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Abstract—Systems with colocated sensor-actuator pairs exhibit damping systems where generally the rst resonance mode
the interesting property of pole-zero interlacing. Integral Reso- js highly dominant over all the others. To overcome this
nance Control (IRC) exploits this property by changing the ple- issue, Integral Resonance Control (IRC) was proposed as a

zero interlacing to zero-pole interlacing. The unique phas re- . le | d h ble of d . ltiol d
sponse of this class of systems enables a simple integraldback ~S'MP'€, IOW-order scheme capabie of damping mullipie modes

controller to add substantial damping. Over the past few yess, While retaining high stability margins [17]. It should betad
IRC has proven to be extremely versatile and has been applied  that due to the choice of user-selected feed-through tdren, t

a wide variety of systems whose dominating dynamics of intest  |RC incorporates more design exibility than the IFF scheme
can be accurately modeled by second-order transfer functius. which requires additional sensor and instrumentation.

To date, a manual approach has been employed to determine the L
parameters of the IRC scheme, namely the feed-through term The general concept of IRC design is to change the pole-

and the integral gain. In this article, the relationship betveen Z€ro interlacing of a colocated systefd(s) to zero-pole
the feed-through term, integral gain and achievable dampig is interlacing. This is achieved by adding a constant feedttfh
derived analytically for undamped/lightly-damped secondorder term d to the system. An integral controll€(s) = kg=s is
systems. The relationship between damping controller and ra then applied to the modi ed systeé(s) = G(s)+ d. As the

outer servo loop is also derived. These results add to the intearal aaink. is increased. the poles of the tem move
current understanding of colocated systems and automate th integral gainkg 1S 1 Sed, poles SYys v

design of IRC controllers with a speci ed damping and tracking away from the imaginary axis into the left-half complex man
bandwidth. The presented results are applied to design and and eventually move to the open loop zero locations.
implement a damping and tracking controller for a piezoeledric Due to the intuitive approach, simplicity and robust per-
nanopositioning stage. formance, IRC has been successfully employed to damp a

Index Terms—Nanopositioning, Vibration damping, Integral variety of systems such as cantilever beams [17], exible
Resonance Control robotic manipulators [18], nanopositioning platforms J19
commercial atomic force microscopes [10], exible civitst-
tures [20] and walking-induced oor vibrations [21]. It was
further shown in [22] that the IRC was a negative imaginary

NWANTED excitation of system resonances can produggstem. This result provided further insight into the stuve

vibration that can substantially degrade the performanaad stability of IRC implementations [23]. However, the IRC
and life time of many mechatronic systems [1]. Both passidesign procedure still requires a trial-and-error appinotc
and active damping techniques have been widely reporteddigtermine the necessary feed-through term and integrator g
the literature. Passive damping techniques have the aatyant High-precision micro and nanopositioning systems have
of needing no sensing or supervisory control but can bedithitgarnered a substantial amount of research interest in trecen
in performance and may be sensitive to changes in system igsars [24]. These precision positioners form an integral pa
onance frequency. Active techniques may be more compticatsf many specialized technological systems (such as atomic
but have the potential to overcome the performance linoitsti force microscopes) where nanopositioning is a key enabling
of passive systems [2]. technology [25]. The frequency response of such systems

Active vibration control is commonly used to damp systemgpically shows their rst resonant mode being dominantrove
where bandwidth, precision, or life time are key perfornenall the subsequent higher frequency modes. Consequently,
requirements, for example, robotic manipulators [3]-{B$k- they have traditionally been modeled as simple secondrorde
drives [6], aircraft wings [7], nanopositioning stages, [[], systems with a low damping coef cient [26], [27]. This is the
Scanning Probe Microscopes [10], and high-density memamptivation for focusing this work on the analytical treatrhe
storage devices [11]. of similar second order systems.

A number of well-performing damping controllers such This work starts by quantifying the impact of the selection
as the Integral Force Feedback (IFF) [1], Shunt Dampirgf the feed-through termd on the location of the introduced
(SD) [12], Positive Position Feedback (PPF) [13], Positiveeros. An analytic expression is derived that relates thd-fe
Velocity and Position Feedback (PVPF) [14], resonant adntrthrough termd and the integral gaiky to the modal damping
[15], and robust control [16] have been proposed earlier. As many applications also require a servo control loop the
Apart from the IFF technique, a drawback of other controlleelationship between the damping gdip and the integral
designs is that they result in high-order controllers fortinu tracking gaink; is also considered. A limit is identi ed for
mode resonant systems. This makes them suitable only fbe product of the two gains beyond which the overall system

|. INTRODUCTION



Equation (2) leads to the introduced zeros to be located at

s
. 2 P —
2iz2= j gt o= 0 fd: 3)
=
= When (3) is evaluated in order to nd the location of zeros, it

shows that the zeros introduced by the feed-through teame
not always imaginary for any arbitrary choice @f Plotting
f (d) shows that for a critical value afgiven byd. = 2=!7
wheref (d.) = 0, results in two zeros at the origin. In the
range of[dc; 0), f (d) is negative, resulting in two real zeros ,

see Fig. 1.

d 2
Fig- 1. Plot off ()= ! § + 2=d versusd. Remarks Note that implementing an IRC scheme on a
system manipulated to have zeros as Case 3 will lead to
_ _ i i instability since it will be non-minimum phase. Similarfgr
is unstable. Experimental results on a piezoelectricksiatu- g corresponding to Case 2 zeros are introduced at a frequency
ated nanopositioner (modeled as a second-order systemawifljgher than the system poles, leading to an unstable closed-
low damping coef cient) are presented to validate the teorioq, since the departure angle for the pole in the origin will
be 0 degrees. Consequently, a choicedtorresponding to
Case 1 is appropriate for implementing the IRC scheme. This
ensures zero-pole interlacing.

Il. FEED-THROUGH FOR ASECOND-ORDER COLOCATED
SYSTEM

Second-order systems with a lightly damped resonance-€mma 1:Consider a second-order systébgs) with two
mode and colocated (or approximately colocated) sensats &yrely imaginary poles at j! p, to which a feed-through
actuators are commonly seen in many technological systeff§m d which satises 1 < d < d. < 0 is added to
Nanopositioning systems are an example where the presefiég2duce a pair of purely imaginary zeros atj! .. If an
of a lightly damped resonance mode severely limits the pdpfegrator,C(s) = kq=s, is implemented in positive feedback
formance. Various damping controllers have been propos&dh G(s) = G(s) + d, then
to alleviate this problem [9]. Assuming that the system is

decoupled, the dynamics of each axis can be approximated) Foralld2 (1 ;1:125) where!; >! =3, the root-
as a second-order system, that is locus behaves such that as the integral gain increases, the

) system pole traverses a curve and reaches the introduced
zero without intersecting the real axis. The pole at the
origin (introduced by the integrator) gradually goes to

1 as the integral gaiky tends tol (Fig. 2a).

When'! , I'p=3, d 2 [1:125%;d.), the root-loci
starting from the system poles intersect the real axis.
In this case the root locus plot could have one (Fig. 2b)
or two (Fig. 2c¢) breakaway points on the negative real
axis.

G(s) = + 1)

s2+2 ! ps+ 13
where is the damping coef cient, , is the natural frequency
and di is a feed-through term introduced to improve the
prediction of zero-locations of a truncated model, and to
approximate the stiffness of the system at high-frequencie
[28]. A common assumptions is thathas a small value and
can be neglected during the mathematical analysis.
Theorem 1:If a feed-through termd is added to a

: . Proof: To nd the breakaway points, the characteristic
resonant second-order system transfer function given bmﬂ should be rearranged such that the gain tigm
G(s) = 2=(s®+!7), then the relationship between the feed: ”

through term and the location of the feed-through-inducecéln be isolated [29],
1 G(s)C(s)=0

2)

zerosz; andz, is as follows

1) If d < d¢, then the zeros are imaginary and conjugate, . s(s?+15)
z1;22= jl g, and! 2<! 2 whered. =  2=12. ¢ A2+ 12)
2) If d > 0, then the zeros are imaginary and conjugate, ki P(s)=0: (4)

21;2= ! g, and! 2>1 2,
3) If d 2 [dc;0), then the zeros are real.

The breakaway points are the rootsE%fP (s). Therefore

Proof. L SSEIE e
2 Z+d(s?+13)  ds?+!2) ds d(s2 + ! 2)2 '
é(s):ﬁ"'d: 24+ 12 = Ty 12 (2) 2 ;
se+ g s+ 1 se+ g Dene x s, reduce the order of equation to two.

Zeros inG(s), are introduced by the feed-through term.

x2+ x(3! 2

®)

2 212_-n-
12)+1212=0;
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Fig. 2. Incase of ; <! p root locus of the system with IRC could follow different &ajories. If! ; ! p=3, root locus plot will have one (b) or two
(c) breakaway points on negative real axis whilé i >! =3 root locus has no breakaway points (a) ap@x < 1.

q_——
Since the breakaway points lie on the real axis, conditibas t where! ; = ! 2+ 2=d with respect to feed-through term

give real roots for (5) need to be found. So d.

@7 19 42z 0) !y s5Z 4Z) !, 3,1  Proof The closed-loop poles of the system must satisfy
For the special case when, = ! ,=3, at a certain controller 1 G(s)C(s)=0;

gain, all three poles converge to the same p?jnt on the real. o )
axis. This breakaway point occurs st= | ,= 3. It can Whlch can be expressed as angle criterion (8) and magnitude
also be shown that the feed-through terndis 1:125d.. criterion (9),

Fig. 2 shows, for!, > ! (=3, the maximum damping \ G(s)C(s) =2k (k2 Z) (8)

max < 1, which results in an u@der—damped complex con- jG(s)C(s)j =1 9)
jugate pair whers= ! , jl o, 1 2 ’

For! , 2 (0;! ,=3] which is related to the selection dfin the where& = d(ss:llzzz) andC(s) = k?d
range[1:125d;; d¢] results in a pair of imaginary zeros where P

the root locus intersects with the negative real axis. Is thi )

case max > 1 is achievable for some selection kf, and ASS= *1I',

results in an over-damped system. Im(L(s)) )
Re(L(s) '

whereL (s) = d(s? + ! 2)=(s(s? + ! ).

Il. RELATIONSHIP BETWEEN FEEDTHROUGH, DAMPING  APPplying thetan function to both sides of (10) and rearranging
AND IRC GAIN results in

14 L202+15 27

arctan (20)

In this Section, the relationship between the maximum
damping, feed-through term and controller gain is explored + 4+ 2@ 1))+ 1212=00 (1)
A similar result for systems that are zero-pole interlaced t

begin with has been presented in [30]. Fig. 3, illustrates th Equation (11), is the equation for the root locus, where
root locus behavior for such system. closed-loop complex-valued poles travers&@shanges from

Theorem 2:Consider a colocated system with a pair o? to+1 . The equation of a line passing through the origin

imaginary poles at j! , and feed-through-induced imaginary's’
zeros wherd , > ! ,=3. If the IRC strategy is implemented Il = m: (12)

the maximum damping achievable is given by o ) . .
0 1 Substituting from (12) into (11), results in an equation based
1 o on the unknowns andm. Rearranging in the ascending order
max = 3 @g—P _  1A; 6) of |,
ta+ 2=d

(m*+2m?+1) “+( m*(1Z+ 103172 17) 2

The controller gain required to reach this maximum damping +121220:  (13)
. z. p - .

is given by
0 v 1 At the point where maximum damping occurs, the line has one
K = 1 %y ﬁ b g _ ; unique point-of-contact with the root-locus. For this gpthe
d = JFJ P qﬁj ' (7) " discriminant of (13) should be zero and therefore it will @av
P two identical roots. Thus,



Trajectory A Jw
Of Cm,ar for g'm,amg . C'rnaml )
(mAZerh+@E12 1Ry BiveR e \ "
4m*+2m?+1)(1 21 5)=0: (14) 4
JWzy
Expanding and rearranging (14) for ascending orden fives Jewz ‘
_ JY¥p
2 2\2 4 2 4 4 2y 2 JWzg = T3
(7 'pmt 2m @l I +6!717
+9l7+ 12 100212=0: g
< >
. -
Solving the above expression for? gives V3 e
, 3 f ! g+ 6! g! S 8! g‘! P Fig. 3. For!; 2 (! p=3;!p), the root locus will not have a break-away
m® = 2 1202 point and exhibit a unique point at whichhax as given in (6) is less than
(' p Z) 1. The corresponding integrator gain is given by (7).
4201, 1)2
2 _ z\* Z P .
m<+1= : (15)
(o 12205+ 1,)
Note that the damping factor, of any complex poles = and
+ j! based on the slope of the line passing through the . o Ip(tp+ )ty 3y). 20
Orl N i ( J max ) - . ( )
gin is 4,

= I Substituting (19) and (20) into (9), will result in an exsEs

I o= np 1 2 for integrator gain at maximum dampinkj ..
1 (max+j! max)2+!§ 1
= P 16 - - = .
m2+1 (16) ( max + ! max )(( max *j! max )%+ ! ,%) Kdj max
where!nzp 2412, 1 r—
Positive and negative sign in (15) can be analyzed sepgratel Kaj v = = 'p iho. (21)
considering damping factor should be positive and less than d 2
one for an under-damped system. 2
Case 1:Positive sign in (15)(! ; + ! p)? Note that (19) could theoretically result ir> 0. As this
20, +1,)2 41 2 would imply unstable pole locations, this case is omitteahrfr
m?+1= P = ——" the analysis.
(p 12+ 122 (p o)
Substituting the above expression into (16) yields,
! !
= %: (17) A. Trajectory of max
sz
Since0O<! , <3 ,,0<!, 1,< 2, thus, Proposition 1: Consider a colocated system with poles at
Lo ! j! p. For all feed-through-term induced zero combinations
0< o, 1) 0< < L where! , >! , >1 =3, the locus of possible pole locations

corresponding to maximum damping for a speci c value of

This value for is valid. |, is determined by

Case 2:Negative sign in (15)(! ; ! p)?

2 - 2 2.
Following the same procedure as Case 1 results in be= 2 Zrlg+ly (22)
et e, (18)  Proof: To nd an expression in terms of the real valug
2!, the imaginary valué , and! , one can start by putting (12)
Simplifying (18) gives > 1 which contradicts with on the form | 2 1 2
0< < 1. L = m?= —____ma .
2 2 ’
max

As the derivations are based on _havmg_ only one p°'”t'°€§y using the expression in (16). Using (17) , the above
contact between the locus and the line, this damping fastor | ;
. ; . ; expression can be put on the form
the maximum value achievable for a certain selectionoénd
I, and is given by (17). To nd out the gain where maximum Z _ 2lp 2 (23)
damping occurs, the magnitude criterion (9) is used. Redl an 2 2 '

imaginary coordinates of the pOint where maximum damplngqe expression in (_’]_9) can be rearranged as
occurs are found using (12), (13), and (15). This gives ) 5
Lol 12)2=4 2,

(19) IplZ2 217042 2 1,+13=0;



as implemented in Fig. 4 to be stable, the gains must obey the

r ks kL _Cl;r B gy following inequality
-l = = 24 .d12
; } J — kikg < —F (26)
Proof: To check the stability of the closed loop transfer

function of the system given in Fig. 4, the zeros of (25) stoul
Fig. 4. Block diagram for the IRC damping controller in adttfitto integral be evaluated. The system is stable if all the zeros haveimegat
tracking controller scheme wherkis the feed-through ternmkq is the IRC real parts All necessary and suf cient conditions for ﬂtﬁb
damping gain and; is the integral tracking gain. . . .

are met if 1) all the coef cients of (25) are positive, and 8) a
elements of the rst column of the Routh-Hurwitz table are

which can be solved for,, which yleldS pOSitive. Ask:, kg, and! p are all pOSitive andl <d. < 0O,
'q the condition for stability can be given by:

124 2 1242 2% 14 2, 2 2
1= P ' p P (24) dg+ “+ kiked“< 0 (27)
P

Substituting (24) into (23) yields the expression in (22).

Rearranging (27) fok¢kq results in the expression (26).
2

This theorem formally proves the earlier nding that damp-
The expression in (22) describes the location of the polesy and tracking gains are related in the IRC scheme and
that yield the maximum achievable damping coef cierfora cannot be tuned independent of each other. This theorem
speci c ! , when varying the feed-through terdp and can be shows that if one gain is increased, the limit for the other is
used to nd value for the feed-through terinthat maximizes reduced and also gives a limit for the two gains beyond which
damping. the overall closed-loop system will become unstable. Ittmus
be noted that due to several structural similarities betvibe
IRC, IFF, and resistive shunt damping techniques, thelgtabi
criteria proved above will hold for the IFF and shunt damping
The IRC algorithm has been applied to damp the resgontrol designs (with minor modi cations).
nances of various precision positioning systems, espgcial Lemma 2:For a given second order system controlled using
nanopositioners [10], [18]-{21]. Nanopositioning systgen- the scheme shown in Fig. 4, there exists an absolute maximum

erally employ piezoelectric actuators that tend to inteluvalue forkikq. The corresponding maximum value is related
nonlinear effects such as hysteresis and creep. To minitnéze to d by

IV. TRACKING CONTROLLER

positioning errors introduced by these phenomena, a dampin 9

controller such as IRC, PPF, PVPF, and resonant control is d= 275 =2d (28)
used in conjunction with a simple integral tracking scheme P

[9], [10], [31]. A block diagram of the typical control schem ! ,3‘

. ; . . R maxfkikgg= —% (29)
incorporating both IRC damping and integral tracking isvgho 4 2

In Fig. 4. Proof: Dene g(d) = ( 2+ d! 5)=cf. The maximum of

! : Lo d) is the absolute maximum of achievable value for product
and damping controller gains could not be arbitrarily tune ) P

. . . ki andky. The corresponding value of feed-through tedm
independent of each other. In several experiments, it wais S&hich maximizes this product can be comouted by equatin
that increasing the tracking gain beyond a certain limiticsa b P y €d g

the damping of the system. In Fig. 4, the transfer functior%ge rst derivative ofg(d) with respect tad to zero.

In earlier experiments it was observed that the tracking

H — — 1 2 2
of interest for performance arye(_s)—r(s) anq y(s)=d (s). d o(d) = dig+2 _
The transfer functiomy(s)=d,(s) is also of interest when dd d3
considering the sensitivity to sensor noise. The chariatiter B 2
equation for all of the transfer functions mentioned abave i ) d= 2|_2 =2d. (30)

P

given by the numerator of: ) .
] The maximum value fokiky is given by

kika 2 ka(d(s?+12)+ %) | 4
s?(s?+13) s(s?+13) maxfkikqg = 9(d)jg= 24, = ‘.1—p2
2 2 2
-1 kika %+ kqds® + kq(d! pt )s Fig. 5 shows this relationship graphically.
s2(s?+ 1 3) 2
s keds®+ 1282 Kkg(d! 2+ 2)s+ kg 2 (25)
s2(s?+13) V. EXPERIMENTS

Proposition 2: Let kg and k; be the IRC damping and In this Section the control scheme depicted in Fig. 4 is
integral tracking gains respectively. For a closed-loogtesyn implemented on a nanopositioning stage.



d

Fig. 5. g(d)= ( 2+ d! 2)=d? is the upper limit forkikq. Maximum of
this function occurs a = 2 d. and the corresponding value for this product is
1 4=(4 2). Selection ofd > d ¢ is not valid choice a& kq becomes negative
w?ﬂch contradicts the preconditickt > 0 andky > O.

A. Experimental Setup

The performance of each controller will be evaluated on
two-axis serial kinematic nanopositioner, pictured in.Fag.
The nanopositioner was designed and constructed at
EasyLab, University of Nevada, Reno. The stage is driven |
two 10 mm 200 V piezoelectric stack actuators which provic
a range of 40 m in each axis. The position is measured by
Microsense 6810 capacitive sensor and 6504-01 probe witl
sensitivity of 0.4 V/ m. The stage is driven by two PiezoDrive
PDL200 voltage ampli ers with a gain of 20 V/V.

A second-order model of the system was procured |
frequency domain least squares t. The frequency respor _

Mag (dB)

of the x-axis is compared to the model response in Fig. E_%D_

The model parameters are

2:025 10 _
s2+48:63s+1:042 107

Phase (

G(s) = (31)

=300

B. Results

Using Lemma 2, a feed-through terch =  3:88 was
deemed suitable as it introduced a zero at 363 Hz (below the
natural frequency of 514 Hz). Also, the maximum product of
tracking and damping gains that resulted in a stable closed-

=200}

@)

0_,

720_ B

40 : R : :‘:::::;ﬂ
10 10 10

100

Data | = = ::oo
= = =Model . R

1 2 3

10
Freq (Hz)

10

(b)

loop system wakik < 1:341268 1(P. As seen from Fig. 7, Fig. 6. (a) A two-axis 40 m serial kinematic nanopositioner designed at the

the combination of the two gains given by a generic poirﬁasyLab, University of Nevada, Reno. (b) The open-loopuesgy response
of the nanopositioner measured from the voltage ampli guinto the sensor

(ki, kq) must lie in the region below the solid red line tOyytput, scaled to m/v.

ensure stability. Furthermore, to maintain the magnitude®
damped peak of the overall closed-loop (damped + trackng) t
be less than the damped system (with no tracking), the choice
of selectable gain combinations must be restricted to point
below the solid black line. Note that the normalized bandiwid
plotted in Fig. 7 is computed by dividing the bandwidth value
obtained for eaclky - ki combination (within the chosen
range) by the resulting overall maximum bandwidth. A simila
strategy is utilized to normalize the maximum peak values.
Three gain combinations were selected and experimentally
implemented. The three cases experimentally tested were:

Case 1:Gain corresponding to best achievable damping
kg = 987 and remaining gain (fronk¢kq) for tracking,

ki = 1357. It can be clearly seen from Fig. 7 that this
point lies beyond the minimum resonance magnitude of
the damped system contour (solid black line). This results
in some high frequency ripples being manifested in the
time domain plots shown in Fig. 9.

Case 2:Gain corresponding to best achievable damping
kg = 987 and tracking gain ofk; = 630 (found
via simulations) which results in maximum scan range
achievable with respect to1% error allowed. As clearly
seen from Fig. 7 this point lies within the minimum
resonant magnitude of damped system contour. As a
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Fig. 7. The gure charts the evolution of three parameterthwispect to Case 2
tracking gainky and damping gaiky. The rst parameter is plotted as a solid —-L5F Case 3 )
contour of the overall normalized bandwidth. The secondpater plotted as : ‘ : : : ‘
the solid black line is the maximum normalized peak of the pladnsystem 0 10 20 30 40 50 60 70
with no tracking controller. The third parameter plottedtlas solid red line Time (ms)
is the evolution of the stability limit criteri& kg < 1:341268 106.
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Fig. 8. The open- and closed-loop frequency responses ofsyseem,
measured from the reference input to the displacementmin

(b)

. . . . Fig. 9. (a) The closed-loop response to a 20-Hzn2-triangular reference
rleSUIt aImQSt no hlgh frequency ripples are visible in thﬁgnal. For clarity, the waveforms are offset from each othe 0.3 m. (b)
time domain plots Fig. 9. The closed-loop response to a 20-Hz @+ step change in the reference signal.
Case 3:A suitable gain distribution that results in max-or clarity, the waveforms are offset from each other byr8.

imum overall bandwidth is extracted from the contour

plot given in Fig. 7 (any point in the dark red region)case 1 Case 2and Case 3are plotted in Fig. 8. The time-
kg =890 andk; = 810.. domain responses to a triangular and square-wave reference
For this particular application (nanopositioning), maim input are plotted in Fig. 9. In Fig. 8, it can be observed that

ing the typical -3 dB bandwidth would result in substantiaCase 1results in a substantial damping but is still capable of
positioning errors (insuf ciently damped system resoranamplifying higher frequency components of the input trieng
could potentially amplify the higher-frequency input coorp wave. Selecting gains as prescribeiase 2clearly improves
nents). Therefore, a more restrictive bandwidth criterégs hthe damping but the tracking bandwidth is reduced. Selectio
been applied and is de ned as a range of frequencies whefegains as specied inCase 3results in the maximum
the closed-loop magnitude response of the overall systesn Ipositioning bandwidth of 400 Hz. The system responds well
between 1 dB. The closed-loop frequency responses fdo both triangle wave and square wave inputs.



VI. CONCLUSIONS [19]

In this work, analytical expressions are derived that eclat
the parameters of an Integral Resonance Controller (IRC) to
the closed-loop pole locations, for second-order systekss. [20]
many practical applications also require a servo controlle
the relationship between the damping and tracking coeiroll
gains kg and k;) and the closed-loop stability was alsd?!l
found. These relationships were experimentally veri edan
nanopositioning stage. The relationships derived in thisep
form a basis for further optimization of the popular IRG22
damping scheme and will lead to the development of improved
control strategies that combine damping as well as trackinge3]
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