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Abstract. In an abstract argumentation framework, there are oftetipfeiplausi-
ble ways to evaluate (dabel) the status of each argument as accepted, rejected, or
undecided. But often there existzatical setof arguments whose status is suffi-
cient to determine uniquely the status of every other arguin@nce an agent has
decided its position on a critical set of arguments, theemsally the entire frame-
work has been evaluated. Likewise, once a group, e.g. aggrges on the status of
a critical set of arguments, all of their different views oedl other arguments are
resolved. Thus, critical sets of arguments are importatit fu efficient evaluation
by individual agents and for collective agreement by groofpsuch. To exploit
this idea in practice, however, a number of computationalstians must be con-
sidered. In particular, how much computational effort isaed to verify that a set
is, indeed, a critical set orminimal critical set. In this paper we determine exact
bounds on the computational complexity of these and relatiedtions. In addition
we provide similar analyses @sues a concept closely related to critical set and
derived in terms of (equivalence) classes of argumentserethrough “common”
labelling behaviours.

Keywords. argumentation frameworks; labelling schemes; computaticomplexity.

Introduction

Labelling schemes have received increasing attention asia for analyzing semantic
properties of Dung’s seminal abstract model of argumemidfi] and its developments,
e.g. [2,3,4]. Informally, the basic structures used in #pproach are: a set of argument
labels criteria for determining whether an argument can (or mbs®@ssigned a particu-
lar label and for distinguishing “valid” from “improper” kellings; and, in the context of
labelling-based argumentation algorithms, criteria fetedmining whether a particular
labelling is “terminal” or allows for the evolvement of fiar labellings.
Among the benefits offered by this approach is the potertidktelop algorithmic

schemes for standard decision and enumeration problemsriEah studies have indi-
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cated that a number of the algorithms exploiting label-dasehniques perform reason-
ably. Labelling-based algorithms and proof proceduregtieen described in the work
of Verheij [5], Cayrolet al. [6], Caminada [7,8], Thangt al.[9], Nofal et al. [10]. In
contrast to the proven worst-case complexity classifioattbat have been demonstrated
for the associated problems, see e.g. the survey of Dunn&anttiridge [11], exper-
imental studies indicate that these, often, deliver reswithin a feasible time. A fur-
ther advantage of labelling formalisms, is that they allowthe specification of simple
and straightforward discussion games to determine thasstdta particular argument
(acceptable or not w.r.t. a particular semarfi§$2,13,14,15]

In recent work, Boottet al. [16] raised questions concerning appropriate mecha-
nisms by which to compare distinct labellings belonginghte same general class, i.e.
the class of labellings coinciding with a particular argumia¢ion semantics [17]. In dis-
cussing this question, Boottt al. [16] apply the concept of aritical set [18]. Infor-
mally a critical set of arguments with respect to a labelraged semantics is one for
which any valid labelling under this semantics uniquelyedetines which labels can be
assigned to every other argument. Thus, in principle, bgtileng “small” critical sets
one has a method of finding all valid labellings and thereligmieining labelling-based
semantics quickly: find a small critical set,say, and, having verified thatis, indeed,
critical, one need only consider labellings®to determine labellings of arguments not
in S. Hence, identifying critical sets of arguments can be udefuhe efficient evalua-
tion of the entire argument graph.

Another application of the critical sets approach can bendbin argument-based
judgement aggregation. Suppose a group of evaluatorsa(pigy) wishes to collectively
label a given set of arguments presented to all of them (8.gvidence and arguments
from the defense team and prosecution) [19,20]. If the gnognbers agree on the
labelling of a critical set of arguments, they will have reed all of their different views
over all other arguments. Thus, critical sets of argumeandacilitate efficient collective
agreement by a group of agents.

Of course, there is one obvious obstacle facing such mettioelgjuestion of how
much computational effort one needs to invest in order tatifiea “minimal” critical
set. It is this question which is the central topic of disémsén the current article.

We present formal background and definitions in the nexi@ecin Section 2 we
formulate precisely the decision problems relating to tjoms of interest. Section 3
presents our main technical results with conclusions aseldsion offered in Section 4.

1. Notation and Definitions

The following concepts were introduced in Dung [1].

Definition 1 Anargumentation frameworaF) is a pair H = (X, A), in whichX is a
finite set oirgumentaind A C X’ x X is theattack relationshifor #. A pair (z,y) € A
is referred to asy is attacked by’ or ‘ x attacksy’. For R, S subsets of arguments in
thear H(X, A), we say that € S is attackedby R — writtenattacks(R, s) — if there is
somer € R such that(r, s) € A. For subsets® and S of X we writeattacks(R, S) if

4The reader should note thaac¢ceptabl is being used in its standard natural language sense rtther
with the technical connotations introduced later.



there is some € S for whichattacks(R, s) holds;z € X isacceptable with respect
if for everyy € X that attackse there is some € S that attackgy; S is conflict-freeif no

argument inS is attacked by any other argument$hFor S C X', S~ (resp.S™) denote
the sets{ p : 3¢ € S suchthat(p,q) € A} (resp.{p : 3¢ € S suchthat(q,p) €

A}). Thecharacteristic functionf’ : 2¥ — 2% is defined as

F(S) = {xze X : zisacceptable with respect 1§ }

A conflict-free sef is admissiblgff S C F(S).
1.1. Extension-based semantics feis

Based on the approach of a complete extension, one can procedefine various
extension-based argumentation semantics. The idea iditegwoperties that a subset
of X must satisfy in order to be considered justifiable. Thus if 2 — (T, L) then
the extensions of anF, (X, A), with respect tar (more concisely the-extensionsare
denotedS, ((X, A)) and formed by

E (X, A) = {SSX :a(5)}
The next definition presents some widely studied choices for

Definition 2 GivenH = (X, A)

Eo(H) = {SC X : Sisconflict-freen F(S) = S}
Ep(H) ={SCX : S€E,NANVT €&(H) (T CS)}
Er(H) ={SCX : ScE,NANVT €&o(H)(SCT)}
sst(H) = {SCX : S€&&oAVT €&o(H)~(SUSTCTUTT)}

Esst
Esx(H) ={SCX :S€&&,ASUST=2X}
EiaH) ={SCX : S€&&oNSCNERAYT €& (T CNEHNSCT)}

SIS

These correspond in turn to: complete extensions (a); tbhermged extension (b); pre-
ferred extensions (c); semi-stable extensions [2,3](thble extensions (e); the ideal
extension [4](f); the eager extension [21] (g).

Please notice that Definition 2 specifies the argumentagamastics in a slightly
different way than in [1,4,21] but equivalence is shown i2,2B]. The advantage of
Definition 2 is that it emphasizes that the most common arguaten semantics are
based on complete semantics. That is, they select amongtmgete extensions.

For a given semantics,, and its associated-extensions&, ((X,.4)) a number of
natural decision questions can be formulated. Thus, givenX or S C X we might
ask:

1. Isz € Sfor atleast oneS € &,((X, .A))? (Credulous AcceptanceA,,)
2. Isz € SforeveryS € &, ((X,.A))? (Sceptical AcceptancsA,)
3. IsS € & ({X, A))? (Verification VER,)

Eeag(H) = {SCX : S€ENSCNEst ANVT € Eco ~(T CNEst NS CT)}



1.2. Labelling semantics foxrs.

The other widely used approach for defining semantics, is that of applying argument
labellings as was pioneered by Pollock [24], Jakobovits and Verméi} §hd Verheij
[2]. The starting point for such schemes is a selatiels for the purposes of our sub-
sequent presentation we usk O, U} (corresponding ton, Out, Undecided}. The key
concept of interest in this paper is that cd@mpletdabelling [26,22].

Definition 3 A labellingof anar H = (X, A) is a functionA : X — {I,0,U}. A
labelling is said to be @omplete labellingff for eachx € X’ it holds that:

Me)=1T & Vy : (y,z) e A = Ay)=0)
Mz)=0 < By : (yz)e AN ANy =1I)

If \is alabelling then we writa” for {z € X : A(z) = I}, \9 for {z € X : A\(z) = O}
and\Y for {z € X : A\(x) = U}. Furthermore, if\; and)\, are labellings, we say that
A C X iff M C M andAP € AQ, and)\; C X\ iff Ay T Xy and); # )o. Also,
if L is a set of labellings, we defineL as{(z,I) : x € X andvVA € L, \(z) = I}U
{(z,0) : x € XandVA € L,A\(z) = O}U {(z,U) : z € Xand—-V\ € L, \(z) =
Iand—-V\ € L, \(z) = O}.

The next definition presents some common labelling-bagpd@entation semantics.

Definition 4 GivenH = (X, A)

L.o(H) = {X\ : Xisacomplete labelling off }
Ly-(H) = {A 1 A€ Lo AV N € Leo(H) (N € M)}

Lpyr(H) = {\ : NE Lo AV N € Leo(H) ~(M Cc N1)}

Lest(H) = {\ : AE Loy AV N € Leo(H) ~(NV € AV)}

Ly(H) = {\: A€ Lo AN =0}

Lis(H) = {X\ : A€ Leo ANE MLpy AVN € Loy ~(N C MLy AXC N)}
Leag(H) = {X\ : A€ Leo AN MLggg AVN € Loy ~(N C MLgst ANT N)}

S

These correspond in turn to: complete labellings (a); theugrded labelling (b); pre-
ferred labellings (c); semi-stable labellings (d); statddellings (e); the ideal labelling
(f); the eager labelling (g).

We first recall some well-known properties of argument |hibgs.

Fact 1 LetH = (X, A) be anaF.

a. If \is a complete (resp. grounded, preferred, semi-stablblestédeal or eager)
labelling of # then A\’ is a complete (resp. grounded, preferred, semi-stable,
stable, ideal or eager) extension&f.

b. If S'is a complete (resp. grounded, preferred, semi-stablé]estédeal or eager)
extension of{ thenA with AY = S, A0 = St and\V = X\ (SuST)isa
complete (resp. grounded, preferred, semi-stable, staddal or eager) labelling
of H.

5In recent work on algorithmic techniques, e.g. Nafahl.[10] additional labels have been proposed.



It has been observed in [17] that labellings and extensiomeme-to-one related. In
essence, an argument extension is simply/thebelled part of an argument labelling.

In the remaining part of this paper, we will focus on complateellings. We do so
not only because these turn out to be the basis of the maansaggumentation semantics
(see Definition 4) but also because we aim to follow the apgrad [16].

2. Critical argument sets and decision problems

A subsetS of X is acritical setof # if,
A4 <)\1, )\2) S LCO(,H) X LCO(,H) ()\1(5) = )\2(5) = A\ = )\2)

That is, S is a critical set of# if its labelling within any complete labelling uniquely
determines the labelling of every argumenttin Treating the concept ofS'is a critical
setin({X, A)" as defining a collection of—extensions, we us&., to denote

Ees((X,A)) = {SCX : Sisacritical setof X, .A)}

Recall that thestandard translatiorof a CNF ¢(Z) with clauses{C1,...,Cy,} is
theAr, H,(X,, A,) with arguments

{zi,72i : z€Z} U {Cy,...,Cn} U {p}
and attack relation,

{{zi,—zi), (mzi,2i) : z € Z}U

{(z,C;) : z isaliteral in clause’; } U

{(=2;,C;) : -z isaliteral in clause’; } U

{(Cjp) - 1<j<m}

This AF is (with some very minor modifications) originally presehia work of Di-
mopolous and Torres [27] wherein the credulous acceptara@gm with respect to
admissibility semanticsdA,q,,) was shown to bai,—complete. Specifically, we have

Fact 2 For ¢(Z) a cNF formula andH,((X,, A,)) the AF defined by the standard
translation ofp(Z2).

CAwim(Hyp, ) < ¢(Z) is satisfiable
& FXNE Leo(Hy) : M) =1

From{X} € £.5({X, A)), the credulous acceptance problem,,(#, x), is trivial.

3. Complexity in critical set computations

We now consider the computational complexity of thegificationproblemver,, and
related questions. We first observe that this, in common siittilar questions concern-
ing preferred and semi-stable extensions is unlikely todreputationally feasible.

Lemma 1 VER,, is cONP—complete.



Proof: For membership in aopP, consider the complementary problemvgR,;) that
accepts instance$4, S) for which S ¢ £.,(H). That this is inNP follows by the al-
gorithm which guesses labellings\:, \2), verifies that these are both In.,(#), have
A1(S) = A2(9), but are distinct (i.8\1 # X2). All these verification steps being polyno-
mial time decidable, it follows thatvVER., € NP, thuSVER,; iS in CONP.

For hardness we again use the complementary problem, showato benP—hard
by areduction frontNF-SAT. Lety(Z) be an instance afNF-SATwith H, = (X, Ay)
theAF given by the standard translation. The instancewRr,, uses amr, F,, formed
by adding three arguments{, —y, ¢’} to X,,, together with attacks

e, ), (W, ). (W, =), (v, —y), (~y,9)}

The resultingaF is shown in Fig 1.

AF defined by
the standard
translatlon ’Htp o e
of p(Z

Figure 1. TheAr, F, formed from the standard translationf2).

Finally, S the candidate critical set is formed B, U {¢}.

We claim thatS is not a critical set (for thiaF) if and only if ¢(Z) is satisfiable.

Suppose first thatv; is an assignment of propositional values Zofor which
plaz) = T, i.ethatp(Z) is satisfiable. Consider the labelling 8fin which A(z) = I
if z = z;anda; = T, 0rz = —z; anda; = L orz = ¢. For all otherr € S, A\(z) = O.
This can be extended to a labelling in which A\; (y) = I, A1 (—y) = O; and a labelling
A2, With A2 (y) = O, A2(—y) = I. Now both\; and)\; are inL.,: from the properties of
the standard translation described in Fact 2 and the facithia = O. Hence we have
found (A1, A2) with A1(S) = A2(S) but\; # Xs. ThusS is not a critical set.

Conversely, suppose thatis not a critical set. We show that, in this cag€”)
is satisfiable. Le{\;, \2) be complete labellings witnessing théitis not critical and
denote by\ the restriction of these to the argumentsSirfnoting that is well-defined
since); (S) = A2(S) from the premise). Then we cannot havg)) = I, for then both
y and—y can only be labelled. Similarly, if A(¢)) = U then bothy and—y must be
labelledU (neither can be labelled, sinceA(y)) # O). It follows that, since(A1, A2)
is a witness taS not being a critical set, we must hax¢y) = O, whence it follows
that A(¢) = I. It is immediate (from Fact 2 and the construction?éf) thatp(Z) is
satisfiable. In totalS is a not a critical set if and only ip(Z) is satisfiable, from which
it follows VER,, is coNP—hard. o

The notion of critical setimposes quite strong conditiongh® relationship betweeh €
Ees((X, A)) and arguments i/’ \ S: no matter how we labe§ within A € L., ({X, A))
only one labelling is possible fot' \ S.



Rather than this “global” condition governing the relagbip betweers andall ar-
guments outsidé, suppose we refine this property by considering an equicelesia-
tion betweernndividualarguments. That is to say, the equivalence relatiooyer X’ x X
defined forH ((X, A)) viax = y if and only if

1. VX € Leo(H) Mz) = Ay) V
29N € Leo(H) (Mz) =1 Ay) =0) A (Mz) =0 & \y) = 1)

That= is an equivalence relation is proved in Bo@hal.[16, Propn. 6]. Now consider
the (sets of arguments in) the equivalence classeswlich we refer to as thissuef
(X, Ay and let€;4su.(H) denote

{SCX :V{z,yye SxSx=y, andVT D SFHu,v) € T x T =(u=v)}

ThusS € &;ssue(H) if and and only ifS describes an equivalence classtofinder the
relation=.

Let EQuUIV denote the decision problem whose instancésX; A), =, y) are ac-
cepted if and only ift = y with respect to complete labellings 6, A) (similarly we
useINEQUIV to denote the complementary problem).

Lemma 2 EQUIV is coNP—complete.

Proof: As with the previous lemma, the argument is couched in terintiseocomple-
mentary problem so that we shaneQuIv to beNrP—complete. ThaiNEQUIVENP fol-
lows by noting, given an instandéX’, A), x,y) that—(z = y) if and only if there are
complete labellings £\1, A2) — for which A\ (z) # A1 (y) under); (so that\; witnesses
(x, y) failing to satisfy condition 1); ands, similarly, withesses thdt:, y) do not satisfy
condition (2). We note that any labelling in whigkz) = A(y) = T orA(z) = A(y) = O
suffices for the latter (although not one for whitfx) = A(y) = U).

Guessing two labelling6\1, A2) and validating their properties can be accomplished
by annp algorithm.

To show thatiNEQUIV is NP—hard, we use a reduction frooNF-SAT. Given an
instancey(Z) of this, form exactly the same&r, F,,, described in the proof of Lemma 1.
Within this AF, we consider the argumentsandy. We claim that-(¢ = y) if and only
if p(Z) is satisfiable.

Suppose thatvz is an assignment for which(az) = T. We therefore find a la-
belling under which\(¢) = I forcing A\(v) = O. This labelling, however, is consistent
with labellingsA; with A1 (¢) = I and\;(y) = O (by usingX;(—y) = I) and)\, with
X2(p) = IandAz(y) = I (by usinghz(—y) = O). We deduce thak; violates condition
(1) andX, condition (2) so that the satisfiability gfimplies—(¢ = y).

Conversely suppose(p = y). Observing that:(¢ = y) is withessed bywo com-
plete labellings{\1, \2) it suffices to show that one of these allows the satisfiahilfty
©(Z) to be inferred. Let\; be a labelling under which; (¢) # A\ (y). If AMi(p) = U
then, contradicting the premise, this forcegy) = U. If A\;(¢) = O then, again in con-
tradiction, we get\; (y) = O (sinceA; () = I). Hence\;(¢) = I and we can choose
M (y) = O (via A\ (—y) = I). From the fact thah; (p) = I it is immediate thatp is
satisfiable. o

The main structures we are interested inrairimal (wrt C) critical sets ananaxi-
mal sets of equivalent arguments, i.e. equivalence classmase$under.



We now address the complexity of related verification qoestii.e.
MIN-CS
Instance: ((X,.A), S) with S C X.
Question:1Is S € £.5((X, A)) butnostrict subset]’ of S isin &.5((X, A))?

ISSUE
Instance: ((X,.A), S) with S C X.
Question:Is S anissue fofX', A), i.e. an equivalence classafwrt complete labellings
of (X, A)?

We first establish upper bounds on the complexity of theseaR#hat the complex-
ity classDP consists of languages, that may be expressed in the fodn= £, N Lo,
whereL; € NPandL, € CONP.

Lemma 3

a. MIN-CS € DP,
b. ISSUE € D”.

Proof: For part (a), consider the following two languages,

Ly = {({(¥,A),5) : §e (¥, A)}
Ly = {((X,A),5) : Vo es, S\ {z} & E&((X,A)}

From Lemma 1, it is immediate thal, € NP and £; € conr.® We now have
MIN-CS = L1 N L5 and, hence, im?.
For part (b), letC; and L, be given by,

Ly = {({(X,A),S) : V(z,y) € Sx S, =y}
Lo ={({(X,A),S) : V(z,y) € Sx X\ S, ~(x=y)}

Again it is easily seen thassue = £, N £, (noting, again((X, A), S) € L does not
indicate that: = y for every(z, y) € S x S). To complete the proof, it suffices to show
L1 € conPandLy € NP. The complementary languagefg is

{((X,A),S) : Iz,y) €S xS, ~(x=1y)}

This is a language inP (via witnesses of the fornfx, y, (A1, A2)) and the results
of Lemma 2): thus£; € conp. For Lo, denotingS = {p1,...,p,} andX \ S =
{q1,...,¢:} we need only guess a witnessof the form

<)‘%717 )‘é1># e #<>‘§7ja )‘g]># e #<>‘;755 )\275>

where(\:7 \57) € Lo, ((X, A)) x Leo((X, A)) are complete labellings witnessing that
—(p; = g;). The correctness of these labellings (of which there withast|.S| x | \

S| < |X|?/4) can be validated in polynomial time. Hena&, € NP, so completing the
proof thatissuE € DP. o

We can now proceed to the main result of this section.

SNotice thatLo doesnot require S itself to be critical, simply that every subset obtained bsoving a
single argument of fails to be critical.



Theorem 1

a. MIN-CSis DP—complete.
b. ISsuEis bP—complete.

Proof: Lemma 3 has already shown that both problems amPiiso it remains only
to show both ar@P—hard. FomIN-CcS we proceed via a reduction from the canonical
DP—hard problemsAT-UNSAT, instances of which are a pair oiNF-formulae(p1, p2)
(without loss of generality over disjoint sets of propasital variables), such instances
being accepted if and only {#; is satisfiableand - is unsatisfiable.

Given an instanceyp; (Y), p2(Z)) of SAT-UNSAT, form theAF, H,,, ., consisting
of AFs, F1 andF; resulting from the translation presented in Lemma 1 appbsgpec-
tively to 1 (Y') andps(Z). We use{v1, p, —p} for the arguments added (to the standard
translation) inF, and{v-, ¢, ~q} for those added iF,. To complete the instance of
MIN-CS, we setS = {y1,...,Yn, 21, - -, Zn, P}

We claim thatS is a minimal critical set of{,,, ., if and only if ¢ (Y') is satisfiable
and g2 (Z) is not satisfiable.

Suppose that; (Y) is satisfiable ando2(Z) has no satisfying assignment. First
observe thatS is, indeeda critical set: given any labelling of, this uniquely deter-
mines the labellings of —y;, —2z; : 1 < i < n}, and thence the labellings of each
of the “clause” arguments itF; and F». In consequence the labellings b1, o2}
are fixed as well as the argumerts;, ¢2, —p}. Finally from the premise thaps is
unsatisfiable the labellings dfy, —¢} are determined via similar arguments to those
from Lemma 1. In addition to being critical, howevérjs also aminimalsuch set: for
x €{y1,-.-,Yn,21,-..,2n} the setS\ {z} fails to be critical since we cannot uniquely
determine the labellings dfx, =z} from S\ {z}. Finally, sincey; is satisfiable, again
via Lemma 1, we deduce thét\ {p} cannot be a critical set. It follows that{f, ©2)
is accepted as an instances®T-UNSAT then (%, .., S) is accepted as an instance of
MIN-CS.

Conversely, suppose thétis a minimal critical set o, ,,. If 1 (Y") is unsatisfi-
able, then this contradicts minimality sinSe\ {p} remains critical. Similarly, ifp2(Z)
is satisfiable, this is in contradiction fbeing critical: there is a labelling ¢f that does
not uniquely determine the labelling &, —¢}. It follows that(#,, ..., S) being a pos-
itive instance oMIN-csimplies that(,1, ¢2) is accepted as an instancesar-UNSAT.
This completes the proof thatin-Ccsis bP—complete.

For part (b), we also use a reduction fr@aT-UNSAT, however, since arguments
{x,y} in separate frameworks are not, in general equivileome modification to the
reduction is needed.

Given (p1, @2), an instance oBAT-UNSAT the instance ofSSUE uses#,,, ,, as
described in (a), but with an additional attaigkoo, 11 ) }. This AF is shown in Fig. 2.

The candidate issué, is {2, V2, ¢, ~q}.

We claim thatS is an issue of (the modified),,, ., if and only if (1, ¢2) is
accepted as an instancefT-UNSAT.

To begin, suppose that; is satisfiable butps is not. It is certainly the case that
S C T for someissu€eT’, since as argued in the proof of Lemmas3,= ¢ and, trivially,

"With the trivial exception of arguments which can only besligr U, e.g. thear ({z, y}, {(z, z), (y, y)})
whose only complete labelling ’(z) = A(y) = U orwhen{z}~ = {y}~ = 0.
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Figure 2. TheAF, Hy, oot ISSUE{p2, %2, q, mq}) < SAT-UNSAT({¢1, ¥2))

2 = 2. From the premise that for any complete labellixgf H,, , it follows that
the only possibilities for\({p2, 12, q, ~q)) are {UUUU, OIOO}. This set, however,
must also be maximal, i.&§ = T": we cannot add any clause argumenstosince we
can always identify a labelling of (or Y') under which such arguments can be labelled
either! or O. Similarly, we cannot add any literale {y;, —y;, z;, —z; } t0 .S since, again
we can always construct complete labellings havifg) = O and\(z) = I. Hence, if
S is not an issue the only possibilities are frde = ¢1, Y2 = Y1, Y2 = p, Y2 =
—-p}. From the premise that; (V) is satisfiable, it follows that there is a labelling with
A1) = I, trivially, however, there is also a labelling with(y1) = O (since we can
always arrange that some clause argumentpfis labelled!). It now follows from
1 = 91 (from the fact that\(p2) € {U, O}) we cannot have, = ;. Finally since,
as noted in the proof of Lemma 2, from any labelling under Whi¢p,) = I, we can
find labellings allowing\(p) to be eitherl or O (similarly, A(—p) to be eithetO or I)
we deduce (via the satisfiability gf;) thatS is an issue.

Conversely suppose thétis an issue. We wish to show that in this case,, p2) is
accepted as an instancefT-UNSAT.

From the fact thaf is an issue, it must be the case thé&p; = p2) andyps = ¢. The
second of these holds if and onlygh is unsatisfiable as argued in Lemma 2. Consider
the possible labellings fafp, , ¢1) (given that we have showk(y2) € {U, O}). Since
—(p2 = p) it cannot be the case that every complete labelling lead$¢e) € {I,U},
hence there must be some labelling under whith;) = O, i.e. eitherA(¢1) = I or
Ap2) = I. The latter, as we have seen from the premise$hatan issue cannot occur,
therefore such a labelling resultsiip1) = I, hencep; is satisfiable as required.

We deduce thatyn, ¢2) is accepted as an instance $4T-UNSAT if and only if
{2,192, ¢, ~q} is an issue o#,,, ., and thatsSUEis DP—complete. o

For the argument thatIN -CSsis DP—complete we chose as the candidate minimal critical
set structure to be verified a sety, y2, ..., yn} U {21,22,...,2,} U {p}.

There is no need within the proof structure, however, to ugeraents correspond-
ing only to positiveliterals: that is to say exactly the same proof holds w&r® be
formed by{—wy1, a2, ..., yn} U {—21, 722,..., 72, } U {p}. Using this observation
the following consequence is immediate.

Corollary 1 There arears, (X, A) with |X'| = n and
|{S C X : Sisaminimal critical setinx, A)}| > 27/3



Proof: Consider anyCNF, ¢ over, say,n variables,Z, and having exactlyn clauses.
The standard translation gfto anAF has exactly3m + 1 arguments and any s8twith
exactly one argument from eagh;, —z;} is a minimal critical set. o

4. Conclusions and discussion

We have studied the computational complexity of differestidion problems centered
around critical sets of arguments: subsets of argumentsahee labelled, uniquely de-
termine the labels of all the other arguments in the arguatiemt framework. Also, we
have examined the complexity of different decision proldesiated to the different is-
sues [16] that can be identified.

The complexity classifications obtained are at a level iibjosiewed as intractable
under the standard assumptions, namelyreoomplete and?-complete. It is noted,
however, that this is at a similar level as a number of degigigestions that have pre-
viously been studied in extension-based semantics of a¥gtation. For example, the
questions of verifying a given subset as a preferred or stahile extension are both
conP-complete [27,3], as is the question of verifying if a set isideal set (that is a,
not necessarily maximal, admissible subset contained jreferred extensions) [28].
Indeed a number of common decision questions are well-kriownvolve rather higher
levels of complexity: e.g. sceptical acceptability undettbpreferred and semi-stable
semantics [29,30]; the verification problem for ideal esiens (that is, maximal ideal
sets) [28]. From such perspectives, just as efforts to ifjeboth tractable fragments
and reasonable heuristics continue with regard to Dunig-sixtension based models,
S0 too, similar investigation of techniques for identifyiminimal (or “near” minimal)
critical sets are well motivated. This is especially theegc@gven the gains (with respect
to, among others, enumeration of labellings in a given yidesg the formal structure of
critical sets offers.

As a final point we mention that the notions of (minimal) «éti sets and issues
are related to specific argumentation semantics. So fasgthave only been defined
in the context of complete semantics [16]. It would, howewer equally possible to
define them in terms of preferred, semi-stable or stable sBosa As an example how
critical sets and issues change when the semantics is aharyesider the argumentation
framework of Figure 3. Herd,E'} is a critical set under semi-stable and stable semantics,
but not a critical set under complete and preferred senmr@ioe of the open research
challenges is to broaden the notions of critical sets angssf [16] also to work under
different semantics than complete, and to examine how ffasta the complexity of the
associated decision problems.

Figure 3. Different semantics yield different critical sets and ssu
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