Glacier area change (1993-2019) and its relationship to debris cover, proglacial lakes, and morphological parameters in the Chandra-Bhaga Basin, Western Himalaya, India

VATSAL Sarvagya1,5* https://orcid.org/0000-0003-4576-0778; e-mail: sarvagyavsatalsjnu@gmail.com
AZAM Mohd Farooq1 https://orcid.org/0000-0002-4176-9807; e-mail: farooqazam@iiti.ac.in
BHARDWAJ Anshuman2 https://orcid.org/0000-0002-2502-6384; e-mail: anshuman.bhardwaj@abdn.ac.uk
MANDAL Arindan3 https://orcid.org/0000-0003-1616-6032; e-mail: arindan141@gmail.com
BAHUGUNA Ishmohan4 https://orcid.org/0000-0001-8651-6849; e-mail: imbisro@gmail.com
RAMANATHAN Alagappan5 https://orcid.org/0000-0002-3491-2273; e-mail: alrjnu@gmail.com
RAJU N. Janardhana5 https://orcid.org/0000-0001-7330-461X; e-mail: rajunj7@gmail.com
TOMAR Sangita Singh6 https://orcid.org/0000-0003-0633-5250; e-mail: singh.sangita15@gmail.com

*Corresponding author

1 Department of Civil Engineering, Indian Institute of Technology Indore, Simrol 453552, India
2 School of Geosciences, University of Aberdeen, King’s College, Aberdeen AB24 3FX, United Kingdom
3 Interdisciplinary Centre for Water Research, Indian Institute of Science, Bengaluru 560012, India
4 Space Application Centre, Ahmedabad 380015, India
5 School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
6 Department of Geography, Norwegian University of Science and Technology, Trondheim No-7491, Norway

Abstract: Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers. The present study maps the outlines of glaciers in the Chandra-Bhaga Basin (western Himalaya) for the years 1993, 2000, 2010, and 2019 using Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM), and Operational Land Imager (OLI) datasets. A total of 251 glaciers, having an area of > 0.5 km², were identified, which include 216 clean-ice and 35 debris-covered glaciers. Area changes are estimated for three periods: 1993-2000, 2000-2010, and 2010-2019. The total glacierized area was 996 ± 62 km² in 1993, which decreased to 973 ± 70 km² in 2019. The mean rate of glacier area loss was higher in the recent decade (2010-2019), at 0.036 km², compared to previous decades (0.029 km² in 2000-2010 and 0.025 km² in 1993-2000). Supraglacial debris cover changes are also mapped over the period of 1993 and 2019. It is found that the supraglacial debris cover increased by 14.1 ± 2.54 km² (15.2%) during 1993-2019. Extensive field surveys on Chhota Shigri, Panchi II, Patsio, Hamtah, Mulki, and Yuche Lungpa glaciers were carried out to validate the glacier outlines and supraglacial debris cover estimated using satellite datasets. Controls of various morphological parameters on retreat were also analyzed. It is observed that small, clean ice, south oriented glaciers, and glaciers with proglacial lakes are losing area at faster rates than other glaciers in the basin.

Keywords: Glacier; Area change; Debris cover; Morphology; Proglacial lake

1 Introduction

Himalayan, Karakoram, and Hindukush (HKH) are home to vast quantities of cryospheric elements, including snow and glaciers, which are major sources of fresh water in the region (Bolch et al. 2019). The meltwater from the snow and glaciers of the HKH mountain ranges, combined with rain and groundwater, serves as the source of fresh water that flows into the three rivers and their tributaries: the Indus, Ganges, and Brahmaputra. These perennial rivers support the livelihoods of over a billion people residing in mountainous regions and low-lying plains by meeting their agricultural practices, hydropower generation, and domestic water requirements (Azam et al. 2021). Therefore, it is crucial to periodically monitor the
Glacier inventories play a crucial role as a foundational reference for evaluating the effects of climate change on glacier mass balance and dynamics (Haeberli and Hoelzle 1995). Glacier inventories comprise mapping glacier outlines and their morphological characteristics, such as aspect, area, slope, elevation, etc., using satellite images and Digital Elevation Models (DEMs). These inventories provide essential information for estimating geodetic mass balances (Shean et al. 2020), hydrological modelling (Bliss and Hock 2014), glacier volume (Farinotti et al. 2019), and surface velocity (Dehecq and others, 2019) as well as geohazard assessment (Shugar et al. 2021; Sattar et al. 2023).

Various studies have examined the challenges in obtaining reliable glacier inventories (Racoviteanu et al. 2009, 2019; Paul et al. 2017; Sakai 2019), and identified differences in glacier outlines of the various inventories such as the RGI (RGI Consortium 2017), GAMDAM (Sakai 2019), and ICIMOD (Barjacharya and Shrestha 2011), which are extensively used for the glacier studies (Mölg et al. 2018; Sakai 2019). The primary reasons for these inconsistencies are as follows: 1) data availability, ensuring no interference from cloud cover; 2) steep accumulation areas of glaciers; 3) attached snow fields, dead ice, rock glaciers; 4) drainage location derived from the DEM; 5) different time periods for which the glacier inventories have been developed; and 6) Surface Debris Cover (SDC), which presents a significant hurdle in compiling glacier outlines (Paul et al. 2013; Mölg et al. 2018), especially in the western Himalaya, where debris cover constitutes approximately 21% of the total glacier area (Scherler et al. 2011). Besides debris cover, complex geomorphology of the Himalayan glaciers further adds to the uncertainty in glacier delineation (Bhambri and Bolch 2009; Bhardwaj et al. 2014).

Despite numerous constraints associated with using satellite images, extensive work has been conducted on glacier mapping in the HKH region utilizing optical satellite images such as Landsat and Sentinel (Kulkarni et al. 2007; Sakai 2019; Shukla et al. 2020; Bahuguna et al. 2021). The variations observed in these inventories can be ascribed to the aforementioned challenges in addition to other factors, such as spatial resolution of the dataset, time period considered, automated approaches used for glacier delineation, and the delineation of basin and sub-basin boundaries. The utilization of an automated approach for glacier delineation in the Himalaya introduces uncertainties due to the SDC and complex geomorphology characterizing glaciers in the region (Bhambri et al. 2011; Huang et al. 2021).

Numerous studies have extensively investigated glacier area changes of the Chandra and Bhaga basin glaciers. Pandey and Venkataraman (2013) reported a 2.5% area loss for 15 glaciers in the Chandra-Bhaga Basin between 1980 and 2010. Expanding their scope, Kulkarni et al. (2011) estimated area changes for 116 glaciers in Chandra and 111 glaciers in the Bhaga Basin between 1962 and 2001/2004, revealing area losses of 30% and 20% for Chandra and Bhaga basins’ glaciers, respectively during the same period. Patel et al. (2021) extended this analysis to 67 and 102 glaciers in Bhaga and Chandra basins, estimating area losses of 14.7% and 5.6%, respectively, between 1971 and 2018. Sahu and Gupta (2020) reported a 4.9% area loss between 1971 and 2016 for 169 glaciers in the Chandra Basin. They also described the role of morphological factors in glacier change, but their focus was limited to Chandra Basin glaciers. Garg et al. (2017) focused only on three glaciers in the Chandra Basin: Chhota Shigri, Sakchum, and Bara Shigri, reporting area losses of 1.26%, 3.17%, and 0.92%, respectively, between 1993 and 2014. Another study by Birajdar et al. (2014) reported a 1.63% loss of glacier area for the 231 glaciers in the Bhaga Basin.

Despite the extensive studies on glaciers in the Chandra-Bhaga Basin, a multi-decadal area change analysis including all glaciers is still lacking, supported by extensive fieldwork surveys. In addition to glacier area change estimation, it is crucial to understand the factors influencing area changes on glaciers in the basin. A significant gap remains in understanding areal changes on every glacier (area > 0.5 km²) in the Chandra-Bhaga Basin and comprehending the role of morphological factors and proglacial lakes on the areal changes of these glaciers. Furthermore, SDC quantification on every glacier in the Chandra-Bhaga Basin has not been addressed yet. Extensive fieldwork for validating glacier outlines and SDC is notably lacking in previous studies focused on glaciers in the Chandra-Bhaga Basin. Addressing these challenges,
the objectives of the present study are to extend the current knowledge about the Chandra-Bhaga Basin by
1) estimating the multitemporal glacier area change for three periods: 1993-2000, 2000-2010, and 2019-2019
2) producing an SDC dataset using field datasets, and 3) analysing the influence of geomorphic
features (glacier size, slope, elevation, SDC, and aspect) and proglacial lakes on spatiotemporal glacier
changes.

2 Study Area

The Chandra-Bhaga Basin is located in the Lahaul-Spiti district in Himachal Pradesh (western
Himalaya), India (Fig. 1). The Chandra and Bhaga rivers, two sub-basins of Chandra-Bhaga Basin, meet at
Tandi village and then flow as the Chenab River (Fig. 1). A total of 17 large hydropower projects are
proposed within the Chenab Basin. Among these, the Chhatu, Seli, Sachikhas, and Purthi projects are
specifically reliant on the discharge from the Chandra and Bhaga rivers (Sandrp 2023). Manali is the
nearest town to the Chandra-Bhaga Basin.

The climate of this region is governed by the Western Disturbances during winter and the Indian
Summer Monsoon during summer (Booikhaged and Burbank 2010). Nearly 70% of annual precipitation in
this sub-basin occurs in the form of snowfall in winter, while 30% falls during summer; therefore, the
region is characterized as the monsoon-arid transition zone (Mandal et al. 2020). Chhota Shigri (Mandal et
al. 2020; Srivastava and Azam 2022), Sutri Dhaka (Oulkar et al. 2022), Hamtah (Kumar et al. 2016), and
Patsio (Anchuk et al. 2021) are the most studied glaciers in the Chandra-Bhaga Basin.

3. Data and Methodology

3.1 Dataset

Various satellite datasets from different years have been used in the present study for glacier boundary
delineation (Appendix 1). Landsat data rectified at the L1 processing level (radiometrically corrected and
orthorectified) were used for the glacier outline delineation. While SRTM DEM was used for basin
boundary delineation. Additionally, very-high resolution images from Google Earth and field surveys
photographs were used to delineate the glacier boundary, especially in the accumulation zone. In two
instances, specifically for the years 1993 and 2010, we encountered challenges with obtaining a cloud-free
dataset (less than 15%) for certain regions of the basin. Consequently, we opted to utilize datasets from 1992
and 2011 for those respective years for certain regions. RGI 6.0 (RGI Consortium 2017) and GAMDAM
(Sakai 2019) were used for the comparison with our delineated glacier outlines in the Chandra-Bhaga Basin.

3.2 Glacier outline delineation

Different methods for glacier boundary delineation, such as band rationing and thresholding (Paul et
al. 2004), supervised classification, and the Normalized Difference Snow Index (NDSI) have been used for
delineation (Gratton et al. 1990; Aniya et al. 1996; Sidjak and Wheate 1999; Racoviteanu et al. 2008) of the
glaciers. Delineation of debris-covered glaciers poses a significant challenge due to the complex nature of
their surfaces. Numerous studies have addressed this challenge by exploring automated delineation
methods, including those based on NDSI and Band ratio techniques (Bhardwaj et al. 2014; Mölg et al. 2018;
Holobâcă et al. 2021). Despite these efforts, distinguishing the precise extent of debris-covered glacier ice
remains problematic, primarily attributed to the similar spectral signatures exhibited by the glacier's
surrounding debris (Bhambri and Bolch 2009). In the present study, all the glaciers with an area > 0.5 km²
have been manually delineated, which include both clean-ice and debris-covered glaciers. The primary
rationale for adopting a threshold of 0.5 km² was to mitigate potential uncertainties arising from glacier
size variability, which has been estimated to be ~12 to 15% for glaciers with an area less than 0.5 km² (Soheb
et al. 2022). It has been assumed that the upper boundary of glaciers has not changed significantly
(Bhambri et al. 2011). The snouts of all glaciers, encompassing both clean ice and debris-covered portions,
were identified through meticulous visual inspection. This process involved focusing on the stream's origin
point and discerning the shadow cast by the ice wall. The glacier outlines for clean ice as well as debris-
covered glaciers were subsequently digitized manually through visual interpretation of the satellite dataset.

The major challenges for glacier delineation are: 1) debris cover, 2) cloud cover, 3) snow cover, and 4)
shadow. Debris cover on the glacier is primarily a result of the steep topography that intermittently deposits
Debris-covered glaciers can be identified based on certain features such as a thin debris cover (< 1 m), large melt-out depressions (thermokarst), supraglacial lakes, and a chaotic hummocky surface (Bodin et al. 2010). Another challenge is the small solar incidence angle at higher altitudes, which minimizes topographic contrast around the terminus of the glacier. To counter these challenges, manual digitization becomes imperative, ensuring minimum error and better accuracy (Kulkarni et al. 2007; Bhambri and Bolch 2009). To this end, Google Earth imagery was used to further delineate the glacier boundary (Mölg et al. 2018). Minimal interference from cloud cover (less than 15%) was ensured. To minimize the snow cover related errors, multiple datasets were downloaded for peak ablation season, viz. June, July, August, September, and October. All the datasets were analyzed, and only the images with minimum snow cover on the glacier surface were selected. Another challenge is mountain shadows, which decrease the reflectance values. This is a significant problem in high-altitudes regions. To counter these problems, different bands of Landsat were used, and better results were obtained in the blue band (0.45-0.51 µm) of Landsat (Paul et al. 2002). Further, as highlighted earlier, Google Earth imagery was also used to improve the accuracy of dataset. For the estimation of glacier area change, the final area was subtracted from the initial area over the specified study duration.

3.2.1 Uncertainty related to glacier delineation

There are primarily three types of uncertainties associated with glacier delineation. Firstly, the uncertainty of manually digitized glacier outline which is a fixed uncertainty (Mölg et al. 2018). Secondly, the uncertainty determined by the input image’s spatial resolution, which is calculated with the buffer-based estimate (Granshaw and Fountain 2006; Bolch et al. 2016). Another source of uncertainty is related to the workload associated with the manual digitization of the glaciers (Paul et al. 2017). This type of uncertainty arises due to the multi-temporal digitization of glaciers, stemming from the tiredness of analysts involved in the digitization process (Paul et al. 2017; Mölg et al. 2018).

To address all these sources of uncertainty, we first estimated fixed uncertainty of manually digitized glacier outline, which is ± 2% and ± 5% of glacier area for clean ice and debris-covered glaciers, respectively, as an upper boundary estimate, while excluding the overlap between the two surface types (Paul et al. 2011, 2013). Next, we estimated the buffer method uncertainty (Granshaw and Fountain 2006) with ± 1/2 pixel and ± 1 pixel for clean-ice and debris-covered glaciers, respectively (Mölg et al. 2018). Lastly, to enhance overall accuracy and quantify the uncertainty related to workload, we performed multiple digitization of the glaciers to estimate uncertainty. Furthermore, we conducted comprehensive field surveys on glaciers, including Chhota Shigri, Panchi II, Mulkila, Yoche Lungpa, Patsio, and Hamtah, to validate the glacier boundaries and termini positions manually digitized based on satellite datasets in this study. Additional details regarding these field surveys can be found in Section 3.4.

3.2.2 Uncertainty of the area change

Uncertainty in area change was estimated using the following equation (Hall et al. 2003; Wang et al. 2009):

\[U_{area} = 2 \times U_{retreat} \times V \]

(1)

Here \(U_{area} \) is the uncertainty in the area change estimation, \(U_{retreat} \) is the uncertainty in the area estimation, and \(V \) is the image pixel resolution.

3.3 Supraglacial debris cover estimation

For the estimation of the SDC, unsupervised classification, supervised classification, normalized difference snow index (NDSI) and principal component analysis (PCA) techniques have been used in previous studies (Aniya et al. 1996; Sidjak and Wheate 1999; Kääb 2002; Racoviteanu et al. 2008). However, to avoid any confusion between SDC and proglacial debris, we exclusively employed the supervised maximum likelihood classification (MLC) method (Gratton et al. 1990) within the delineated glacier extent. We relied on the MLC because this method is well established for the Himalayan glaciers with an accuracy of ~ 94 % to 98 % (Yan et al. 2014), when calculated by ArcGIS software. MLC was also tested for the glaciers in the Chandra-Bhaga Basin, resulting in an accuracy range of 82% to 95% for estimating SDC (Shukla et al. 2009). Specifically, we utilized band 2 (green), 3 (red), and 4 (NIR) for
Landsat 5 (TM) and band 3 (green), 4 (red), and 5 (NIR) for Landsat 8 (OLI) to estimate the SDC. By employing the same frequency bands as the previous study (Shukla et al. 2009), we aimed to ensure consistency and comparability in our analysis. In the MLC, a pixel is classified based on its likelihood of belonging to a specific class, which is described by the mean and covariance of a normal distribution in the space of multispectral features. For the classification process, we generated four training samples, namely snow, ice, ice mixed debris, and debris. These training samples were based on the field surveys done on the selected glaciers of the Chandra-Bhaga Basin. A detailed discussion of these training samples is provided in the subsequent section, 3.3.1. Landsat dataset for the year 1993 and 2019 were used to estimate the SDC change (Appendix 1).

3.3.1 Accuracy assessment of MLC method for SDC estimation

The confusion matrix, derived from the image map and classified data, was generated for accuracy assessment (Janssen and van der Wel 1994). The coefficient of agreement between the classified image and ground reference data was calculated using Kappa (Ismail and Jusoff 2008). The Kappa value ranges between 0 and 1, with 1 indicating complete agreement between the two datasets and 0 indicating agreement due to chance alone (Fitzgerald and Lees 1994). Equations (2) and (3) quantify accuracy and Kappa coefficient.

\[
\text{Overall accuracy} = \frac{\text{Total number of correctly classified pixels}}{\text{Total number of reference pixels}} \tag{2}
\]

\[
\text{Kappa coefficient} = \frac{(TS \times TCS) - \sum (\text{Column total} \times \text{Row total})}{TS^2 - \sum (\text{Column total} \times \text{Row total})} \tag{3}
\]

where TS = total sample, TCS = total correctly classified samples, Column total, and Row total refer to sum of columns and rows in the Table 1 for each respective class.

To ensure high accuracy of the MLC, on-field visual inspection is essential (Paul 2000). A total of 154 ground observation points were sampled and compared to the remotely classified satellite imagery of Chhota Shigri, Patsio, Panchi II, Mulkiila, Hamtah, and Yoche Lungpa glaciers (Fig. 2, Table 1). 70% of these ground observations (107) were used to train the remote classification, while 30% (47) were used to evaluate the accuracy of remotely classified Landsat dataset. The ground observations covered the entire range from the glacier snout up to the accumulation zone. The presence of debris, ice, ice mixed debris, and snow was recorded during these surveys using a Garmin eTrex 30X GPS, with a team of three co-authors involved in the data collection process. Further information, including specific survey dates, is elaborated in Section 3.4.

3.4 Field survey for glacier outline

Rigorous field surveys were conducted on the following glaciers: Hamtah in August 2017, Chhota Shigri in August 2019, Patsio in August 2019, Mulkiila in June 2017, Yoche Lungpa in June 2017, and Panchi II in August 2019. It was observed that Mulkiila, Yoche Lungpa, Hamtah, and Panchi II glaciers have a significant amount of SDC (Fig. 2).

During our field surveys, we also measured the termini/snout position of all the glaciers using a handheld Garmin eTrex 30X GPS, which has a position accuracy of ± 3 m. We also conducted surveys of the lateral moraines of the glaciers, which are one of the major sources of uncertainty in identifying the boundaries of debris-covered glaciers as discussed in section 3.2. The inclusion of these two surveys (termini and moraines) enhances the accuracy of our glacier boundary outline dataset (Fig. 2).

In addition, we conducted surveys of the accumulation areas of Chhota Shigri, Hamtah, Panchi II, and Patsio glaciers to enhance the accuracy of the glacier boundary delineation in the accumulation zone and to assess any uncertainties related to avalanches in boundary identification (Fig. 2). To minimize the uncertainty arising from the time difference between the satellite scenes used in the study, we ensured that the scenes fell within a maximum time gap of ± 1 year from the target year (Appendix 1) as mentioned in section 3.1. This approach aids in mitigating potential uncertainties associated with the temporal gap between the satellite images (Mög et al. 2018).

3.5 DEM and its derivatives

...
SRTM DEMs have been utilized extensively for glacier-related studies (Berthier et al. 2016; Brun et al. 2017; Mukherjee et al. 2018; Ramsankaran et al. 2018; Shean et al. 2020; Hugonnet et al. 2021). We utilized the SRTM DEM (Appendix 1) to estimate the elevation range, aspect, and slope of the delineated glaciers in the present study. These datasets were employed to assess the influence of these morphological factors on the area change of glaciers in the Chandra-Bhaga Basin.

3.6 Proglacial lakes

Proglacial lakes within the Chandra-Bhaga Basin were identified through manual analysis of Google Earth imagery using QGIS. Special attention was given to confirming the presence of these proglacial lakes for both the years 1993 and 2019. This thorough verification was conducted to comprehensively assess the influence of proglacial lakes on the area changes observed for glaciers within the Chandra-Bhaga Basin.

3.7 Linear analysis Multivariate Linear model

In the univariate linear analysis, we implemented multivariate linear model, a statistical model used to analyze the relationship between multiple independent variables (glacier size, minimum elevation, slope, aspect, and SDC) and a single dependent variable (Area change between 1993-2019). The Multivariate linear models determine which independent variables have a significant influence on the dependent variable, and the relative contribution of each independent variable. The equation for multivariate linear regression is:

\[Y = \beta_0 + \beta_1X_1 + \beta_2X_2 + \ldots + \beta_nX_n + \epsilon \]

Where: \(Y \) is the dependent variable, \(\beta_0 \) is the intercept, \(\beta_i \) to \(\beta_n \) are the coefficients for the independent variables \(X_1 \) to \(X_n \), respectively, \(X_1 \) to \(X_n \) are the independent variables, \(\epsilon \) is the residual error.

The standard approaches used for model selection, such as forward selection and backward elimination (Akaike 1974), involve evaluating the model by adding or removing variables until an optimal combination is reached to remove redundant variables (minimum elevation, SDC, and aspect) (Hocking 1976).

3.8 Climate data

The climate dataset used in this study includes the fifth generation of the European Reanalysis (ERA5) 2m air temperature (Hersbach et al. 2020) and Indian Meteorological Department (IMD) precipitation data (Pai et al. 2014). ERA5 is a global atmospheric reanalysis dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). It provides hourly estimates of various meteorological variables, such as temperature, pressure, wind speed, and precipitation, at a spatial resolution of 0.25 degrees. In addition to ERA5 data, the study also incorporates precipitation data from the IMD. The IMD provides detailed information on daily precipitation at a spatial resolution of 0.25 degrees.

4 Results and Discussion

4.1 Morphological characteristics of glaciers

We identified 251 glaciers larger than 0.5 km² in the Chandra-Bhaga Basin. The glacierized area for 251 outlined glaciers ranges from 0.5 to 131.3 km², with an average glacier area of 3.5 km². Only 58 glaciers had an area greater than 3.5 km², indicating a prevalence of smaller-sized glaciers in the sub-basins. Out of the 251 outlined glaciers, 42 glaciers range in area from 3.5 km² to 10 km², while only 16 glaciers have an area > 10 km². Bara Shigri is the largest glacier in the basin, with an area of 131.3 ± 9.5 km², followed by Samundra Tapu and Mulkila glaciers with areas of 81.7 ± 5.1 and 30.7 ± 2.5 km², respectively. There are a total of 71 north-facing glaciers, 31 northeast-facing glaciers, 32 east-facing glaciers, 25 southeast-facing glaciers, 37 south-facing glaciers, 21 southwest-facing glaciers, 15 west-facing glaciers, and 19 northwest-facing glaciers. These represent the principal directions of the glaciers in the Chandra-Bhaga Basin. The glaciers’ slopes in the basin vary from 9° to 36°, with a mean slope of 18.7°. Variation in the mean elevation for the glaciers ranges from 4148 to 5678 m a.s.l., with a mean elevation of 5211 m a.s.l. Debris cover on the glacier varies from 0 to 62%, relative to the entire glacier area. A threshold of 15% or more has been considered to qualify a glacier to be called as debris-covered glacier in the Chandra-Bhaga Basin (Xiang et al. 2018; Brun et al. 2019), and based on these criteria, a total of 35 debris-covered glaciers have been identified in our study. A
total of 11 proglacial lakes have been identified, with five lakes associated with clean glaciers and six lakes associated with debris-covered glaciers.

4.2 Uncertainty of glacier outline

Cumulative fixed uncertainties estimated for all the glaciers in the basin ranged between ± 27 km² and ± 29 km² (2% of total glacier area), while the cumulative uncertainty estimated for all the glaciers in the basin using the buffer method ranged between ± 62 km² and ± 70 km² (6% total glacier area). The mean fixed uncertainty ranges from 0.11 km² to 0.12 km², whereas the mean uncertainty using the buffer method ranges between 0.25 km² and 0.28 km². To address the possibility of double-counting uncertainty in areas where neighboring glaciers overlap, particularly within the buffer zone, where accumulation zones overlap, we implemented a unified approach to uncertainty assessment for these glacier complexes (Mölg et al. 2018). Additionally, multiple digitization was conducted, resulting in a ± 4% standard deviation (averaged over all experiments). This high value highlights the mapping challenges in the Himalaya caused by cloud cover, SDC, shadows, and snow cover. We evaluated the uncertainty in the digitization of small glaciers (less than 1 km²) that had a significant portion of their surface shrouded in shadow and a considerable portion covered in barely traceable SDC and found it to be ± 6% of the glacier area mapped. Such cases are extremely rare in our database and have no bearing on the level of uncertainty. It has been reported previously that analyst interpretation for debris-covered glaciers and glacier parts in shadow can differ up to 50% (Paul et al. 2013, 2015). In addition, we quantified the uncertainty of the glacier outlines through field surveys conducted on Chhota Shigri, Patsio, and Panchi II glaciers in the year 2019, as detailed in Section 3.4. The uncertainties for the glacier outlines in 2019 were determined as 0.02 km², 0.008 km², and 0.03 km², respectively, for Chhota Shigri, Patsio, and Panchi II glaciers, respectively. These uncertainties were notably lower compared to other sources of quantified uncertainties for the same glaciers. In the present study, we find that for such glaciers manual digitization is favorable.

4.3 Glacier area change

The total area of 251 glaciers decreased from 996 ± 62 km² in 1993 to 973 ± 70 km² in 2019, an area shrinkage of 23 ± 8 km², equivalent to 0.09% year⁻¹. To understand the rate of changes in area of glaciers, the time span of 27 years has been split into three intervals: 1993-2000, 2000-2010, and 2010-2019. In year 2000, the area was mapped as 989 ± 68 km², and in 2010 it was mapped as 982 ± 66 km² (Table 2). The mean area loss per glacier in the first interval was observed as 0.025 ± 0.001 km², in second interval as 0.029 ± 0.001 km², and in third interval as 0.036 ± 0.002 km². The total mean area loss was 0.09 ± 0.002 km² between 1993-2019. Table 3 presents the decadal area changes for 13 glaciers as mentioned in Fig. 1. Additionally, Fig. 3 illustrates the area change near the snout of Hamtah, Chhota Shigri, Samundra Tapu, Batal, Mulkila, and Panchi I glaciers. Of these, Panchi I and Samundra Tapu glaciers have a lake at their snout.

4.4 Comparison with RGI and GAMDAM glacier outline

We compared the outlines of selected glaciers within the Chandra-Bhaga Basin (Fig. 1) to those outlined in the RGI 6.0 (RGI consortium 2017) and GAMDAM (Sakai 2019) inventories (Fig. 4). Several issues related to the gap area, differences in mapping methods, and skill of the analysts involved lead to misrepresentation and limit the accuracy of inventories. For example, RGI 6.0 (RGI consortium 2017) and GAMDAM (Sakai 2019) overestimate parts of the extent in some glaciers including, Chhota Shigri (Fig. 4B), Gepang Gath (Fig. 4D), Panchi I (Fig. 4E), and Sutri Dhaka (Fig. 4K) glaciers, while underestimating for others, such as Batal (Fig. 4H), Bara Shigri (Fig. 4A), and Panchi II (Fig. 4F). The total glacier area estimated using our glacier outline is approximately 26% and 9% lower compared to the RGI 6.0 and GAMDAM (Sakai 2019) inventories, respectively. It has been observed previously that the RGI 6.0 inventory has overestimated glacier area by ~100% in the North Patagonian Andes (Zalazar et al. 2020), ~10% in China (Li et al. 2022), and ~14% for Ladakh region (Soheb et al. 2022), which may be attributed to uncertainties associated with the misinterpretation of seasonal snow cover and SDC (Pfeffer et al. 2014). Another potential factor could be the methodology used and absence of glacier changes over time, possibly arising from the utilization of imagery captured over a broad span of acquisition years employed in creating RGI 6.0 and GAMDAM inventories. The present study is centered on a smaller spatial scale i.e., Chandra-Bhaga Basin only, enabling the generation of more precise glacier outlines. Additionally, it offers glacier
2016) located in valleys with steep walls that experienced a significant increase in the area of firm and ice.

2016, namely Chhota Shigri, Sakchum, and Bara Shigri glaciers (Fig. 5). It is evident that in 2019, a distinct medial moraine and debris cover on the eastern flank is prominently visible on the Chhota Shigri Glacier. On the other hand, for the Sakchum and Bara Shigri glaciers, the presence of SDC has increased, and SDC is more visible towards the accumulation zone of the glaciers (Fig. 5), which agrees with the study by Garg et al. (2017).

In a previous study conducted on the 185 glaciers in the Chandra-Bhaga Basin, it was estimated that there was an increase in SDC of approximately 1.83 ± 1.6 km² between 1994 and 2009 (Gaddam et al. 2016). The observed increase in SDC estimated by Gaddam et al. (2016) was comparatively lower than our findings. This discrepancy can be attributed to differences in temporal scale and the number of glaciers under observation in both the studies. The present study specifically focuses on SDC changes for 251 glaciers over the period 1993-2019. In contrast, Gaddam et al. (2016) assessed SDC changes for a smaller set of 185 glaciers, limited to the period between 1994 and 2009. The study conducted by Garg et al. (2017) focused on specific glaciers within the Chandra-Bhaga Basin, namely Chhota Shigri, Sakchum, and Bara Shigri glaciers. They estimated the SDC change on Chhota Shigri, Sakchum, and Bara Shigri glaciers as 0.5 km², 1.0 km², and 4.8 km², respectively, between 1993 and 2014. Their findings align with our research, indicating an observed increase in SDC on these selected glaciers.

The increase in SDC on the Chandra-Bhaga Basin glaciers can be attributed to multiple factors, including continuous glacier melting (Shean et al. 2020; Mandal et al. 2020; Angchuk et al. 2021) over the past few decades. The melting of glaciers has resulted in the exposure of lateral and medial moraines, which have contributed debris to the surface of the glacier. Furthermore, snow and rock avalanches serve as direct sources of debris on the glacier surface. During the field survey of Panchi II and Chhota Shigri glaciers, our observations revealed occurrences of both rock and snow avalanches on these glaciers. The continuous supply of rocks was observed originating from the lateral walls, depositing onto the glacier surface through these avalanches. It has also been reported previously that glaciers located in valleys with steep walls that facilitate a continuous supply of debris through avalanches are more likely to exhibit higher debris cover (Garg et al. 2017).

4.5 Supraglacial debris cover change

We have compiled an up-to-date dataset of the debris cover for glaciers in the Chandra-Bhaga Basin, delineated for the years 1993 and 2019. This dataset represents a comprehensive compilation that quantifies the changes in SDC in the Chandra-Bhaga Basin. Total SDC in the Chandra-Bhaga Basin was estimated to be 91.4 ± 16.4 km² in 1993, which increased to 105.5 ± 18.9 km² in 2019, indicating a total increase of 14.1 ± 2.54 km² over the study period. Table 4 entails the SDC changes for some representative glaciers (marked in Fig. 1) in the basin. We highlighted the changes in SDC for the Chhota Shigri, Sakchum, and Bara Shigri glaciers (Fig. 5). This discrepancy can be attributed to differences in temporal scale and the number of glaciers under observation in both the studies. The present study specifically focuses on SDC changes for 251 glaciers over the period 1993-2019. In contrast, Gaddam et al. (2016) assessed SDC changes for a smaller set of 185 glaciers, limited to the period between 1994 and 2009. The study conducted by Garg et al. (2017) focused on specific glaciers within the Chandra-Bhaga Basin, namely Chhota Shigri, Sakchum, and Bara Shigri glaciers. They estimated the SDC change on Chhota Shigri, Sakchum, and Bara Shigri glaciers as 0.5 km², 1.0 km², and 4.8 km², respectively, between 1993 and 2014. Their findings align with our research, indicating an observed increase in SDC on these selected glaciers.

The increase in SDC on the Chandra-Bhaga Basin glaciers can be attributed to multiple factors, including continuous glacier melting (Shean et al. 2020; Mandal et al. 2020; Angchuk et al. 2021) over the past few decades. The melting of glaciers has resulted in the exposure of lateral and medial moraines, which have contributed debris to the surface of the glacier. Furthermore, snow and rock avalanches serve as direct sources of debris on the glacier surface. During the field survey of Panchi II and Chhota Shigri glaciers, our observations revealed occurrences of both rock and snow avalanches on these glaciers. The continuous supply of rocks was observed originating from the lateral walls, depositing onto the glacier surface through these avalanches. It has also been reported previously that glaciers located in valleys with steep walls that facilitate a continuous supply of debris through avalanches are more likely to exhibit higher debris cover (Garg et al. 2017).

4.6 Uncertainty in debris cover estimation

The overall accuracy of MLC classification was found to be 90% (based on eq. 2 and Table 1). The individual accuracies for debris, ice, snow, and ice mix with debris were 95%, 90%, 94%, and 82%, respectively. These accuracy values are remarkably high, considering the intricate geomorphology of the glaciers in the Chandra-Bhaga Basin. The Kappa value of 0.87 (estimated using eq. 3 and Table 1) indicates a strong agreement between the remotely classified image and the ground validation points (Table 1). The maximum uncertainty was found to be approximately 18% for the class "ice mix with debris." To ensure the accuracy of our estimate, we assigned this value as the uncertainty in the SDC area estimation using MLC. As a result, the total uncertainty in SDC was ± 16.4 km² in 1993 and ± 18.9 km² in 2019.

4.7 Factors governing glacier dimensional change

In this section we investigated the role of morphological parameters (glacier size, slope, elevation, SDC, aspect, and proglacial lake) on the estimated glacier area changes.

4.7.1 Impact of glacier size
It is interesting to note that all glaciers with an area loss > 20% are clean ice glaciers with an area < 2 km². The influence of glacier area is clearly evident on glaciers with an area < 5 km², as the number of glaciers with an area < 1 km² increased from 62 to 72 during the period of study, while the number of glaciers with an area > 5 km² remained the same. Taking this into consideration, we made glacier classes using 5 km² glacier area intervals. However, large glaciers also retreated, albeit at a smaller rate as compared to smaller glaciers. In Fig. 6a, the columns represent the mean percentage of area change for different glacier area classes (0-5, 5-10, ..., 30-35 km²) during different time periods. The analysis shows that the mean area change is higher for small glaciers, with the highest change observed in the area class of 0-5 km², throughout the period of 1993-2019. The changes are most prominent during the recent decade of 2010-2019 as compared to previous decades. Previous studies in other regions have reported that small glaciers have deglaciated at a faster rate than larger glaciers. Bhambri et al. (2011) found a higher rate of area loss for small glaciers (< 1 km²) than large glaciers between 1968 to 2006 in the Garwal Himalaya. A similar trend was observed for glaciers in the Miyar Basin (Patel et al. 2018). The higher shrinkage of smaller glaciers is probably due to higher mass wastage, as the smaller glaciers are more sensitive to changing climate (Paul et al. 2002; Jin et al. 2005).

4.7.2 Impact of SDC

The effect of presence of SDC in minimizing glacier area loss is evident from the scatterplot (Fig. 6a). Due to the majority of glaciers in the Chandra-Bhaga Basin having an area below 4 km² (mean glacier area in 1993), we have categorized them into classes (Fig. 6a) based on their size to better comprehend the influence of SDC on spatiotemporal changes. The area change is higher in case of clean ice glaciers (max = 27.86%) compared to debris-covered glaciers (max = 16.44%). Similarly, in case of larger glaciers (> 4 km²), excluding Samundra Tapu and Bara Shigri glaciers, we find clean ice glaciers (max = 5.38%) underwent greater area change than debris-covered glaciers (max = 4.23%). Total glacier area for clean ice (debris-covered) glaciers was 702.4 ± 38 km² (293.9 ± 25 km²) in 1993 and decreased to 682 ± 36 km² (290.3 ± 25 km²) in 2019. Also, the mean glacier area for clean ice (debris-covered) glaciers changed from 3.3 (8.16) km² in 1993 to 3.17 (8.06) km² in 2019. Despite their comparatively smaller numbers, mean glacier area of the debris-covered glaciers is greater than clean-ice glaciers, which shows greater variability in case of debris-covered glaciers (Standard deviation, σ = 21.62) compared to clean-ice glaciers (σ = 6.81). While comparing individual debris-covered glaciers with adjacent clean-ice glaciers of similar orientation, it has been observed that clean-ice glaciers have lost more area (Fig. 7). For instance, Sutri Dhaka and Batal are adjacent glaciers having same orientation (No. 6 and 5 in Fig. 1), and Batal Glacier covered with debris (27% SDC) showed less area loss than clean-ice Sutri Dhaka Glacier (Table 5, Fig. 7). Similarly, among Chhota Shigri and Sakchum glaciers (adjacent glaciers with similar orientation, No. 3 and 2 in Fig. 1), Chhota Shigri is considered a clean-ice glacier, with only 12% of its total surface area covered by debris at its snout (Table 5). Its area loss was greater than the Sakchum Glacier, which has 24% of its surface area covered by the debris. Similar results were obtained on comparing Patsio (clean ice) and Panchi II (debris-covered) glaciers having similar orientation (No. 13 and 11 in Fig. 1), where area loss for the Patsio Glacier is higher than Panchi II Glacier (Table 5, Fig. 7).

It is evident that debris-covered glaciers are experiencing a slower rate of shrinkage compared to clean-ice glaciers. Similar findings have been observed in the other parts of the Himalaya (Scherler et al. 2011b; Basnett et al. 2013; Shukla and Qadir 2016; Bahuguna et al. 2021). Generally, debris-covered glaciers have a gentle slope in their ablation area and an avalanche-fed accumulation part (Herreid et al. 2015). Such gentle slope reduces glacier velocity to a minimum at the terminus, affecting glacier retreat (Scherler et al. 2011a). Apart from this, ice loss near the terminus of the debris-covered glaciers is minimal because of debris pressure, which compacts the ice, preventing detachment from the glaciers’ surface, thereby minimizing the retreat (Salerno et al. 2017).

4.7.3 Impact of elevation

Fig. 6b shows the glacier area change with respect to glacier elevation. In the Chandra-Bhaga Basin, glacier elevation (Z) ranges from 3533 to 5374 m a.s.l., and the mean minimum elevation is 4797 m a.s.l. In the minimum elevation range of Z < 5000 m (Z > 5000 m), 44% (13%) of all glaciers have an area change of < 5%, whereas 43% (7.2%) have an area change > 10% between 1993-2019. The mean elevation for the clean ice glaciers was 5251 m a.s.l., while for the debris-covered glaciers it was 4956 m a.s.l. We observed that the snout elevation of most debris-covered glaciers is lower compared to that of clean-ice glaciers. The
present study aimed to examine the role of minimum elevation (snout elevation) on glacier shrinkage, but no definitive relationship was found. These findings are consistent with previous studies conducted in the Chandra-Bhaga Basin (Das and Sharma 2019). In addition, similar to the present study, several previous studies on the Himalayan glaciers have also reported no significant relationship between altitude and glacier area change (Chand and Sharma 2015; Salerno et al. 2017; Zhao et al. 2020; Patel et al. 2021).

4.7.4 Impact of slope

Glaciers with an area larger (smaller) than the mean glacier area of 4 km² had mean slope of 16° (20°). Irrespective of the elevation range, steeper slopes correspond to greater area change (Fig. 6b), which is also reported previously in the Chandra-Bhaga Basin (Pandey and Venkataraman 2013) and in Warwan-Bhut region, which is a part of Chenab Basin (Brahmabhatt et al. 2017). The glaciers’ average slope varies in different areas; for example, the accumulation area is steep for all glaciers while debris-covered areas have gentle slope. This observation suggests that the influence of individual factors, such as slope, on the retreat of glaciers is not distinctly evident.

4.7.5 Impact of aspect

Glacier area change is maximum (> 25%) for glaciers facing south (southwest - southeast) (SW - SE), as seen in Fig. 6c. Average area loss for south (north) facing glaciers was 0.11 ± 0.007 km² (0.08 ± 0.004 km²). However, the highest area change (27.86%) corresponds to an east facing glacier, which can be attributed to the presence of a proglacial lake at the snout. We observed that, excluding the lake terminating glaciers, generally in Chandra-Bhaga Basin glaciers having south, southeast, and southwest orientations are shrinking faster than the other glaciers having other aspects (Fig. 6c). In agreement, in the Jankar Chhu watershed, it has been observed that south facing glaciers are retreating faster than other glaciers (Das and Sharma 2019). Similar findings have been observed in various regions, such as the Sagarmatha National Park region, the Kanchenjunga-Sikkim area, and the Baspa Basin in the western Himalaya, where south-facing glaciers have been observed to retreat at a faster rate (Salerno et al. 2008; Racoviteanu et al. 2015). This may be attributed to less solar radiation availability for the north facing glaciers. Various studies state that south facing glaciers, even in complex local topography, are more likely to receive more solar heat, available for glacier melting, thereby accelerating retreat (Fujita and Ageta 2000; Oliphant et al. 2003; Azam et al. 2014).

4.7.6 Impact of proglacial lakes

A total of 11 glaciers with proglacial lakes have been identified. Out of these, 9 were associated with clean-ice and 2 with debris-covered glaciers. The total area loss for these 11 glaciers was 2.03 ± 0.42 km² between 1993 and 2019, with a mean area loss of 0.19 ± 0.006 km² per glacier. This is higher compared to the mean area loss for glaciers without proglacial lakes, which is 0.08 ± 0.002 km². In the case of Panchi II and Panchi I glaciers, which have similar SDC and glacier size, it is notable that only Panchi I Glacier features a lake at its snout. The observed area loss between 1993 and 2019 for Panchi II Glacier was estimated to be 0.06 ± 0.001 km²/year⁻¹, while for Panchi I Glacier, the area loss was measured at 0.10 ± 0.001 km²/year⁻¹, which exemplifies the effect of the proglacial lake on the glacier area change.

Calving is an important component of mass loss of a glacier terminating into proglacial lakes (Sakai et al. 2009; Maurer et al. 2016). The heat absorption by the proglacial lake water is mostly responsible for the glacier mass loss at the snout, contributing towards higher snout retreat (Bolch et al. 2012; King et al. 2018). Such a high percentage of area loss is significant, making such glaciers vulnerable to changing climate and a threat to downstream communities through possible GLOF. For example, Gepang Gath Glacier’s proglacial lake poses an important risk, given that it is expected to significantly increase in size, and an associated GLOF could have a severe impact on communities downstream (Sattar et al., 2023).

4.8 Heterogeneity in retreat

Glaciers are intricate systems influenced by a multitude of morphological parameters, including elevation, slope, aspect, size, and SDC, as previously discussed. While each of these parameters may individually contribute to the dynamics of a glacier, comprehending their combined impact on
spatiotemporal changes can be challenging. Relying solely on a single morphological parameter may be inadequate for explaining the observed spatiotemporal changes in glaciers within the Chandra-Bhaga Basin.

Considering a combination of morphological parameters provides a more holistic perspective on the factors influencing glacier area changes. For example, glaciers at lower elevations tend to experience greater area loss compared to those at higher elevations due to the influence of higher temperatures. However, the retreat of glaciers at lower elevations can be attenuated by the presence of SDC, which acts as an insulating layer. This insulation effect can potentially slow down the rate of retreat in these lower elevation glaciers.

4.8.1 Heterogeneous nature of glaciers due to morphological parameters

It has been found that SDC, slope, elevation, and avalanche explain a maximum 8% of glacier mass balance variability (Brun et al. 2017) in Lahaul- Spiti region of the western Himalaya. We have also quantified the role of the SDC, glacier size, minimum elevation, slope, and aspect on the spatiotemporal changes between 1993 and 2019 for the Chandra-Bhaga Basin glaciers. It has been found that aspect, SDC, and minimum elevation are not good predictors of spatiotemporal changes on the Chandra-Bhaga Basin glaciers in comparison to the size and slope of the glaciers. Glacier size has a negative correlation ($r = -0.002, p < 0.05$) with area loss of the glaciers, while slope also follows the same trend ($r = -0.12, p < 0.05$).

The multivariate linear model was able to explain 12% of the variability of spatiotemporal change on the glacier of the Chandra-Bhaga Basin. This means that the two variables (glacier size and slope) taken together could explain 12% of the observed changes in glacier area (Table 6). However, it's important to note that this model does not consider any interaction between the variables, it only assumes a linear relationship between each variable and the area change.

4.9 Climatic control

The present study employed statistical tests, including the Mann-Kendall and Sen’s slope test, on the annual mean temperature and precipitation datasets, with a confidence interval of 95%. The results indicate an overall increase in temperature and a decrease in rainfall over the three decades (Fig. 8A and B). Specifically, temperature has increased by approximately 0.032°C year$^{-1}$ between 1960 and 2019. These findings align with the trends observed by Kaushik et al. (2020), who reported an annual mean temperature increase at the rate of 0.027°C year$^{-1}$ (1961-2015) in the Bhaga Basin. In contrast, precipitation has shown a decreasing trend. It decreased by a rate of -0.074 mm year$^{-1}$ between 1960 and 2019. Additionally, Garg et al. (2023) conducted a climate trend analysis for the period 1983-2016 using a meteorological station located at Patsio in the Bhaga Basin at an elevation of 3800 m a.s.l. They observed a decrease in maximum annual precipitation between 2008-2016 (73 cm), compared to 1983-1989 (102 cm) and 2000-2008 (94 cm). The persistent rise in temperature, coupled with a reduction in precipitation, has significantly intensified the melting of glacier snow and ice. Consequently, this heightened melting has led to an escalation in the mass loss of the glaciers. These climatic changes have exerted a pronounced influence on glacier dynamics, markedly impacting the rate of glacier area loss.

4.10 Comparison with previous studies for the region

It is worth noting that there is a scarcity of high-quality datasets and limited comprehensive studies in the Chandra-Bhaga Basin. Moreover, differences in time periods, datasets, and methodologies among these studies make it difficult to conduct a thorough comparison. However, previous research in the region has shown a decline in glacierized areas. Pandey and Venkataraman (2013) reported a 2.5% decrease in glacier area in the Chandra-Bhaga Basin over a 30-year period from 1980 to 2010, which is similar to the 2.3% area loss identified in our study. Glacier area in the year 2000 for the selected representative glaciers by Pandey and Venkataraman, (2013), (373.1 km2) and present study (374.64 km2) are also in agreement. Glacier area in 2000 from the present study was found comparable with the area estimated for year 2002 by Sahu and Gupta (2020), with respect to 5 glaciers they chose for a detailed analysis, namely: Gepang Gath (12.7 and 13.40 km2), Samudra Tapu (80.8 and 81.9 km2), Bara Shigri (125.1 and 131.5 km2), Chhota Shigri (14.0 and 15.88 km2) and Hamtah (3.4 and 3.8 km2) respectively. Garg et al. (2017) studied 3 glaciers during 1993-2014. Area in 1993 for these glaciers namely: Sakchum (15.61 km2), Chhota Shigri (15.22 km2), and Bara Shigri (127.63 km2), as well as our estimates of 16.04 ± 1.63 km2, 15.88 ± 0.85 km2, and 131.5 ± 9.56 km2 respectively, are within a comparable range. It can be suggested that the reason for the lower estimation of the Bara Shigri Glacier area in the studies conducted by Garg et al. (2017) and Sahu and Gupta (2020) is the...
exclusion of the glacier's flanks. These flanks contribute to the overall glacier flux and have been considered in several other studies (Chand et al. 2017; Yellala et al. 2019; Nela et al. 2020).

The distinctions in glacier boundary defined by different studies contribute further to the challenge of statistical intercomparison and necessitates field surveys and visual inspection in order to ensure accuracy. Therefore, we have carried out various field surveys while also accounting for the following challenges: 1) Nature of the dataset used in the studies: For example, Pandey and Venkataraman (2013) used Landsat MSS and AWiPS dataset having resolution of 80 and 56 m, respectively, and co-registration error of 13 and 24 m. The present study has attempted to account for these uncertainties in the glacier inventory by improving on the spatial resolution (viz. Pan sharped Landsat 15 m), and consequently observed a comparatively lesser rate of glacier area loss. 2) Different methodologies for glacier boundary delineation: While the majority are clean-ice glaciers, several representative glaciers within the study region are debris-covered, making it difficult to differentiate SDC from the surrounding topography (Bolch et al. 2008). The automated approach to delineate glacier boundary has more uncertainty in comparison to the manual approach (Bhamri and Bolch, 2009). Manual digitization carried out in the present study reduces uncertainty as compared to other studies that have opted for a semi-automated approach (viz. Sahu and Gupta 2020). This is highlighted above by the example of the difference in the area of the Bara Shigri Glacier.

The SDC area estimation conducted in this study is comparable to the results of Garg et al. (2017) for three specific glaciers. For instance, the estimated SDC change between 1993 and 2019 for Sakchum was 1.0 ± 0.18 km² in this study, while Garg et al. (2017) reported it as 1.03 km². Similarly, the estimated SDC change for Chhota Shigri was 0.71 ± 0.13 km² in this study, whereas Garg et al. (2017) reported it as 0.45 km². For Bara Shigri, the estimated SDC change was 4.94 ± 0.89 km² in this study and 4.82 km² by Garg et al. (2017). It is important to note that our study includes a larger dataset, covering 251 glaciers in the Chandra-Bhaga Basin.

5 Conclusions

In the present study, we provided two types of datasets of glaciers in the Chandra-Bhaga Basin, western Himalaya, which quantify spatiotemporal changes between 1993-2019. These datasets include: 1) a homogenous, multitemporal (1993, 2000, 2010, 2019) glacier outline, and 2) SDC on each glacier for years 1993 and 2019. Major constraints (snow cover, cloud cover, SDC, and hill shade) have been addressed by selecting Landsat images from the ablation season with minimum cloud and snow cover and digitization based on visualization interpretation. For the SDC estimation, we have performed MLC within the glacier outlines boundary generated in present study, followed by extensive field surveys (with a total of 39 ground validation points for SDC) to enhance the accuracy of the dataset.

We mapped 251 glaciers with area > 0.5 km², which include 216 clean-ice and 35 debris-covered glaciers. Eleven glaciers with proglacial lake were identified. Total glacialized area showed a continuous reduction: 996 ± 62 km² in 1993, 989 ± 68 km² in 2000, 982 ± 66 km² in 2010, and 973 ± 70 km² in 2019. The multitemporal glacier area change further reveals valuable information regarding the impact of morphological factors on glacier area change in the Chandra-Bhaga Basin: 1) debris-covered glaciers are shrinking at a lesser rate compared to clean-ice glaciers, 2) south facing glaciers are losing comparatively more area than other aspects, 3) elevation does not play any significant role, and 4) land-terminating glaciers are more stable than glaciers having proglacial lake. It has also been observed that these factors operate simultaneously, contributing to the heterogeneous spatio-temporal changes in glacier areas within the region. Furthermore, the statistical analysis indicates that the combined influence of glacier size and slope could explain 12% of the observed changes in glacier area. SDC cover mapping for the years 1993 and 2019 shows that debris cover has increased by 14.1 ± 2.54 km² during 1993-2019.

The spatiotemporal data of glacier outlines and debris cover generated in this study will aid in future research endeavors focusing on glacio-hydrological and policy-based studies, as well as contribute towards improving existing inventory information’s at both local and regional scales. Also, constant monitoring of glaciers, and further studies into the associated feedback processes is deemed necessary considering the excessive dependence of the downstream population on these glaciers, and the increasing demand for freshwater resources. The dataset produced in this study serves as a valuable resource for other researchers, enabling them to estimate and gain insights into the dynamics of glaciers in the Chandra-Bhaga Basin.

Acknowledgements
We are grateful to the Space Application Center, Ahmedabad (ISRO) for providing field support under “Integrated studies of Himalayan Cryosphere” program. We also extend our gratitude to the Glaciology Group, Jawaharlal Nehru University for providing necessary support for this research. MFA acknowledges the grants from SERB (CRG/2020/004877) and MOES/16/19/2017-RDEAS projects. SV and MFA express appreciation for the support from ISRO/RES/4/690/21-22 project.

Author contribution

VATSAL Sarvagya, BHARDWAJ Anshuman, MANDAL Arindan, and AZAM Mohd Farooq conceptualized the study. VATSAL Sarvagya and MANDAL Arindan carried out the field work and analysis. VATSAL Sarvagya wrote the manuscript with the inputs from BHARDWAJ Anshuman, Ramanathan Alagappan, MANDAL Arindan, AZAM Mohd Farooq, Bahuguna Ishmohan, RAJU N. Janardhana, and TOMAR Sangita Singh.

Ethics Declaration

Data Availability: The dataset used in the study is available in the appendix part of the manuscript in tabular form (Appendix 1). All the datasets including: 1) inventory of 251 glaciers (> 0.5 km²) for 1993, 2000, 2010, and 2019; 2) debris cover area for year 1993 and 2019 are available on the Zenodo portal (https://doi.org/10.5281/zenodo.6595546).

Conflict of interest: The authors declare no conflict of interest.

References

https://api.semanticscholar.org/CorpusID:9169350

Fig. 1 Study area map of the Chandra-Bhaga Basin. Background image is hillshade using Shuttle Radar Topography Mission (SRTM) DEM with a spatial resolution of 30 m. Glacier boundaries used are from the present study.
Fig. 2 Field photographs (in the right panel) for validation and classified Landsat images showing snow, ice, debris and ice mix debris cover. A) Yoche Lungpa Glacier, B) Patsio Glacier, C) Panchi II Glacier, D) Hamtah Glacier, E) Mulkila Glacier, F) Chhota Shigri Glacier.

Fig. 3 Decadal retreat of the glaciers in Chandra-Bhaga Basin. A) Hamtah, B) Chhota Shigri, C) Samudra Tapu, D) Batal, E) Mulkila, F) Panchi I. Background image is a 2019 Landsat 8 OLI composite of bands 5, 4 and 3.
Fig. 4 Comparison of RGI 6.0 (red) (RGI Consortium 2017), GAMDAM (black) (Sakai 2019), and present glacier outlines (yellow) for A) Bara Shigri, B) Chhota Shigri, C) Hamtah, D) Gepang Gath, E) Panchi I, F) Panchi II, G) Patsio, H) Batal, I) Yoche Lungpa, J) Mulkila, K) Sutri Dhaka, and L) Samudra Tapu glaciers. Background image 2019 Landsat 8 OLI.
Fig. 5 SDC on the A) Chhota Shigri, C) Sakchum, and E) Bara Shigri glaciers. Background image is the hillshade of SRTM DEM.
Fig. 6 (A) Area change (%) in debris-covered and clean ice glaciers plotted as a function of glacier area in 1993 (scatter), and mean glacier area change (%) for each glacier area class at specific time intervals (bars). (B) Percentage of glaciers and mean slope corresponding to minimum elevation (Z) < or > 5000 and for different area change categories. (C) Aspect and area change (%) for glacier area in 1993 < or > 4 km2 and presence/absence of proglacial lake.
Fig. 7 Area change (1993 – 2019) of the glaciers in the Chandra-Bhaga Basin and its comparison to the percentage debris cover on the glacier in 1993. Background image is the hillshade effect of SRTM DEM.

Fig. 8 Yearly time series of (A) 2 m air temperature (°C year⁻¹), (B) Rainfall (mm year⁻¹) in the Chandra-Bhaga Basin.
Table 1 Accuracy assessment matrix between field observations (columns) and remotely classified (rows) ground validation points for each category (debris, ice, ice mixed debris, and snow).

<table>
<thead>
<tr>
<th>Class</th>
<th>Debris</th>
<th>Ice</th>
<th>Ice mixed debris</th>
<th>Snow</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debris</td>
<td>39</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>Ice</td>
<td>0</td>
<td>44</td>
<td>3</td>
<td>2</td>
<td>49</td>
</tr>
<tr>
<td>Ice mixed debris</td>
<td>0</td>
<td>6</td>
<td>27</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>Snow</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>29</td>
<td>31</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>52</td>
<td>32</td>
<td>31</td>
<td>154</td>
</tr>
</tbody>
</table>

Table 2 Change in the glacier area in Chandra-Bhaga Basin and the uncertainties associated.

<table>
<thead>
<tr>
<th>Year</th>
<th>1993 ± cumulative uncertainty (km²)</th>
<th>2000 ± cumulative uncertainty (km²)</th>
<th>2010 ± cumulative uncertainty (km²)</th>
<th>2019 ± cumulative uncertainty (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Area</td>
<td>996 ± 62</td>
<td>989 ± 68</td>
<td>982 ± 66</td>
<td>973 ± 70</td>
</tr>
<tr>
<td>Total Area</td>
<td>996 ± 0.5</td>
<td>989 ± 0.7</td>
<td>982 ± 0.5</td>
<td>973 ± 0.8</td>
</tr>
<tr>
<td>Area change</td>
<td>7 ± 6</td>
<td>7 ± 6</td>
<td>9 ± 8</td>
<td>23 ± 8</td>
</tr>
<tr>
<td>Area change</td>
<td>7 ± 0.2</td>
<td>7 ± 0.2</td>
<td>9 ± 0.3</td>
<td>23 ± 0.3</td>
</tr>
</tbody>
</table>

Table 3 Decadal changes in the glacier area over some of the well-studied glaciers in the Chandra-Bhaga Basin.

<table>
<thead>
<tr>
<th>Glacier</th>
<th>Area change (km²)</th>
<th>Glacier area 2019 (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamtah</td>
<td>0.02±0.001</td>
<td>0.03±0.002</td>
</tr>
<tr>
<td>Sakchum</td>
<td>0.02±0.001</td>
<td>0.04±0.001</td>
</tr>
<tr>
<td>Chhota Shigri</td>
<td>0.02±0.001</td>
<td>0.12±0.002</td>
</tr>
<tr>
<td>Bara Shigri</td>
<td>0.10±0.021</td>
<td>0.06±0.003</td>
</tr>
<tr>
<td>Batal</td>
<td>0.03±0.002</td>
<td>0.03±0.001</td>
</tr>
<tr>
<td>Sutri Dhaka</td>
<td>0.02±0.001</td>
<td>0.05±0.001</td>
</tr>
<tr>
<td>Samudra Tapu</td>
<td>0.02±0.005</td>
<td>0.04±0.001</td>
</tr>
<tr>
<td>Gepang Gath</td>
<td>0.08±0.004</td>
<td>0.14±0.008</td>
</tr>
<tr>
<td>Yoche Lungpa</td>
<td>0.04±0.001</td>
<td>0.07±0.002</td>
</tr>
<tr>
<td>Mulkila</td>
<td>0.01±0.001</td>
<td>0.03±0.001</td>
</tr>
<tr>
<td>Panchi II</td>
<td>0.01±0.001</td>
<td>0.02±0.001</td>
</tr>
<tr>
<td>Panchi I</td>
<td>0.01±0.001</td>
<td>0.03±0.002</td>
</tr>
<tr>
<td>Patsio</td>
<td>0.02±0.001</td>
<td>0.04±0.001</td>
</tr>
</tbody>
</table>
Table 4: Surface Debris Cover (SDC) of representative glaciers (marked in Fig. 1) of the basin for the years 1993 and 2019.

<table>
<thead>
<tr>
<th>S. No. (As in Fig.1)</th>
<th>Glacier</th>
<th>SDC (km²)</th>
<th>SDC change (km²)</th>
<th>Debris cover (% glacier area)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1993</td>
<td>2019</td>
<td>1993</td>
</tr>
<tr>
<td>1</td>
<td>Hamtah</td>
<td>2.25 ± 0.41</td>
<td>2.32 ± 0.42</td>
<td>0.07 ± 0.01</td>
</tr>
<tr>
<td>2</td>
<td>Sakchum</td>
<td>2.80 ± 0.50</td>
<td>3.80 ± 0.68</td>
<td>1.00 ± 0.18</td>
</tr>
<tr>
<td>3</td>
<td>Chhota Shigri</td>
<td>1.45 ± 0.26</td>
<td>2.16 ± 0.39</td>
<td>0.71 ± 0.13</td>
</tr>
<tr>
<td>4</td>
<td>Bara Shigri</td>
<td>18.46 ± 3.32</td>
<td>23.40 ± 4.21</td>
<td>4.94 ± 0.89</td>
</tr>
<tr>
<td>5</td>
<td>Batal</td>
<td>1.17 ± 0.21</td>
<td>1.19 ± 0.21</td>
<td>0.02 ± 0.01</td>
</tr>
<tr>
<td>6</td>
<td>Sutri Dhaka</td>
<td>0.24 ± 0.04</td>
<td>0.53 ± 0.09</td>
<td>0.29 ± 0.05</td>
</tr>
<tr>
<td>7</td>
<td>Samudra Tapu</td>
<td>5.53 ± 1.01</td>
<td>8.49 ± 1.52</td>
<td>2.96 ± 0.53</td>
</tr>
<tr>
<td>8</td>
<td>Gepang Gath</td>
<td>4.34 ± 0.78</td>
<td>4.47 ± 0.80</td>
<td>0.13 ± 0.03</td>
</tr>
<tr>
<td>9</td>
<td>Yoche Lungpa</td>
<td>6.55 ± 1.17</td>
<td>6.90 ± 1.24</td>
<td>0.35 ± 0.06</td>
</tr>
<tr>
<td>10</td>
<td>Mulkila</td>
<td>3.51 ± 0.63</td>
<td>4.28 ± 0.77</td>
<td>0.77 ± 0.14</td>
</tr>
<tr>
<td>11</td>
<td>Panchi II</td>
<td>1.66 ± 0.30</td>
<td>1.67 ± 0.31</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>12</td>
<td>Panchi I</td>
<td>1.86 ± 0.33</td>
<td>1.87 ± 0.34</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>13</td>
<td>Patsio</td>
<td>0.17 ± 0.03</td>
<td>0.17 ± 0.03</td>
<td>0.00 ± 0.00</td>
</tr>
</tbody>
</table>

Table 5: SDC variation of some glaciers in Chandra-Bhaga Basin.

<table>
<thead>
<tr>
<th>Glacier</th>
<th>SDC (km²)</th>
<th>SDC (% glacier area)</th>
<th>Area (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1993</td>
<td>2019</td>
<td>1993</td>
</tr>
<tr>
<td>Chhota Shigri</td>
<td>1.45</td>
<td>2.16</td>
<td>8</td>
</tr>
<tr>
<td>Hamtah</td>
<td>2.25</td>
<td>2.32</td>
<td>59</td>
</tr>
<tr>
<td>Panchi II</td>
<td>1.66</td>
<td>1.67</td>
<td>39</td>
</tr>
<tr>
<td>Panchi I</td>
<td>1.86</td>
<td>1.87</td>
<td>42</td>
</tr>
<tr>
<td>Bara Shigri</td>
<td>18.46</td>
<td>23.40</td>
<td>14</td>
</tr>
<tr>
<td>Patsio</td>
<td>0.17</td>
<td>0.17</td>
<td>6</td>
</tr>
<tr>
<td>Mulkila</td>
<td>3.51</td>
<td>4.28</td>
<td>14</td>
</tr>
<tr>
<td>Yoche Lungpa</td>
<td>6.55</td>
<td>6.90</td>
<td>42</td>
</tr>
<tr>
<td>Sakchum</td>
<td>2.80</td>
<td>3.80</td>
<td>18</td>
</tr>
<tr>
<td>Batal</td>
<td>1.17</td>
<td>1.19</td>
<td>25</td>
</tr>
<tr>
<td>Sutri Dhaka</td>
<td>0.24</td>
<td>0.53</td>
<td>1</td>
</tr>
<tr>
<td>Samudra Tapu</td>
<td>5.53</td>
<td>8.49</td>
<td>10</td>
</tr>
<tr>
<td>Gepang Gath</td>
<td>4.47</td>
<td>4.34</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 6: Result of multivariate linear regression model to understand the spatiotemporal change variability of Chandra-Bhaga Basin glaciers.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficient associated</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum elevation</td>
<td>0.001</td>
<td>0.9</td>
</tr>
<tr>
<td>Glacier size</td>
<td>-0.002</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Aspect</td>
<td>0.06</td>
<td>< 0.4</td>
</tr>
<tr>
<td>Slope</td>
<td>-0.12</td>
<td>< 0.05</td>
</tr>
<tr>
<td>SDC</td>
<td>-0.01</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Note: The variables have been standardized, making the coefficients directly representative of their relative influence on the glacier area change variability.
Appendix 1 List of Landsat and DEM datasets used for inventory and SDC change estimation of the glaciers.

<table>
<thead>
<tr>
<th>Sensor/Map</th>
<th>Path/Row</th>
<th>Scene/Product ID</th>
<th>Acquisition Date</th>
<th>Spatial Resolution</th>
<th>Temporal Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANDSAT 5 (TM)</td>
<td>147 / 37</td>
<td>LT51470371992227ISP00</td>
<td>1992/08/14</td>
<td>VIS + MIR (30 m)</td>
<td>16 days</td>
</tr>
<tr>
<td>LANDSAT 5 (TM)</td>
<td>147 / 38</td>
<td>LT51470381992227ISP00</td>
<td>1992/08/14</td>
<td>VIS + MIR (30 m)</td>
<td>16 days</td>
</tr>
<tr>
<td>LANDSAT 5 (TM)</td>
<td>147 / 37</td>
<td>LT51470371993229ISP00</td>
<td>1993/08/17</td>
<td>VIS + MIR (30 m)</td>
<td>16 days</td>
</tr>
<tr>
<td>LANDSAT 5 (TM)</td>
<td>147 / 38</td>
<td>LT51470381993229ISP00</td>
<td>1993/08/17</td>
<td>VIS + MIR (30 m)</td>
<td>16 days</td>
</tr>
<tr>
<td>LANDSAT 7 (ETM)</td>
<td>147 / 37</td>
<td>LE71470372000289GS00</td>
<td>2000/10/15</td>
<td>VIS + MIR (30 m)</td>
<td>16 days</td>
</tr>
<tr>
<td>LANDSAT 7 (ETM)</td>
<td>147 / 38</td>
<td>LE71470382000289GS00</td>
<td>2000/10/15</td>
<td>VIS + MIR (30 m)</td>
<td>16 days</td>
</tr>
<tr>
<td>LANDSAT 5 (TM)</td>
<td>147 / 37</td>
<td>LT51470372011295KHC00</td>
<td>2011/11/22</td>
<td>VIS + MIR (30 m)</td>
<td>16 days</td>
</tr>
<tr>
<td>LANDSAT 5 (TM)</td>
<td>147 / 38</td>
<td>LT51470382011295KHC00</td>
<td>2011/10/22</td>
<td>VIS + MIR (30 m)</td>
<td>16 days</td>
</tr>
<tr>
<td>LANDSAT 5 (TM)</td>
<td>147 / 38</td>
<td>LT51470382010276KHC00</td>
<td>2011/11/30</td>
<td>VIS + MIR (30 m)</td>
<td>16 days</td>
</tr>
<tr>
<td>LANDSAT 7 (ETM)</td>
<td>147 / 37</td>
<td>LE71470372010284ASN00</td>
<td>2010/10/11</td>
<td>VIS + MIR (30 m)</td>
<td>16 days</td>
</tr>
<tr>
<td>LANDSAT 7 (ETM)</td>
<td>147 / 38</td>
<td>LE71470382010284ASN00</td>
<td>2010/10/11</td>
<td>VIS + MIR (30 m)</td>
<td>16 days</td>
</tr>
<tr>
<td>LANDSAT 8 (OLI)</td>
<td>147 / 37</td>
<td>LC81470372019253LGN00</td>
<td>2019/09/10</td>
<td>VIS + MIR (30 m)</td>
<td>16 days</td>
</tr>
<tr>
<td>LANDSAT 8 (OLI)</td>
<td>147 / 38</td>
<td>LC81470382019253LGN00</td>
<td>2019/09/10</td>
<td>VIS + MIR (30 m)</td>
<td>16 days</td>
</tr>
<tr>
<td>SRTM DEM</td>
<td>-</td>
<td>-</td>
<td>2000</td>
<td>30m</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: TM represents thematic mapper; ETM represents enhanced thematic mapper; VIS means visible; MIR means mid infra-red.