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TOPOLOGICAL COMPLEXITY OF MOTION PLANNING

AND MASSEY PRODUCTS

MARK GRANT

Abstract. We employ Massey products to find sharper lower bounds for the
Schwarz genus of a fibration than those previously known. In particular we
give examples of non-formal spaces X for which the topological complexity
TC(X) (defined to be the genus of the free path fibration on X) is greater
than the zero-divisors cup-length plus one.

1. Introduction.

Motion planning is a fundamental area of research in Robotics. A motion plan-
ning algorithm for a given mechanical system S is a function which assigns to each
ordered pair (A, B) of physical states of S a continuous motion of S starting at
A and ending at B. We may regard the admissible physical states of S as be-
ing parameterised by the points of a topological space X (the configuration space
of the system) such that motions of the system correspond to continuous paths
γ : [0, 1] = I → X . A motion planning algorithm for the system is then a section
s : X × X → XI (not necessarily continuous) of the free path fibration

(1) πX : XI → X × X, πX(γ) = (γ(0), γ(1)).

The minimum number of domains of continuity of such a section s provides a
measure of the complexity of the motion planning problem in X . This observa-
tion led M. Farber in [Far1], [Far2] to consider a new numerical homotopy invari-
ant, called the topological complexity of the configuration space X and denoted
TC(X), which may be defined to be the Schwarz genus ([Sch], see Section 2)
of the fibration (1). The invariant TC(X) is a close relative of the Lusternik-
Schnirelmann category cat(X), and although independent the two satisfy the in-
equalities cat(X) ≤ TC(X) ≤ cat(X ×X) ≤ 2 · cat(X)− 1. We refer the reader to
[Far3] for an excellent survey of results in this area.

Computing TC(X) for a given X can be an extremely difficult task (for example,
by the main result of [FTY] the topological complexity of real projective space
TC(RPn) for n 6= 1, 3, 7 equals one plus the smallest dimension of Euclidean space
into which RPn immerses). As in the case of LS-category one applies cohomology
theory to find computable lower bounds. One such lower bound for TC(X), which
only requires knowledge of the cohomology algebra of X , is given in [Far1]. If X is
a space of finite type and F is a field, there is an isomorphism of graded algebras
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H∗(X ×X ;F) ∼= H∗(X ;F)⊗H∗(X,F), where the product on the right is given by

(α ⊗ β)(γ ⊗ δ) = (−1)|β||γ|αγ ⊗ βδ.

The cup product map ∪ : H∗(X ;F) ⊗ H∗(X ;F) → H∗(X ;F) is a ring homomor-
phism, whose kernel is the ideal of zero-divisors. The zero-divisors cup-length over
F is the number of factors in the longest non-trivial product of zero-divisors. Then
TC(X) is greater than the zero-divisors cup-length over F, for any field of coeffi-
cients F.

In a recent paper of Farber and the author [FG2], stable cohomology operations
are utilised to obtain sharper lower bounds for TC than the zero-divisors cup-
length. In this article we investigate the effects of Massey products on topological
complexity. The key notion is that of weight of a cohomology class with respect to a
fibration, first defined in [FG1], which generalises the category weight of Y. Rudyak
[Rud] and J. Strom [Str] (which in turn are refinements of the original notion of
category weight due to E. Fadell and S. F. Husseini [FH]). In Section 2 we recall
some properties of this weight, and show how classes of high category weight can
lead to classes of high weight with respect to the free path fibration. In Section 3
we briefly review Massey products, and show how they may be used to estimate
the Schwarz genus of a fibration, generalising a result of Rudyak ([Rud], Theorem
4.4). In the final Section 4 we give examples of non-formal spaces where non-zero
Massey products can be employed to find better lower bounds for TC than the
zero-divisors cup-length.

The author wishes to thank Michael Farber, Thomas Kahl and Sergey Yuzvinsky
for stimulating discussions regarding this work.

2. Weights of cohomology classes with respect to a fibration.

In this Section we recall the definition of weight of a cohomology class with respect
to a fibration from [FG1]. We also give an alternative characterisation of weight in
terms of fibred joins (Proposition 2.4), and show that classes with high category
weight may lead to classes with high weight with respect to the path fibration πX

(Theorem 2.6). In this article, all spaces are assumed to be path-connected and of
finite type. Unless specified otherwise, coefficients for cohomology are taken in an
arbitrary commutative ring R with unit.

Let p : E → B be a fibration. The Schwarz genus of p, denoted genus(p),
is defined to be the minimum k such that B may be covered by open subsets
U1, . . . , Uk, on each of which p admits a continuous local section (a map si : Ui → E
such that p ◦ si is the identity map on Ui).

The concept of genus was defined and thoroughly studied by A. S. Schwarz
[Sch]; it is also called sectional category in the modern literature. It generalises
the Lusternik-Schnirelmann category, in the following sense. Let (X, x0) be a
pointed space and let pX : P0X → X be the Serre path fibration on X , where
P0X = {γ : I → X | γ(0) = x0} and pX(γ) = γ(1). Then genus(pX) = cat(X)
(here we do not normalise, so that for us cat(Y ) = 1 if Y is contractible). Other
notable applications of the genus include the works of S. Smale [Sma] and V. A. Vas-
silliev [Vas1], [Vas2] on the complexity of algorithms for finding roots of polynomial
equations, and applications to the embedding problem for topological manifolds
(see Chapter VII of [Sch] and the references therein).
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Another important application of the genus (and the one with which we are
most concerned here) is to the motion planning problem in Robotics. For any
space X let XI denote the space of paths in X (with no restrictions on end-points)
with the compact-open topology. The topological complexity of X is defined by
TC(X) = genus(πX), where

πX : XI → X × X, πX(γ) = (γ(0), γ(1))

is the free path fibration. As mentioned in the Introduction, the number TC(X)
provides a measure of the complexity of the motion planning problem for a system
with configuration space homotopy equivalent to X . More details can be found in
Farber [Far1], [Far2], [Far3].

A useful cohomological lower bound for the genus of an arbitrary fibration
p : E → B was given by Schwarz.

Theorem 2.1 (Schwarz, [Sch], Theorem 4). Suppose there are classes u1, . . . , uℓ ∈
H∗(B) such that p∗(ui) = 0 for i = 1, . . . , ℓ and the product u1 · · ·uℓ is non-zero.
Then genus(p) > ℓ.

In this Theorem one may also use local coefficients, or other cohomology theories,
but we will not do so here. Note that for the Serre path fibration pX Theorem 2.1
gives the classical lower bound for cat(X) in terms of the cup-length of H̃∗(X)
(since P0X is contractible). For the free path fibration πX : XI → X × X and
coefficients in a field, Theorem 2.1 gives the lower bound for TC(X) in terms of
zero-divisors cup-length [Far1] described in the Introduction. This is because πX

is homotopically equivalent to the diagonal map △ : X → X × X .
In [FH] it was observed by Fadell and Husseini that some indecomposables in

H̃∗(X) carry more weight than others in the cup-length estimate for cat(X) (an
homogenous element u in a graded algebra is called indecomposable if it cannot be
written as a sum of products u =

∑
viwi where the dimensions of each vi, wi are

strictly less than that of u). Their definition of category weight of a cohomology
class was later refined by Rudyak [Rud] and by Strom [Str]. The notion of weight
was generalised to an arbitrary fibration p : E → B in papers [FG1], [FG2].

Definition 2.2. The weight of a non-zero cohomology class u ∈ H∗(B) with respect
to p, denoted wgtp(u), is defined by

wgtp(u) = sup{k | f∗(u) = 0 for all maps f : A → X with genus(f∗p) ≤ k}.

Here f∗p denotes the pull-back fibration of p along f .

Remark 2.3. The (strict) category weight of a class u ∈ H∗(X) is defined in [Rud]
to be

wgt(u) = sup{k | f∗(u) = 0 for all maps f : A → X with cat(f) ≤ k}

(recall that cat(f) is the smallest n such that A admits an open cover U1, . . . , Un

with f |Ui
null-homotopic for all i). It is not difficult to see that wgt(u) = wgtpX

(u),
the weight of u with respect to the Serre path fibration.

An alternative characterisation of weight may be given, in terms of fibred joins.
Recall that the k-fold iterated fibred join of a fibration p : E → B with fibre F is
a fibration p(k) : E(k) → B with fibre ∗kF , the k-fold join of F with itself. The
domain space E(k) has underlying set the formal linear sums

ẽ = e1t1 + e2t2 + . . . + ektk, ei ∈ E, ti ∈ [0, 1],
∑

ti = 1, p(e1) = · · · = p(ek),
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with the understanding that two such sums ẽ and ẽ′ are equal if and only if ei = e′i
whenever ti > 0. Its topology is defined to be the smallest topology such that the
co-ordinate maps

ti : E(k) → [0, 1], ei : t−1
i (0, 1] → E

are all continuous. The projection p(k) : E(k) → B is defined by

p(k)(e1t1 + · · · + ektk) = p(e1) = · · · = p(ek).

Note that p(1) : E(1) → B is exactly p : E → B. Schwarz proved ([Sch], Theorem
3) that genus(p) ≤ k if and only if p(k) has a section.

Proposition 2.4. For any non-zero u ∈ H∗(B) we have

wgtp(u) = sup{k | p(k)∗(u) = 0}.

In particular, wgtp(u) ≥ 1 if and only if p∗(u) = 0.

Proof. As is shown in Proposition 34 of [FG1], if p(k)∗(u) = 0 then wgtp(u) ≥ k.
Hence wgtp(u) ≥ sup{k | p(k)∗(u) = 0}.

Now suppose that wgtp(u) = k, and consider the pull-back fibration p(k)∗p. It
has base space E(k) and total space

{(e1t1 + . . . + ektk, e) ∈ E(k) × E | p(e1) = · · · = p(ek) = p(e)}.

The open sets Ui = t−1
i (0, 1], i = 1, . . . , k cover E(k), and on each there is a section

si of p(k)∗p given by

si(e1t1 + . . . + ektk) = (e1t1 + . . . + ektk, ei).

Hence genus(p(k)∗p) ≤ k, and so p(k)∗(u) = 0. �

Theorem 2.5 ([FG1], Theorem 33). Suppose there are classes u1, . . . , uℓ ∈ H∗(B)
whose product u1 · · ·uℓ is non-zero. Then

genus(p) > wgtp(u1 · · ·uℓ) ≥
ℓ∑

i=1

wgtp(ui).

Theorem 2.5 may give a better lower bound for genus(p) than Theorem 2.1,
provided one can find indecomposables u ∈ H∗(B) with wgtp(u) > 1. Fadell
and Husseini achieved this in the case of category weight, using stable cohomology
operations ([FH] Theorem 3.12, see also Corollary 4.7 of [Rud]). An analogous result
for TC was obtained by the authors in [FG2], where stable cohomology operations
are used to find indecomposable zero-divisors z ∈ H∗(X × X) with wgtπX

(z) > 1,
thus allowing the computation of TC of various lens spaces. Rudyak has shown
([Rud], Corollary 4.6) that if u ∈ H∗(X) is a Massey product then wgt(u) > 1 (the
definition of Massey’s triple product will be recalled in Section 3). To conclude this
Section we show how classes of high category weight can lead to zero-divisors with
high weight with respect to πX .

Theorem 2.6. Let X be an r-connected space, r ≥ 1. Suppose that u ∈ Hℓ(X ;F)
has wgt(u) ≥ k ≥ 1, where k(r + 1) ≤ ℓ < (k + 1)(r + 1) and F is a field. Then
there exists an element φ(u) ∈ Hℓ(X × X ;F), of the form

(2) φ(u) = 1 × u + θ(u), θ(u) ∈
⊕

i+j=ℓ

i>0

Hi(X ;F) ⊗ Hj(X ;F),
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which has wgtπX
(φ(u)) ≥ k. If the cup products Hi(X ;F) ⊗ Hℓ−i(X ;F) →

Hℓ(X ;F) for 0 < i < ℓ all vanish, then

φ(u) = u = 1 × u − u × 1.

Proof. The k-fold fibred joins of the Serre fibration pX and the free path fibration
πX are related by the following diagram,

(3) ∗kΩX

��

∗kΩX

��

P0X(k) //

pX (k)

��

XI(k)

πX(k)

��

X
ι

// X × X,

where the bottom square is a pull-back and the map ι : X → X × X is given by
ι(x) = (x0, x). Let (Er , dr) and (Ēr, d̄r) denote the Leray-Serre spectral sequences

of pX(k) and πX(k) respectively. The class u ∈ Hℓ(X) = Eℓ,0
2 has wgt(u) ≥ k, and

therefore by Proposition 2.4 lies in the kernel of pX(k)∗ : Hℓ(X) → Hℓ(P0X(k)),
which is known to correspond to the edge homomorphism

Hℓ(X) = Eℓ,0
2 ։ Eℓ,0

∞ →֒ Hℓ(P0X(k))

(see for example [Whi] p. 649).
Since X is r-connected, the based loop space ΩX is (r − 1)-connected; hence

by Lemma 2.3 of [Mil] the common fibre ∗kΩX is (rk + k − 2)-connected. For
dimensional reasons u must therefore be in the image of the differential

dℓ : Hℓ−1(∗kΩX) = E0,ℓ−1
ℓ → Eℓ,0

ℓ = Hℓ(X).

Let v be in Hℓ−1(∗kΩX) = E0,ℓ−1
ℓ = Ē0,ℓ−1

ℓ with dℓ(v) = u. We set

φ(u) = d̄ℓ(v) ∈ Ēℓ,0
ℓ = Ēℓ,0

2 = Hℓ(X × X).

By naturality of spectral sequences and using diagram (3) we see that

ι∗(φ(u)) = ι∗(d̄ℓ(v)) = dℓ(v) = u,

and hence φ(u) is of the form (2). Since φ(u) is in the image of the differential d̄ℓ

it is in the kernel of the edge homomorphism

Hℓ(X × X) = Ēℓ,0
2 ։ Ēℓ,0

∞ →֒ Hℓ(XI(k)),

which corresponds to πX(k)∗ : Hℓ(X×X) → Hℓ(XI(k)). Hence wgtπX
(φ(u)) ≥ k,

proving the first statement.
Now note that wgtπX

(φ(u)) ≥ k ≥ 1 implies that φ(u) is a zero-divisor. Hence
△∗(φ(u)) = u + △∗(θ(u)) = 0 where △∗ : H∗(X) ⊗ H∗(X) → H∗(X) is the cup
product map, and the second statement follows. �

3. Massey products.

In this Section we recall some definitions and results concerning Massey products
and show how they may be used to estimate the Schwarz genus of a fibration,
generalising a result of Rudyak ([Rud], Theorem 4.4). We consider only the triple
product [UM], [Mas], which is a secondary cohomology operation of three variables,
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but much of what we say may be generalised to higher order or matric Massey
products (see [Kra] and [May] for definitions).

Let X be a topological space. The singular cochain complex of X with coefficients
in R, denoted C∗(X), is a DGA over R with cochain multiplication • : C∗(X) ⊗
C∗(X) → C∗(X) defined in the usual way and differential d of degree +1 satisfying
d(a • b) = da • b + (−1)|a|a • db. Given cohomology classes α, β, γ ∈ H∗(X) of
dimensions p, q and r such that αβ = 0 = βγ, their Massey product is a subset

〈α, β, γ〉 ⊆ Hp+q+r−1(X)

defined as follows. Let a, b, c ∈ C∗(X) be cocycles representing α, β and γ respec-
tively. Since αβ = 0 there is a cocycle µ ∈ Cp+q−1(X) with dµ = a • b. Similarly,
since βγ = 0 there is a cocycle λ ∈ Cq+r−1(X) with dλ = b • c. The cochain
a•λ+(−1)p+1µ• c is a cocycle which therefore represents a class in Hp+q+r−1(X).
The Massey product 〈α, β, γ〉 is the set of all cohomology classes arising in this way,

〈α, β, γ〉 = {[a • λ + (−1)p+1µ • c] ∈ Hp+q+r−1(X) | dµ = a • b and dλ = b • c}.

Elements of the above Massey product differ by elements of the subgroup

αHq+r−1(X) + Hp+q−1(X)γ ⊆ Hp+q+r−1(X),

which is termed the indeterminacy of 〈α, β, γ〉. Hence one may regard 〈α, β, γ〉 as
an element of the quotient group of Hp+q+r−1(X) modulo this indeterminacy. Note
that if all cup products in H∗(X) are zero the indeterminacy vanishes. We will say
that 〈α, β, γ〉 is non-zero if 0 /∈ 〈α, β, γ〉.

The next result is based on Theorem 4.4 of [Rud].

Theorem 3.1. Let p : E → B be a fibration, and let α, β, γ ∈ H∗(B) be cohomology
classes. If the Massey product 〈α, β, γ〉 is defined and non-zero, then

genus(p) > wgtp(β) + min{wgtp(α), wgtp(γ)}.

Proof. Let k = wgtp(β) and ℓ = min{wgtp(α), wgtp(γ)}. Assume that 〈α, β, γ〉 is
defined, and that genus(p) ≤ k + ℓ. This means there exist open subsets Ci for
i = 1, . . . , k and Dj for j = 1, . . . , ℓ of B such that

C =
k⋃

i=1

Ci, D =
ℓ⋃

j=1

Dj , B = C ∪ D,

and p admits a local section on each Ci, Dj. From the definition of weight it
follows that β|C = 0 and α|D = 0 = γ|D. A cocycle b which represents β is

therefore the image of a cocycle b̃ ∈ C∗(B, C) which vanishes on cycles in C, by
the exact cohomology sequence of the pair (B, C). Similarly the cocycles a and c
representing α and γ are the images of cocycles ã, c̃ ∈ C∗(B, D). A quick glance at
the diagram

(4) C∗(B, C) ⊗ C∗(B, D)
•

//

��

C∗(B, C ∪ D)

��

C∗(B) ⊗ C∗(B)
•

// C∗(B)

given by naturality of cochain multiplication now shows that a • b = 0 = b • c, since
C∗(B, C ∪ D) = 0. It follows that the Massey product 〈α, β, γ〉 contains zero. �
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In the next Section we will apply Theorem 3.1 to obtain lower bounds for TC(X)
sharper than the zero-divisors cup-length, for certain spaces X . The next two
Propositions gather some facts about Massey products which are needed in the
sequel.

Proposition 3.2. (a) (Linearity) If 〈α, β, γ〉 and 〈α′, β, γ〉 are defined and |α| =
|α′|, then 〈α + α′, β, γ〉 is defined and

〈α + α′, β, γ〉 ⊆ 〈α, β, γ〉 + 〈α′, β, γ〉.

Similar statements hold in the second and third variables.
(b) (Scalar multiplication) If 〈α, β, γ〉 is defined and r ∈ R, then 〈rα, β, γ〉 is

defined and

r〈α, β, γ〉 ⊆ 〈rα, β, γ〉.

Similar statements hold in the second and third variables. If u ∈ R is a unit, then

u〈α, β, γ〉 = 〈uα, β, γ〉 = 〈α, uβ, γ〉 = 〈α, β, uγ〉.

(c) (Naturality) If f : Y → X is a map, then

f∗〈α, β, γ〉 ⊆ 〈f∗(α), f∗(β), f∗(γ)〉.

(d) (Internal products) If 〈α, β, γ〉 is defined and α′, β′, γ′ ∈ H∗(X) are arbi-
trary cohomology classes, then 〈αα′, ββ′, γγ′〉 is defined. Furthermore, if the latter
operation has zero indeterminacy then

〈α, β, γ〉α′β′γ′ = ±〈αα′, ββ′γγ′〉.

(The similar relation αβγ〈α′, β′, γ′〉 = ±〈αα′, ββ′γγ′〉 holds when 〈α′, β′, γ′〉 is
defined and α, β, γ are arbitrary.)

(e) (External products) If 〈α1, β1, γ1〉 is defined in H∗(X1) and α2, β2, γ2 ∈
H∗(X2) are arbitrary cohomology classes, then 〈α1 ×α2, β1 ×β2, γ1 × γ2〉 is defined
in H∗(X1 × X2). Furthermore, if the latter has zero indeterminacy then

〈α1, β1, γ1〉 × α2β2γ2 = ±〈α1 × α2, β1 × β2, γ1 × γ2〉.

(The similar relation α1β1γ1×〈α2, β2, γ2〉 = ±〈α1×α2, β1×β2, γ1×γ2〉 holds when
〈α2, β2, γ2〉 ⊆ H∗(X2) is defined and α1, β1, γ1 ∈ H∗(X1) are arbitrary.)

Proof. Properties (a), (b) and (c) follow immediately from the definition. Prop-
erty (d) is Corollary 7 of Kraines [Kra] (there higher Massey products are treated,
of which the triple product is a special case). Property (e) follows from properties
(c) and (d) together with the identities

(α1 × α2) ∪ (β1 × β2) = (−1)|α2||β1|(α1 ∪ β1) × (α2 ∪ β2),

α1 × α2 = p∗1(α1) ∪ p∗2(α2),

for all α1, β1 ∈ H∗(X1), α2, β2 ∈ H∗(X2), where pi : X1 × X2 → Xi is projection
onto Xi for i = 1, 2. �

Proposition 3.3. Let R = F a field, and let X1, X2 be spaces of finite type.
Suppose that the Massey product

θ = 〈α1 × α2, β1 × β2, γ1 × γ2〉 ⊆ H∗(X1 × X2;F) ∼= H∗(X1;F) ⊗ H∗(X2;F)

is defined. If either α1β1 = β2γ2 = 0 or α2β2 = β1γ1 = 0 then θ contains the zero
class.
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Proof. The Eilenberg-Zilber Theorem gives a chain equivalence

EZ: C∗(X1 × X2) → C∗(X1) ⊗ C∗(X2)

which can be seen to be a mapping of DGA’s (the product and differential on the
right hand side are given respectively by

(a ⊗ b)(c ⊗ d) = (−1)|b||c|a • c ⊗ b • d, d⊗(a ⊗ b) = da ⊗ b + (−1)|a|a ⊗ db,

where • denotes usual cochain multiplication in C∗(Xi)). Hence we may compute
Massey products in H∗(X1×X2) using the cochain complex (C∗(X1)⊗C∗(X2), d⊗),
and we find that 0 ∈ θ if and only if

(5) 0 ∈ 〈[a1 ⊗ a2], [b1 ⊗ b2], [c1 ⊗ c2]〉,

where the ai, bi and ci are cocycles representing αi, βi and γi.
Suppose that α1β1 = β2γ2 = 0. Let µ′ ∈ C∗(X1) and λ′ ∈ C∗(X2) be cochains

such that dµ′ = (−1)|b1||a2|a1 • b1 and dλ′ = (−1)hb2 • c2, where h = |c1|(|b2|− 1)−
|b1|. One may show that the cochains µ = µ′ ⊗ a2 • b2 and λ = b1 • c1 ⊗ λ′ satisfy

d⊗µ = (a1 ⊗ a2)(b1 ⊗ b2), d⊗λ = (b1 ⊗ b2)(c1 ⊗ c2).

Hence the above Massey product (5) contains the class represented by the cocycle

(a1 ⊗ a2)λ + (−1)|a1|+|a2|+1µ ⊗ (c1 ⊗ c2).

A quick calculation gives that this cocycle is the coboundary

d⊗((−1)|c1||a2|µ′ • c1 ⊗ a2 • λ′)

and hence represents zero.
The proof that θ contains zero when α2β2 = β1γ1 = 0 runs similarly. �

4. Examples.

We now present examples of non-formal spaces X where non-zero Massey prod-
ucts in H∗(X) allow us to apply the results of previous Sections to obtain better
lower bounds for TC(X) than the zero-divisors cup-length. In all our examples
we consider cohomology with coefficients in the field Q of rational numbers. If
u ∈ Hℓ(X) is a cohomology class, it will be convenient to denote by u the class

u = 1 × u − u × 1 ∈ Hℓ(X × X).

Example 4.1. Let X = S3
a ∨S3

b ∪ e8 ∪ e8 be the space obtained from the wedge of
two copies of the 3-sphere by attaching 8-cells by means of the iterated Whitehead
products [S3

a, [S3
a, S3

b ]] and [S3
b , [S3

a, S3
b ]]. This is one of the simplest examples of

a simply-connected non-formal space. We will show that TC(X) = 5, while the
zero-divisors cup-length is 2.

First we note that since X is a 2-connected, 8-dimensional CW-complex, Propo-
sition 5.1 of [Jam] gives cat(X) < 8+1

2+1 + 1 = 4. Therefore cat(X) ≤ 3 (in fact

cat(X) = 3; see below) and the upper bound TC(X) ≤ 2 · cat(X) − 1 given by
Theorem 5 of [Far1] gives TC(X) ≤ 5.

Let a, b ∈ H3(X) be the generators corresponding to the two spheres. It is
known ([UM], Lemma 7) that the Massey products 〈a, a, b〉 and 〈b, a, b〉 are non-
zero linearly independent elements of H8(X) (the indeterminacy is zero, since cup
products are trivial in H∗(X) for dimensional reasons). Since wgt(〈a, a, b〉) ≥ 2 by



TOPOLOGICAL COMPLEXITY 9

[Rud] Theorem 4.6, we can apply our Theorem 2.6 with r = k = 2 to conclude that

wgtπX
(〈a, a, b〉) ≥ 2. Similarly wgtπX

(〈b, a, b〉) ≥ 2. Now since

〈a, a, b〉 · 〈b, a, b〉 = −〈a, a, b〉 × 〈b, a, b〉 − 〈b, a, b〉 × 〈a, a, b〉 6= 0,

Theorem 2.5 gives TC(X) > 4, so TC(X) = 5.

Remark 4.2. Example 4.1 is also considered in paper [FGKV], where the authors
construct an invariant MTC(X) which is a lower bound for TC(X) using an ex-
plicit semi-free model of the fibred join (see Example 6.7 there). One suspects that
the results there are related to ours. The methods here appear to give stronger
lower bounds, as well as being simpler and more widely applicable; for instance we
may also treat non-simply-connected spaces, as in the next Example.

Example 4.3. Let X = S3 − B be the link complement of the Borromean rings.
In his seminal paper [Mas] Massey gave a rigorous proof that the Borromean rings
link is not isotopic to the unlink, by exhibiting non-zero triple products in H∗(X).
By Alexander duality we have H1(X) = Q3 and H2(X) = Q2. The generators
u, v, w ∈ H1(X) are represented by cocycles dual to the disks spanned by each of
the embedded circles. The cup product structure in H∗(X) is trivial, reflecting
algebraically the fact that the linking number of each pair of circles is zero. How-
ever, the Massey products 〈u, v, w〉 and 〈u, w, v〉 are non-zero linearly independent
elements of H2(X) ([Mas], Theorem 3.1).

We claim that the Massey product θ = 〈u,−v〈u, w, v〉, w〉 of degree 4 is non-zero
in H∗(X × X) = H∗(X) ⊗ H∗(X). In fact

θ = 〈1 ⊗ u − u ⊗ 1, 〈u, w, v〉 ⊗ v + v ⊗ 〈u, w, v〉, 1 ⊗ w − w ⊗ 1〉

⊆ 〈1 ⊗ u, 〈u, w, v〉 ⊗ v, 1 ⊗ w〉 − 〈u ⊗ 1, 〈u, w, v〉 ⊗ v, 1 ⊗ w〉

+〈u ⊗ 1, v ⊗ 〈u, w, v〉, w ⊗ 1〉 − 〈1 ⊗ u, v ⊗ 〈u, w, v〉, w ⊗ 1〉

+〈1 ⊗ u, v ⊗ 〈u, w, v〉, 1 ⊗ w〉 − 〈u ⊗ 1, v ⊗ 〈u, w, v〉, 1 ⊗ w〉

+〈u ⊗ 1, 〈u, w, v〉 ⊗ v, w ⊗ 1〉 − 〈1 ⊗ u, 〈u, w, v〉 ⊗ v, w ⊗ 1〉

= ±〈u, v, w〉 ⊗ 〈u, w, v〉 ± 〈u, w, v〉 ⊗ 〈u, v, w〉 6= 0.

The inclusion follows from Proposition 3.2 (a) and (b). To obtain the second
equality, first observe that any Massey product 〈α, β, γ〉 in H∗(X) ⊗ H∗(X) with
|α| = |γ| = 1 and |β| = 3 has indeterminacy zero. Those Massey products with
positive sign now sum to give the right-hand side, by Proposition 3.2 (e). Those
with negative sign are zero by Proposition 3.3.

Therefore Theorem 3.1 gives TC(X) > 3, while the zero-divisors cup-length
equals 2. Combined with the upper bound TC(X) ≤ 2 · cat(X) − 1 this gives
TC(X) = 4 or 5. This is the first known example of an aspherical space for which
TC is greater than zero-divisors cup-length plus one.

Questions 4.4. Is wgtπX
(〈u, w, v〉) = 2? (If so then Theorem 3.1 gives TC(X) >

4, and hence TC(X) = 5.) Is there a result analogous to Theorem 2.6 for non-
simply-connected spaces?

Problem 4.5. Give an expression for the topological complexity of a given knot
or link complement in terms of known invariants.

Example 4.6. Let ξ be a 2m-dimensional vector bundle over Sm×Sm whose Euler
class e(ξ) ∈ H2m(Sm×Sm) is non-zero (here m ≥ 2). Let X denote the total space
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of the unit sphere bundle of ξ over Sm × Sm. We will show that TC(X) ≥ 6 while
the zero-divisors cup-length is 3.

If m is even, the Sullivan minimal model for X has the form (Λ{a, b, x, y, z}, d)
where

da = db = 0, dx = a2, dy = b2, dz = ab,

and |a| = |b| = m and |x| = |y| = |z| = 2m − 1. A basis for H∗(X) is therefore
given by the elements α = [a], β = [b] ∈ Hm(X), u = [az − xb], v = [bz − ya] ∈
H3m−1(X) and µ = [abz − ya2] ∈ H4m−1(X). The only non-trivial cup-products
are αv = µ = uβ.

If m is odd the minimal model has the form (Λ{a, b, z}, d) where

da = db = 0, dz = ab,

and |a| = |b| = m and |z| = 2m−1. A basis for H∗(X) is given by the elements α =
[a], β = [b] ∈ Hm(X), u = [az], v = [zb] ∈ H3m−1(X) and µ = [azb] ∈ H4m−1(X),
and again the only non-trivial products are αv = µ = uβ.

In both cases u ∈ 〈α, α, β〉 and v ∈ 〈β, β, α〉, and hence Theorem 4.6 of [Rud]
gives wgt(u) ≥ 2 and wgt(v) ≥ 2. Our Theorem 2.6 now applies with k = 2,
r = m − 1 to give wgtπX

(u) ≥ 2 and wgtπX
(v) ≥ 2. Now since

α · u · v = −u × µ ± µ × u 6= 0,

and wgtπX
(α) ≥ 1 as α is a zero-divisor, Theorem 2.5 gives TC(X) > 1+2+2 = 5.

In general TC(X) = 6 or 7, since cat(X) = 4 (see Example 4.9 of [Rud]; recall
that our definition of category differs from that of [Rud] by one).
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