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Bacterial mechanosensitive channels sense the changes in

lateral tension in the bilayer of the cytoplasmic membrane

generated by rapid water flow into the cell. Two major structural

families are found widely distributed across bacteria and

archaea: MscL and MscS. Our understanding of the

mechanisms of gating has advanced rapidly through genetic

analysis, structural biology and electrophysiology. It is only

recently that the analysis of the physiological roles of the

channels has kept pace with mechanistic studies. Recent

advances have increased our understanding of the role of the

channels in preventing structural perturbation during osmotic

transitions and its relationship to water flow across the

membrane. It is to these recent developments that this review is

dedicated.
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Introduction
Mechanosensitive (MS) channels sense changes in the

tension in the lipid bilayer of the cytoplasmic membrane

[1�]. Bacterial channels have been well-studied in a range

of organisms [2�] and they are considered to be useful

models for mechanotransduction in higher organisms [3].

Mammalian channels are frequently ion-selective and

thus generate specific signals that are integrated by the

neuronal system leading to an altered behaviour.

In contrast, bacterial mechanosensitive channels are

generally non-specific in terms of the ions and molecules
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that pass through the open pore. Their transition from the

closed to the open state creates a transient pore of quite

large dimensions, minimally �6 Å diameter (the size of a

hydrated K+ ion) through to �30 Å diameter for MscL

[2�]. Their proposed major role in cell physiology is well-

established, namely protection of the physical integrity of

the cell during transitions from high osmolarity to low [4].

One of the most important questions remaining addresses

channel abundance, structural diversity and plurality in

bacterial species. This short article will review the timing

of channel gating and its importance for the roles of the

channels.

Osmoregulation and cytoplasmic solute
concentrations
Bacterial cells accumulate solutes in their cytoplasm

well beyond the concentrations that might be required

for metabolism. In most bacteria there is a preference for

the accumulation  of potassium and glutamate [5]. How-

ever, diverse metabolic anions accumulate to millimolar

levels, such that the cytoplasm may contain as much as

200 mM osmotically active anions even when grown

at moderately low osmolarity (�240 mOsm) [6]. This

would generate a net turgor pressure of �4 atm

(�40 mOsm solute � 1 atm [2�]; the osmolarity of the

medium is equivalent to �6 atm) directed outwards

from the cell (Figure 1). Movement of water across

the membrane into the cytoplasm generates the turgor

pressure and provides the expansion space required for

growth through biosynthesis of new polymers. Measure-

ment of turgor pressure is extremely difficult and there

is no certainty that this parameter does not vary with

either growth conditions or with the identity of the

organism. A net outward pressure of 4 atm in E. coli
cells was suggested [7], but recent experiments have

questioned this [8�].

When subjected to hyperosmotic stress, Gram negative

bacteria exhibit a biphasic strategy to counter water loss.

In the initial phase potassium and glutamate pools

increase and subsequently these ions may be replaced

by compatible solutes, such as trehalose, betaine and

proline [5]. A cell adapted to high osmolarity is at risk

when transferred to low osmolarity due to the osmotically

driven water flow into the cytoplasm. A decrease in the

external osmolarity of 800 mOsm (equivalent of transfer

from growth medium containing 0.5 M NaCl into growth

medium alone or approximating the transfer of cells from

sea water to fresh water) could raise the turgor pressure by

20 atm [2�]. The actual increase experienced by the cells
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Figure 1
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The generation of turgor and resistance to the force. In E. coli cells growing in a medium of �240 mOsm (a standard minimal medium or LB containing

5 g/L NaCl) one may confidently expect to find �200 mM cytoplasmic anions and �300 mM K+. Approximately 100 mM of the K+ matches fixed anions

and is thus not considered for the calculation of the outward turgor of �10 atm. Given the medium contributes �6 atm the net turgor pressure is

�4 atm. MS channels will gate if there is a net outward pressure of �0.1 atm and thus the cell wall and outer membrane, between them, contribute a

resistance of �4 atm to maintain MS channels closed. There are at least two contributions to the strength of the cell wall — the first, already described,

is the crosslinking of the peptidoglycan and the second is the outer membrane that can provide some resistive force through the binding together of

the lipopolysaccharide chains by divalent cations [46].
depends on the rate of water penetration into the cyto-

plasm, the elasticity of the peptidoglycan (PTG) and the

activity of mechanosensitive channels.

The centrality of water in life
Central to understanding the core physiology of bacterial

MS channels is an appreciation of the rapidity of water

fluxes across the lipid bilayer. The membrane bilayer is

highly permeable to water and in some bacterial species

this natural permeability is further augmented by expres-

sion of aquaporins [9]. In response to hyperosmotic shock

[10,11] (J Mika, PhD Thesis, Groningen, 2012) and

hypoosmotic shock [12��] the cell shrinks or expands,

respectively, on the very rapid timescales (30% volume

change in <1 s is typical). A bacterial cell of 10�15 L

contains �3–4 � 1010 water molecules. Considering an E.
coli cell as a cylinder (�2 mm length and 1 mm diameter)

that can expand along its length but not readily change its

diameter (at least over the very short timescales associ-

ated with osmotically driven water movements), which is

consistent with current theories of peptidoglycan struc-

ture [13�], an expansion of �12% [14] would require �4–
5 � 109 water molecules to cross the membrane, which, in

E. coli, can occur in 100 ms [10,11] (J Mika, PhD Thesis,

Groningen, 2012). The capacity to withstand rapid water
www.sciencedirect.com 
movements is dependent upon the operation of MS

channels and on the strength of the cell wall.

Peptidoglycan, which gives the cell its physical integrity

and shape [13�], is a dynamic, semi-elastic polymer con-

structed from oligosaccharides of varying lengths (N-

acetylglucosamine and N-acetylmuramic acid pentapep-

tide units; NAG-NAM-p5) crosslinked by short peptides.

Sugar chains are organised principally in the circumfer-

ential direction, while the peptides are oriented in the

long direction of the cell [13�,15,16,17]. Peptidoglycan is

not a continuous structure; the sugar chains are of variable

length (a single circumference requiring many indepen-

dent polysaccharide chains) and the peptide crosslinking

is incomplete [18]. This variation creates a mesh in which

there are holes (of varying sizes) that are bounded by the

sugars and peptides [18]. Growth of E. coli cells is largely

by extension in the long direction and this requires the

peptidoglycan be a highly dynamic structure; increasing

the length of the cell is principally achieved by breakage

of the peptide bonds and the insertion of new wall

material [13�]. Although the peptidoglycan is a unique

structure between the cytoplasmic and the outer mem-

branes, there are important connections to both mem-

branes through synthetic complexes and lipoproteins,
Current Opinion in Microbiology 2014, 18:16–22
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Figure 2
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Timeline for swelling, adaptation or death. This figure illustrates that, from measurements by stopped flow and microscopy, swelling was observed

�30–50 ms after imposition of a severe (�900 mOsm) hypoosmotic shock [12��]. Changes in refractive index consistent with channel gating suggested

that this occurs between 150 and 200 ms after shock [12��]. Initial cell disruption events were first observed 200–1000 ms after downshock [33��] but

lytic events continue for at least 20 min [4] (SS Black et al., unpublished data; M Bialecka-Fornal et al., personal communication).
respectively [13�]. Some of these connections are transi-

ent, but others, for example, lipoprotein linkages are

covalent bonds to the PTG peptides. The dynamic nature

of the peptidoglycan renders the cell susceptible to

physical disruption by rapid water flow into the cyto-

plasm.

Expansion of the cell, some considerations
The effect of increased water influx into the cytoplasm is

conditional on the pre-existing state of the peptidoglycan.

Measurements have been made, by atomic force micro-

scopy, of the expansion that isolated PTG sacculi can

undergo in response to applied force [14]; a �12% expan-

sion was measured for every 1 atm of pressure applied. If

the cell can expand under the inflow of water there will be

no net increase in pressure on the membrane provided

that the bilayer can increase its surface area on the same

timescale as the water movements. However, the mem-

brane has a limited expansive capacity due to a lack of

extensive phospholipid reserves — estimates suggest 2–
4% expansion, by increasing the distance between head-

groups of the phospholipids, as a mechanical upper limit

[19]. Moreover, rapidly growing cells are likely to have

their PTG sacculus already stretched and it is not clear

whether an immediate expansion on this scale is feasible

without imposing considerable strain on the wall.

MS channels, when assayed in membrane patches, gate at

an imposed pressure on the lipid bilayer (i.e. shorn of the

cell wall) of around 0.1 atm (depending on the specific

lipid context and the shape of the membrane patch) [20–
22]. Clearly, therefore, as the PTG achieves its maximum

expanded stable state a further increase in turgor pressure

will lead to gating of the MS channel complement.

Sukharev and colleagues [12��] measured the rapidity

of the initial swelling upon imposition of a hypoosmotic
Current Opinion in Microbiology 2014, 18:16–22 
shock, using the change in the refractive index of cells.

They observed swelling to occur �30–50 ms after low-

ering the external osmolarity, followed by channel gating

after �150–200 ms. Previous studies to detect the respon-

siveness of MscS and MscL to tension changes suggested

that the channels gate �3–5 ms after the tension reaches

the activation threshold [23]. This suggests that channel

gating �100 ms after swelling is not due to intrinsic lack

of responsiveness of the channels, but may be due to

generation of the gating signal from a combination of

water inflow, cell expansion and other, as yet unknown,

modulations of the cell envelope. An approximate time-

line for swelling, adaptation and death can be constructed

(Figure 2) that allows one to appreciate the extreme

rapidity of the onset of hypoosmotic stress and the speed

of the response required.

Cell death follows multiple paths
Failure of mechanosensitive channels to open leads to

cell death [4,24,25,26�]. The precise fate of individual

cells lacking MS channels is complex. Cell fate is deter-

mined by a combination of known and unknown

parameters that vary between individuals. For each cell

these include the turgor pressure, the number of channels

and the strength of the cell wall. In addition, the rate of

change of the osmolarity is itself a major determinant of

cell fate [27��] (see below). Colony counts have been the

preferred method to investigate the fate of channel-less

mutants and such studies have been informative in defin-

ing the core role of mechanosensitive channels

[4,24,25,26�,28��]. These assays reveal that a small, but

significant, fraction of mutant cells survive hypoosmotic

shock. When such survivors are re-cultured they recapi-

tulate the original pattern of survival, that is the majority

die, but a few survive. Thus, the majority of survivors

have not acquired protective mutations, but rather their
www.sciencedirect.com
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lysis is prevented by some variation in the parameters

described above. There is a reliable qualitative correlation

between channel numbers, intrinsic channel properties

(gating tension, open dwell time and conductance [29])

and survival of a sudden hypoosmotic shock [4,28��,29–
31], which has provided a guide to researchers on the

activity of their chosen channel [2�,27��,32].

Two recent developments have begun to prise open the

pathways that cells follow during cell death. Simple

conclusions about cell death have been drawn, using

optical tweezers to study the fate of individual cells, in

parallel with electron microscopy and FACS analysis of

populations. Thus, the majority of E. coli cells lacking

MscS, MscL and MscK (the three major mechanosensi-

tive channels identified by patch clamping) ‘burst’ on

sudden extreme hypoosmotic shock (�900–1000 mOsm)

and form cell-shaped ghosts that retain some nucleic acid

but little protein [33��]. Individual cells behave in a

number of experimentally distinguishable ways: some

retain their integrity and remain phase dark (or fluor-

escent in the case of GFP-labelled cells), still others form

transient lesions that allow the escape of small proteins

(e.g. GFP) but retain their phase dark status indicating

that they have retained the majority of proteins, and a

third class burst leading to evacuation of the majority of

cell proteins and form ghosts [33��]. Thus ms timescale

events can be observed by analysis of single cells, but it is

clear from population-based assays that lysis (assayed by

protein release) continues for 10–20 min post-shock [4]

(SS Black et al., unpublished data).

Another recent study has investigated the fate of single

cells in populations that are subjected to hypoosmotic

shock at different rates (M Bialecka-Fornal et al., personal

communication). This experimental system has the

benefit of controlled hypoosmotic shock imposed at a

defined rate combined with the observation of large

numbers of cells. Using E. coli mutants with different

channel complements, it was observed that the rate of cell

death depended on the identity of the channels retained

in the mutant strains. This study clearly identifies a role

for the ‘minor’ mechanosensitive channels and observed

that the most severe survival defect was with a mutant

that lacked all seven MS channel homologues, MJF641

[28��,34]. Again multiple pathways to cell death were

observed with some cells simply failing to grow while

others formed distinct membrane blebs prior to loss of

phase dark character but with retention of overall shape

(ghosts) (M Bialecka-Fornal et al., personal communi-

cation).

These two studies frame our current understanding of the

fate of cells lacking MS channels and make the case for

their role in retention of structural integrity of the cell.

Finally, there are nice parallels with antibiotic-induced

killing via inhibition of PTG crosslinking, for example,
www.sciencedirect.com 
using sublethal vancomycin [8�], that is coupled to

growth. Here blebs of inner membrane penetrate through

the PTG and outer membrane, but the rate of formation is

essentially stochastic (M Bialecka-Fornal et al., unpub-

lished data) as is the case for blebs that form after

hypoosmotic shock in MS channel-free mutants. Thus,

the delayed release of protein [4] (SS Black et al., unpub-

lished data) and the formation of blebs (M Bialecka-

Fornal et al., personal communication) argue for damage

that has occurred during the shock becoming manifest

only when the cell starts to grow. Restoration of growth

requires the recovery of solutes [35] to restore cell turgor

that may drive expansion of the cytoplasmic membrane

through the damaged wall.

Channel diversity and adaptation to niche
It is well-established that there are two major classes of

bacterial mechanosensitive channels, namely MscS and

MscL, which were originally defined by electrophysi-

ology in E. coli [2�,21] (Figure 1), but subsequently by

their different structures [1�]. Subsequent analyses

revealed six MscS homologues in E. coli, each of which

has mechanosensitive channel activity, but the majority

of these channels are not observed regularly in electro-

physiological assays and play only minor, but still signifi-

cant roles in protecting cells [4,28��,31]. The loss of the

YbdG channel lowers the magnitude of the salt concen-

tration at which death occurs after a sudden downshock

[31] and the increases the rate dependence of cell death in

controlled hypoosmotic shock (M Bialecka-Fornal et al.,
personal communication). Genome sequences revealed a

much greater level of complexity across bacterial genera.

Thus, whereas the MscL channel activity is usually the

product of a single, moderately conserved, gene, many

organisms possess multiple MscS homologues. Possession

of multiple channels that are differentially expressed may

offer the cell a graded response to hypoosmotic shock.

Over the course of evolution different organisms have

fashioned unique solutions that reflect their environmen-

tal niche. Some organisms that spend all of their ‘normal’

life in marine environments have lost MscL [36,37�] (LE

Lehtovirta and GW Nicol, personal communication).

Some marine organisms can be rescued from severe

hypoosmotic stress by transgenic expression of MscL

from E. coli. An important pair of questions relating to

this observation are — why do Vibrio alginolyticus and

Salinispora tropica not express their MscS channels (they

both lack MscL) sufficiently to protect themselves against

hypoosmotic shock [37�,38] and what roles do their MscS-

type channels play? The variation in Vibrio species has

previously been commented upon [2�] and recent work

has identified that Campylobacter jejuni, uniquely among

all the members of this species, has no MscL [26�].
Intriguingly, the last example has provided the first

demonstration of a role for MscS in pathogenicity

[26�]. Bacteroid formation between symbiotic bacteria
Current Opinion in Microbiology 2014, 18:16–22
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Box 1 Ion flows through MS channels for osmotic adjustment.

Before channel gating, E. coli cells adapted to 0.5 M NaCl in defined

medium may contain �500 mM osmotically active K+ (see text, some

K+ will be bound by fixed anions), �250 mM glutamate and �200 mM

trehalose plus �200 mM metabolic anions (e.g. intermediates in

glycolysis and the TCA cycle) (precise values vary slightly from strain

to strain) [6,35]. This corresponds to �7 � 108 osmotically active

solutes/cell based on Avogadro’s number and a volume of

10�15 L/cell. After shock, cells would be expected to contain

�2–3 � 108 osmotically active solutes. Thus, to become balanced

with a medium of �200 mOsm the cells must lose �5 � 108

osmotically active solutes in a few ms. On the basis of previous

calculation [42], and on the conductance of MscS (�1 nS at 20 mV

potential difference) one can estimate ion movement through a single

MS channel of this type as �3 � 105 ions (solutes)/ms. [Note that

channel gating would lead to rapid inflow of Na+ and H+ down their

gradients, as well as the outward movement of solutes [35],

collapsing the membrane potential. Thus flux through any individual

channel may be substantially slower.] Consequently, total adaptation

to osmolarity could, theoretically, be achieved by 1000 such

channels in 1 ms or by 50 channels in 20 ms (this number can be

adjusted up or down for lower or higher channel conductance, such

as YnaI [28��] or MscL [22], respectively). Indeed these data come

close to explaining the apparent superabundance of MscL channels

[27��] — namely this level of expression allows very rapid voiding of

solutes (Figure 2), consistent with preventing breaches of the cell

wall. It has been shown that opening MS channels causes rapid

equilibration of internal and external solutes [35], leading to

replacement of K+ with Na+ and H+. Consequently bacteria must be

very careful when gating their channels at low pH [4].
and plants may afford further examples of other critical roles

for MscS homologues. Differential expression of homol-

ogues during bacteroid development may be indicative of a

need for protection during morphological changes [39].

Note, however, that is not a general rule — in other sym-

bioses expression of MscS is repressed during formation of

bacteroids [40]. As in all biological systems, evolutionary

history is neither obvious nor simple but has determined the

current observable properties of cells. One can state the

generality with confidence but the individual solutions to

problems often involve greater subtlety.

Added to the complexity of diversity are the problems of

differential expression of MS channels and the signals that

control the transcription of their structural genes. A limited

amount has been learned about the E. coli MS channels

[28��,41], but more insight is needed to complete the

understanding of the physiology of MS channels. Recent

work has highlighted the unexpected abundance of MscL

channels, 300–1000 per cell, in E. coli [27��]. Newer meth-

odologies have the potential to revise these numbers

downwards (GW Li, personal communication), but there

would still be an apparent over-sufficiency of channel

capacity. Calculations have indicated that a single open

MscL channel could suffice to deplete the cell of its ion

pools in 1 s [42] (and thus that 5–10 channels opening

would meet this requirement in 100–200 ms, the time line

for adaptation; Figure 2). This calculation, however,

allowed the membrane potential to remain constant

(�100 to �180 mV) during gating. Opening any MS chan-

nel for a brief period would depolarise the membrane

completely and thus the flow through the channel may

have been over-estimated at least 10-fold (see Box 1). The

other channels have much lower maximum conductance

[28��] and thus can carry much lower ion flows. Thus, one

explanation for the synthesis of large numbers of channels

may be that they meet the requirement for rapid voiding of

the cytoplasmic solutes, on the timescale <150 ms, in

response to hypoosmotic stress (see Box 1; Figure 2).

Multiple channel types provide a temporal response for

less severe hypoosmotic shock and the abundance allows

rapid reduction of the turgor pressure.

Concluding remarks
Given the prominent role of MS channels in preserving

bacterial cell wall integrity it would not be unexpected if

integration of MS channel gating with cell wall biosyn-

thesis were to emerge as a theme. No evidence for such a

connection exists. The last few years have seen a step-

change in our understanding of the integration of the

outer membrane with PTG biosynthesis through specific

connections made between lipoproteins and biosynthetic

complexes that stimulate synthesis of new wall material

[43��]. The molecular dimensions of the two sets of

proteins, one anchored in the cytoplasmic membrane

and the other in the outer membrane, provide the cell

with a measure of the dimensions of the periplasm. This
Current Opinion in Microbiology 2014, 18:16–22 
mechanism may exist to ensure synthesis at the appro-

priate positions in the cell.

Does this connect in any way with MS channels? The

immediate answer is that no explicit data suggest a

connection. Thus, the E. coli mutant lacking all seven

MS channels has no obvious growth or division defect (SS

Black et al., unpublished data). Moreover, similar chan-

nel-free mutants have been made in other organisms with

no reported growth defects [24,25,26�]. One aspect of

channel structural diversity may ultimately find an expla-

nation through integration of these core functions of cells.

Thus, MS homologues differ in the number of transmem-

brane helices, in the presence or absence of a periplasmic

domain and in modifications to the carboxyterminal

domain [31,44,45�]. Among these variations the periplas-

mic domains are intriguing because they have unique

sequences, found only in closely related species and

genera, indicating potential co-evolution with other cell

wall components [13�]. Structure prediction is hazardous

and no consistent patterns have emerged at this time.

However, a preliminary analysis of the MscS homologue

in Rhodopseudomonas palustris suggests a structural sim-

ilarity to PTG synthetic complexes (IR Booth, unpub-

lished data). At this time it is an interesting correlation

and must be consolidated through further analysis.

In conclusion water flow across the membrane is essential

to life, but provides a challenge to the physical integrity of
www.sciencedirect.com
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the bacterial cell. MS channels have evolved to meet that

challenge. In higher organisms that role has evolved into a

specific function in preserving the integrity of chloro-

plasts [1�]. Thus, the proposed prokaryotic origin of

eukaryotic organelles finds a further manifestation in

MS channels!
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