Here, we mask shear wave velocity regions similarly to the phase velocity maps, according to the peak depth sensitivity of Rayleigh waves at each period (Fig. 5). The relationships between periods and depths are not straightforward. Depth sensitivity functions for Rayleigh waves of various periods have different degrees of overlap in the upper crust. Thus, the masking choice for the shear wave velocity model is not entirely dictated by the availability of phase velocity measurements at specific grid points. The shear wave velocity model shows heterogeneous patterns across Central and Eastern Europe (Fig. 6). Model uncertainties consist in standard deviations estimated based on posterior probability functions for Vs at each depth slice (Figure S5 in the Supplementary Material). These vary between 0 and 0.8 km/s, with an average of 0.18 km/s at 5 km depth, 0.27 km/s at 20 km depth and 0.25 km/s at 40 km depth. These errors are significantly lower than the estimated seismic heterogeneities, allowing us to confidently constrain differences between felsic and mafic rocks, for example, for which seismic velocity changes were estimated as high as 2 km/s (e.g. Rudnick and Fountain, 1995). In the absence of measurement errors, the transdimensional code also searched for the level of noise in the velocities extracted from the phase-velocity maps, yielding an average σ value of 0.035 km/s (Figure S6 in the Supplementary Material).

At shallow depths (<6 km), low velocity values correlate with the location of known sedimentary basins (Fig. 6). The Pannonian Basin is the most prominent anomaly, emerging as a low velocity feature that persists down to ~6 km. The Carpathian foreland basin, especially the southern section, have similarly low velocity signatures down to ~10 km, likely sampling Neogene and Paleozoic sedimentary successions from different past orogenies. The peri-Tornquist Basins and the TESZ correspond to low velocity regions that fade out at depths > 6 km, compared to the
off-craton basins. The Osnitsk-Mikashevich Igneous Belt is overlain by a seismically slow layer down to at least ~2 km, corresponding to the Late Palaeozoic Pripyat Trough (Fig. 1a, c and 6).

High velocities across part of the Ukrainian Shield and the Osnitsk-Mikashevich Igneous Belt (Fig. 6), roughly correspond to the lateral extent of the Volyn igneous province (Fig. 1) and the exposed basement regions of Sarmatia. The Ukrainian Shield displays a high velocity feature at upper and lower crustal depths separated by a thin low velocity layer at ~10 km depth.

At lower crustal depths, the shear wave velocity becomes increasingly complex and apparently independent of the surface geology. Cross-sections show several seismic velocity changes and discontinuity offsets across the deformational fronts and the TESZ (Fig. 7), but also significant crustal seismic velocity heterogeneities within the East European Craton terranes. The Fennoscandian orogens seem underlain by a mostly uniform crust with a flat Moho, while Sarmatia shows strong lateral heterogeneities. A regional scale low-angle dipping interface underlies the Ukrainian Shield, the Scythian Platform and the Crimea Peninsula.

5. Discussion

5.1. Comparison with previous seismic tomography models

Most continental and global seismic tomography models of the mantle based on earthquake data show a strong contrast between the high seismic velocities to the east of the Trans-European Suture Zone.
Zone and seismically slow regions south-west of the TESZ at ~100 km depth (e.g. Yang et al., 2007; Chang et al., 2010; Schiavardi and Morelli, 2011; Legendre et al., 2012; Schaeffer and Lebedev, 2013; Zhu et al., 2015). In contrast to our study, these models lack the dense seismic station and ray coverage in the Eastern European Platform we benefit from and often, likely due to model edge resolution decrease, they portray the EEC mantle as a wide, seismically fast, homogenous lithospheric root, despite its protruded and complex tectonic history that includes multiple collisions, rising, and volcanism.

Seismic heterogeneities in the shallow lithosphere above 100 km show more complex heterogeneities than a constant SW-NE gradient across the TESZ, but bear many similarities with local and partially overlapping ambient noise tomography models that are sensitive to crustal levels. These include, but are not limited to, the models of Ren et al. (2013), Meier et al. (2016), Soomro et al. (2016), Lu et al. (2018), and Szanyi et al. (2021). The models of Ren et al. (2013), Lu et al. (2018) and Szanyi et al. (2021) partially overlap with our study area in the the Carpathian-Pannonian Region (Ren et al., 2013) and the Pannonian-Eastern Alpine region (Lu et al., 2018; Szanyi et al., 2021). All models show slow seismic anomalies in the Pannonian, Transylvania, and Carpathian Foreland basins, similar to our model at low periods/shallow depths. High velocities emerge at 10–20 km depth beneath the Pannonian compared to the surrounding orogenic structures, consistent with our model, and interpreted as a thinned crust beneath the basin (Ren et al., 2013; Szanyi et al., 2021). The ambient noise phase velocity model of Soomro et al. (2016) covers central Europe, overlapping with our study area north of 45° N and west of 25° E. We note several similarities between our phase velocity maps and the Soomro et al. (2016) heterogeneities, specifically the contrast between the high seismic velocity Bohemian Massif and the low-velocity Permian Basins extending across Poland and Germany at periods up to 20 s (Fig. 5). At longer periods (>40 s, both in our model and in the model of Soomro et al. (2016), the TESZ section across Poland seems to mark a transition from low-to-high seismic anomalies (Fig. 5). Our model shows, however, that this transition is only consistent in the Baltic region. Further south-east along its probable trajectory, the TESZ marks a switch from high-to-low velocity anomalies near the Orsha-Volyn Aulacogen and low-to-high along the Carpathian Front in Romania (40 s and 50 s maps, Fig. 5).

5.2. Azimuthal anisotropy - past or present deformation?

While shear wave velocity heterogeneities can offer fundamental clues on compositional variations, temperature, or water content, anisotropy provides complementary information that can shed light on a range of active or past deformation mechanisms affecting lithospheric structure (e.g. Long and Becker, 2010). There are two primary candidates for observed seismic anisotropy. Intrinsically anisotropic minerals such as olivine in the mantle or biotite and hornblende in the crust (e.g. Mainprice and Nicolas, 1989) develop lattice-preferred orientation (LPO) along the maximum shear direction (Nicolas and Christensen, 1987) or the maximum extension direction (e.g. Ribe, 1992) and are often interpreted as evidence of mantle flow (e.g. Karato et al., 2008). Shape-preferred orientation (SPO) of fault zones (Boness and Zoback, 2006), cracks, or inclusions (Crampin, 1994) such as magmatic intrusions (Kendall et al., 2005) or rift axes (e.g. Bastow et al., 2010) can also cause seismic anisotropy. Discriminating between these opposing mechanisms can be difficult, especially because the direction of anisotropy can vary relative to maximum extension. For example, SPO anisotropy from alignment of cracks in the crust is perpendicular to the maximum extension, but LPO anisotropy in the mantle is parallel to maximum extension (Fouch and Rondenay, 2006). Thus even in a simple crust-mantle coupling model, a complex signal can be observed.

Lithospheric anisotropy in Central and Eastern Europe has often been interpreted as frozen deformation inherited from past tectonic events in the EEC (Wüstefeld et al., 2010) and the accretion of younger microplates (e.g. Babuška and Plomerová, 2006). Recent anisotropic seismic tomography models of European lithosphere (Zhu et al., 2015; Nita et al., 2016) support an anisotropic block-model of Europe as suggested by Plomerová et al. (2011). Zhu and Tromp (2013) notes that anisotropy in the EEC tends to align along ancient rift systems, such as the Central Russia Rift System and the Pripyat-Dnieper-Donets Rift and dipping anisotropy is likely present beneath the Ukrainian Shield. We note, however, that these models offer anisotropic constraints mostly from the lower crust and the underlying mantle, while our ambient-noise frequency range allows the extraction of seismic information from the entire crustal column.

Azimuthal anisotropy at short periods (sensitive to shallow depths) is strongest (~3%) in the low-velocity sedimentary basins (Fig. 5). At depths < 5 km, bulk anisotropy may be dominated by microcracks, according to laboratory experiments (Kern, 1990). Fluid-saturated microcracks are highly sensitive to small changes of stress (Crampin and Peacock, 2008). The Pannonian Basin is undergoing tectonic inversion due to the continuous push of Adria approximately towards the NE. A NE-SW oriented fault boundary between Alcapa and Tisza underlies sedimentary sequences (Fig. 1a), likely contributing to the observed anisotropy trends, as would be expected from fault-aligned anisotropy (Boness and Zoback, 2006). In the South Carpathian Foreland basin and the Moesian Platform Basin (Fig. 1a), anisotropy is also strong and oriented E-W, along the obliquely juxtaposed Carpathian nappes (Fig. 5). The region is tectonically active as suggested by the many shallow-depth seismic swarms that occurred along the front (e.g. Radulian et al., 2019; Borleanu et al., 2023). In the PMB, anisotropy rotates clockwise from SE-NW near the Baltic Sea to NE-SW near the Carpathian Front and TESZ. Here, anisotropy is less likely controlled by an active stress field. The correlation with the surface-expression of the TESZ and Variscan Front rather points to a frozen deformation pattern caused by the past collisional events associated with these tectonic boundaries.

The EEC crust exhibits complex patterns of anisotropy with variable strength that are most likely inherited from past tectonic events. The Baltic orogens of Fennoscandia exhibit mostly NE-SW oriented 2–3% anisotropy at all depths, oblique to the tectonic boundary trends. Anisotropy clearly switches to NE-SW across the Central Belarus Suture Zone and the Osnitsk- Mikhaichev Igneous Belt, part of the Central Russian Rift System. Here, anisotropy strongly decreases at longer periods (40–50 s, Fig. 5, sensitive to lower crust/upper mantle levels). This observation is in contrast to the rift-aligned axes estimated by Zhu and Tromp (2013) at depths > 50 km, implying a different mechanism at depth. The Ukrainian Shield is strongly anisotropic (3–5%) and seems divided in two main domains with contrasting fabrics and seismic velocities.

5.3. The TESZ and stacked collisional fronts: Imaging lateral continental growth

Our new lithospheric tomography captures a number of significant geological boundaries such as the TESZ, associated with the Caledonian Front, as well as the Variscan, and the Carpathian Fronts, marking the lateral growth of the European continent and, more fundamentally, a transition zone separating Phanerozoic from Precambrian tectonic processes. We attempt to explain the most prominent features in our tomography in relation to those boundaries and the lithospheric fragments they demarcate.
although correlations with surface geology are not always straightforward at depth.

At uppermost crustal levels, the TESZ does not seem to clearly separate regions of high and low velocity (Fig. 6), as was often imaged at asthenospheric depths (e.g. Bijwaard and Spakman, 2000; Zhu et al., 2012). Its route, width, and complexity change along-strike from Poland where it appears as a broad low velocity zone suggesting the presence of a thick sedimentary basin (e.g. Grad et al., 2003) while its southeastern segment is buried beneath the Carpathian Orogen (Starostenko et al., 2020; Borleanu et al., 2021). Anisotropy patterns (Fig. 5) also show many period-dependent changes across and along the TESZ, indicating complex layered deformation across the craton edge. Profile AA’ in Fig. 7 shows an increase in upper mantle velocities towards the northeast, from Avalonian terranes towards the EEC, consistent with decreased density of crustal lithosphere (Artemieva, 2003). The TESZ is marked at depth by a lateral change in lower crustal velocities and a ~20 km depression of what might be considered the Moho discontinuity based on the sudden Vs increase to typical mantle wave speeds (Fig. 7). These crustal thickness and seismic velocity changes may be the consequences of Avalonia–Baltica collision and possible slab break-off and are corroborated by previous receiver function studies (Knapmeyer-Endrun et al., 2014), local ambient noise studies (Becker and Knapmeyer-Endrun, 2018) and all the active seismic surveys crossing this boundary north of the Carpathian Front: EUROBRIDGES97 (Vlčiemi et al., 2001), POLONAISE97 (Guterch et al., 1999; Grad et al., 2002), as well as those that cross the Carpathians towards the Osinski-Mikashevich Igneous Belt: the CELEBRATION00 (Grad et al., 2006) and PANCAKE (Starostenko et al., 2013) profiles (Fig. 1d).

Grad et al. (2003) suggested several scenarios for the type of collision that reworked the passive EEC margin, including flake tectonics (e.g. Meissner, 1989) or a soft or oblique collision. In the flake tectonic model, Baltica presumably indented into Avalonia, obducting its upper crust and forcing its lower crustal layer beneath the indenter. Profile AA’ (Fig. 7) shows a high velocity mid-crustal layer (~4 km/s) sandwiched between comparatively lower velocity layers (also evident in probability of discontinuity cross sections in Figure S8). This layer extends beyond the TESZ and the surface expression of the Variscan Front and pinches out beneath the Bohemian Massif. The high velocity layer seems connected to the broader high velocity EEC crust belonging to the Fennoscandian Paleoproterozoic orogens, supporting the idea that Precambrian crust might form an extensive wedge embedded into more juvenile terranes accreted during Phanerozoic orogeneses. From an anisotropic point of view, the TESZ in this region marks a reorientation of oblique to perpendicular fast axes at periods < 40 s and a more clear switch from TESZ-parallel to TESZ-perpendicular at 40–50 s (lower crust). This gradual change in anisotropy at mid-lower crustal levels underlain by a more rapid rotation at lower crustal levels might support the indenter tectonic style. Similar mechanisms have been proposed for the Slave craton in Canada based on the LITHPROBE seismic surveys (Snyder, 2002).

The seismic structure of the TESZ changes dramatically along its southwestern segment, across the Eastern Carpathians. Here, the TESZ may be underthrust and overprinted by Neogene orogeny and post-collisional volcanism (Borleanu et al., 2021) and anisotropy seems largely oblique to perpendicular to the orogenic trend at least in the Eastern Carpathians suggesting horizontal tectonics in the thickened crustal root similar to the lower crustal fabrics of the Central Alps (Fry et al., 2010). Profile BB’ in Fig. 7 shows a strong change in crustal velocity patterns and a depression of the 4.5 km/s contour beneath the Carpathians. Beneath the Ukrainian Shield region, Vs reaches mantle-typical values at depths of ~30 km overlying a low velocity zone at ~50 km. Discontinuity probability profiles in this area also show two strong peaks between 15 and 20 km depth and one peak between 50 and 55 km depth (Figure S8). This profile is close to the RomUkrSeis seismic profile (Fig. 1d, Starostenko et al., 2020) which shows similar crustal fabrics, including a local crustal thickening beneath the Carpathians and thinning towards the northeast.

5.4. Crustal and lithospheric thinning beneath the Carpathian-Pannonian region

The Carpathian Orogen shows variable seismic structure along-strike and significant crustal and lithospheric thinning in the enclosed Pannonian Basin. Compression in the Carpathians along the EEC margin is generally thought to be coeval with backarc extension in the Pannonian, possibly driven by a retreating subduction zone towards the craton (e.g. Royden, 1988) or lateral extrusion of the Eastern Alps (e.g. Ratschbacher et al., 1991). The Pannonian Basin is superimposed on several microplates that sutured before the Carpathian Orogen. The Tiszá–Dacia collision led to the closure of a Neo-Tethys branch (Schmid et al., 2008) whose ophiolitic remnants are partly exposed in the Apuseni Mountains and mostly buried beneath the Pannonian and Transylvanian basins (Fig. 1). Our model shows a stark contrast in crust and mantle velocity patterns across the Apuseni Mountains (Profile BB’ in Fig. 7), which, along with the Transylvanian Basin region, acted as a transfer zone between contracting and extending regions (Huismans and Bertotti, 2002). Similarly to previous studies (Ren et al., 2013; Petrescu et al., 2019), our model shows low seismic velocities down to depths of ~50 km beneath the Apuseni Mountains and Transylvania, with variably clear Vs discontinuities (Figure S8). In contrast, the seismic profile of the Pannonian Basin (Fig. 3) shows a thin crust (Vs values reach typical upper mantle velocity at ~25 km) and an anomalously shallow lithosphere-asthenosphere boundary marked by a decrease in Vs at 45–50 km depth. Discontinuity profiles show a large probability at ~6 km and two secondary peaks between 15 and 25 km (Figure S8). These observations are consistent with both passive seismic data studies (e.g. Kalmár et al., 2021) and active seismic surveys (Posgay et al., 1981) and support the existence of a hyper-extended lithosphere and shallow asthenosphere.

The Carpathian Front captured in Profile CC’ is marked by an uplift of the 4 km/s Vs contour, a decrease in upper mantle velocities and a zone with less discernible crust-mantle Vs discontinuities beneath the Western Carpathians, corroborating the SUDETES2003 seismic profile (S04 in Fig. 1d, Hrubcová et al., 2010). This change is not replicated on the opposite section of the Carpathian Front, marking the collision between the Tisza-Dacia unit and the Precambrian block of Moesia (Fig. 1). This section shows gradual crustal thickening beneath Moesia and what is likely the dipping low velocity Paleozoic sedimentary cover of Moesia beneath the South Carpathians (Profile CC’ in Fig. 7). Seismic structures of the East and South Carpathians are markedly different, likely due to the type of lithosphere involved in the collision. While the East Carpathians are a classic fold-and-thrust belt overlying an already complex zone of reworked craton margin, the South Carpathians were obducted obliquely onto the Moesian Platform (e.g. Hippolyte et al., 1999), with reduced impact on its crustal structure and strong lithosphere.

5.5. Seismic expression of tectonic units in the East European Craton

The oldest and most enigmatic continental fragments captured with our tomography data date back to the Archean, when the Earth might have been too hot to sustain modern plate tectonics (e.g. Korenaga, 2013). The East European Craton has been involved in multiple collisions, and subject to episodes of extension and
The present study was partially funded by the EENSANE (East European Ambient Seismic Noise) Project PN-III-P4-ID-PCE-2020-2972 supported by UEFISCDI (Executive Agency for Higher Education, Research, Development and Innovation Funding), Romania and the NUCLEU Program SOLARISC. Project no PN23360201.

Acknowledgments

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

6. Summary and conclusions

We investigated the crustal and uppermost mantle structure of Central, Eastern and Northern Europe, using the most recent tools for processing seismic ambient noise recorded at all available broadband seismic stations that operated in the region between 1999 and 2020. A new shear wave velocity model is constructed based on Rayleigh wave phase velocity dispersion curves obtained from empirical Green’s functions estimated between pairs of seismic stations that operated simultaneously. We build our model in two steps. We first use an LSQR inversion method to estimate isotropic and anisotropic phase velocity anomalies on a regular grid. Secondly, we use a trans-dimensional Markov-chain Monte Carlo method to invert the frequency-domain tomography to a depth-domain shear wave velocity model.

We discuss the seismic signature of the stacked orogenic fronts that successively reworked the margin of the EEC and confirm the existence of multiple offsets of shear wave velocity discontinuities in the lower crust beneath the TESZ and a general increase in seismic velocity in the mantle. These observations point to a thicker crust and a more depleted craton lithosphere on the eastern side of the TESZ. High velocity crustal wedges extend beyond the TESZ in the Polish section, supporting a flake tectonic style in this area, in which cratonic crust indents into younger European terranes accreted during collision with Avalonia.

In the Carpathian-Pannonian region, our model is consistent with a hyper-extended crust and thin lithosphere beneath the Pannonian Basin, in contrast to a thick low velocity lithosphere beneath Apuseni Mountains and the Transylvanian Basin, the locus of Mesozoic assembly of a series of continental fragments and ophiolite obduction. The stark difference between the lithospheres of the Pannonian and Transylvanian Basins may be relevant for testing the hypothesis of slab-roll back, generally thought to have driven extension throughout the region. The model also shows significant heterogeneities along the Carpathians, reflecting a changing collisional style along their sinuous track.

The major Precambrian units of the EEC exhibit contrasting seismic structure: while Fennoscandia is underlain by a relatively homogeneous crust with flat seismic discontinuities, Sarmatia comprises alternating high and low velocity layers, likely representing mafic plutons emplaced during multiple Proterozoic magmatic episodes. A large-scale south-dipping interface appears to extend beneath the Ukrainian Shield and the Crimean Peninsula, favoring a geodynamic regime dominated by horizontal tectonics in this area. The dipping discontinuity may be a preserved Precambrian suture zone or a deformational overprint due to younger orogeneses at the southern rim of Baltica.

CRediT authorship contribution statement

Laura Petrescu: Conceptualization, Formal analysis, Visualization, Writing – original draft, Investigation, Funding acquisition, Project administration. Felix Borleanu: Data curation, Formal analysis, Writing – review & editing. Emanuel Kästle: Software, Writing – review & editing. Randell Stephenson: Writing – review & editing. Anica Pla˘cinta˘: Data curation. Oleksandr Ivanovich Liashchuk: Data curation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
supported by MCID (Romanian Ministry of Research, Innovation and Digitalization). E.K. has received funding from the German Science Foundation (DFG, SPP-2017, Project KA 5371/1-1). Data from permanent stations used in this study were obtained from the Romanian National Seismic Network operated by NIEP, Main Centre for Special Monitoring of Ukraine, EIDA-ORFEUS, and IRIS seismological data archives. Most figures were made using GMT software (Wessel and Smith, 1998). We thank three anonymous reviewers for their valuable input which improved the original manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gr.2023.08.022.

References

