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Abstract. We give a bordism-theoretic characterisation of those closed almost contact
(2q + 1)-manifolds (with q ≥ 2) which admit a Stein fillable contact structure. Our method
is to apply Eliashberg’s h-principle for Stein manifolds in the setting of Kreck’s modified
surgery. As an application, we show that any simply connected almost contact 7-manifold
with torsion free second homotopy group is Stein fillable. We also discuss the Stein fillability
of exotic spheres and examine subcritical Stein fillability.

1. Introduction

There have been several recent breakthroughs concerning the existence of contact struc-
tures in higher dimensions. In [Bou, GS, HW] contact structures on certain product mani-
folds were constructed, and Casals-Pancholi-Presas [CPP] and Etnyre [Etn] have shown that
every almost contact 5-manifold is contact. The general existence question on higher di-
mensional manifolds is, however, still open. (In the following we will assume that all almost
contact manifolds are closed — for open manifolds the existence question has been settled
by using Gromov’s h-principle.)

Motivated by their 3-dimensional analogues, various notions of fillability and overtwist-
edness of contact structures on higher dimensional manifolds have been extensively studied,
cf. [MNW, MNPS]. The class of contact structures satisfying an appropriate h-principle (as
overtwisted 3-dimensional contact manifolds do), however, has not yet been identified.

In view of this one is led to consider the existence of contact structures with special
properties, the most natural of which is perhaps Stein fillability. Recall that a contact
manifold is Stein fillable if it can be realised as the boundary of a Stein domain, which is a
compact, complex manifold with boundary admitting a strictly plurisubharmonic function
for which the boundary is a regular level set. One of the motivating problems which concerns
us here is the following:

Problem 1.1 (Stein Realisation Problem). Determine the almost contact structures which
are realised by Stein fillable contact structures.

By Eliashberg’s characterisation of Stein manifolds [E1, CE], the existence of Stein fillings
in higher dimensions is reduced to a topological question about whether a given manifold
admits a nullbordism containing only handles up to the middle dimension and whose tangent
bundle admits an almost complex structure. For a given 2n-manifold (with n > 2), a
direct argument can decide whether it admits a Stein structure, but it is more delicate to
see whether an odd dimensional manifold can be presented as the boundary of a manifold
carrying a Stein structure.
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This question can be naturally studied within the framework of (the appropriate) cobor-
dism theory. The main goal of this article is to elucidate the algebro-topological consequences
of the above characterisation of Stein fillability by Eliashberg. This approach for construct-
ing contact structures on manifolds was initiated by Geiges [Ge2], and here we pursue the
same ideas, using the general setting of Kreck’s modified surgery [Kr2].

Let M be a closed oriented manifold of dimension 2q + 1 ≥ 5 and let ϕ be an almost
contact structure on M : ϕ gives rise to a complex structure on the stable normal bundle of
M which we regard as a map ζ : M → BU , where BU denotes the classifying space of the
stable unitary group U . The qth Postnikov factorisation of ζ consists of a space Bq−1

ζ and
maps

M
ζ̄−−→ Bq−1

ζ

ηq−1
ζ−−−−→ BU,

such that ηq−1
ζ is a fibration and ζ = ηq−1

ζ ◦ ζ̄. The fibre homotopy class of the fibration ηq−1
ζ

is a well-defined invariant of the stably complex manifold (M, ζ), called the complex normal
(q−1)-type of (M, ζ); see Definition 2.4. In addition, there is a canonical bundle isomorphism
ζ̄∗(ηq−1

ζ ) ∼= νM , where νM is the stable normal bundle of M (and ηq−1
ζ is regarded as a stable

oriented vector bundle over Bq−1
ζ ). It follows that (M, ζ̄) defines a bordism class,

[M, ζ̄] ∈ Ω2q+1(Bq−1
ζ ; ηq−1

ζ ),

in the bordism theory defined by the complex bundle (Bq−1
ζ , ηq−1

ζ ); see Section 2.1 and
Definition 2.3. With these notions in hand we have the following:

Theorem 1.2. A closed almost contact manifold (M,ϕ) of dimension (2q+1) ≥ 5 admits a
Stein filling if and only if [M, ζ̄] = 0 ∈ Ω2q+1(Bq−1

ζ ; ηq−1
ζ ).

(An expanded version of the result is given in Theorem 3.7). The bordism groups appearing in
Theorem 1.2 are isomorphic, via the Pontrjagin-Thom isomorphism, to the stable homotopy
groups of the Thom spectrum of ηq−1

ζ . Hence the entire apparatus of stable homotopy

theory is available to compute these groups, and if one can show that Ω2q+1(Bq−1
ζ ; ηq−1

ζ ) = 0,
a general existence result follows. We will show that this is the case for simply connected
7-manifolds with torsion free second homotopy groups.

Theorem 1.3. Let M be a closed simply connected 7-manifold with π2(M) torsion free.
Then M admits an almost contact structure, and every almost contact structure on M can
be represented by a Stein fillable contact structure.

(Theorem 1.3 can be interpreted as an extension of existence results for contact structures
on 1-connected almost contact 5-manifolds and 2-connected 7-manifolds [Ge1, Ge2]).

As expected, the existence of a Stein fillable contact structure on a manifold depends on
the smooth structure it carries, and not simply on the underlying homeomorphism type.
This fact can be most transparently demonstrated by showing that certain exotic spheres
(i.e. smooth manifolds homeomorphic but not diffeomorphic to the sphere of the same
dimension) do not carry any Stein fillable contact structures. Using the obstruction class of
Theorem 1.2, we prove the following theorem which answers a question raised by Eliashberg,
see [E2, 3.8], in roughly three-quarters of all dimensions.
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Theorem 1.4. Let Σ2q+1 be a homotopy sphere which admits no framing bounding a par-
alellizable manifold. If q 6≡ 1, 3, 7 mod 8 or if q ≡ 1 mod 8 and q > 9 or if q = 7 or 15, then
Σ admits no Stein fillable contact structure.

(A more precise version of the result is given in Theorem 5.4.)
The obstruction for manifolds to carry Stein fillable contact structures can also be used to

establish the following extension of a 3-dimensional result found in [Bow] to higher dimen-
sions. (The construction is based on non-connected examples of exactly fillable manifolds of
[MNW] which are not Stein fillable.)

Theorem 1.5. There exist connected, exactly fillable, contact manifolds that are not Stein
fillable in all dimensions greater than three.

Further results (involving more elaborate homotopy theoretic arguments in determining
bordism groups and elements in them) are deferred to a continuation of the present work in
[BCS2] — in the present paper we emphasize the basic features of the method and restrict
ourselves to the applications listed above.

The paper is organized as follows. In Section 2 we give a review of the formulation
of Kreck’s surgery theory, with the necessary adaptations to the setting of contact and
Stein geometry. In Section 3 we set up notations, identify the obstruction for an almost
contact structure to be representable by a Stein fillable contact structure and prove the
topological characterization of Stein fillability of Theorem 1.2. In Section 4 we provide the
proof of Theorem 1.3. Section 5 concentrates on highly connected manifolds, and (among
other results) we prove Theorem 1.4. In Section 6 we discuss further obstructions for Stein
fillability, and prove Theorem 1.5. Finally in Section 7, we formulate Theorem 7.1, a version
of the Filling Theorem which provides an obstruction for subcritical Stein fillability. We
also examine the Stein fillability of the product of a contact manifold with a 2-dimensional
surface.

Acknowledgements: The authors would like to thank the Max-Planck-Institute in Bonn
for its hospitality where parts of this work have been carried out and also Oscar Randal-
Williams Anna Abczynski for helpful comments. AS was partially supported by OTKA
NK81203, by the Lendület program of the Hungarian Academy of Sciences and by ERC
LDTBud. The present work is part of the authors’ activities within CAST, a Research
Network Program of the European Science Foundation.

2. Complex modified surgery

In this section we develop the theory of modified surgery from [Kr2] in the setting where
all the stable vector bundles under consideration have complex structures. We start with a
brief overview of modified surgery Section 2.1. To be consistent with the existing literature,
we formulate the set-up using stable normal maps, although in our applications we will
need almost complex structures on even dimensional manifolds. In Section 2.2 we discuss
the connection between the stable normal setting and the stable tangential setting and
formulate the basic concepts and definitions of “complex modified surgery”. In Section 2.3
we handle the transition from stable complex structures to almost complex structures and
almost contact structures. After proving our main surgery lemmas in Section 2.4 (which lead
to the identification of the obstruction class of Theorem 1.2 in Section 3), we discuss some
explicit constructions and computations in Section 2.5.
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2.1. The surgery setting: stable normal bundles. In this subsection we briefly recall
the definition of a “(B, µ)-manifold” which is a manifold with extra topological structure
on its stable normal bundle. The theory of (B, µ)-manifolds goes back to [La1] and was
used systematically in the modified surgery setting of [Kr2]. For a detailed treatment of
(B, µ)-manifolds we refer the reader to [Stn, Chapter II] and [Kr2, §2]. While we briefly
recall some fundamental definitions for (B, µ)-manifolds, we shall assume that the reader is
familiar with these ideas.

Since we shall be working with stably complex manifolds, we start with a fibration

µ : B → BSO

where BSO is the classifying space of the stable special orthogonal group SO and B has
the homotopy type of a CW complex with a finite number of cells in each dimension. Since
BSO classifies oriented stable vector bundles, we regard (B, µ) as an oriented stable vector
bundle over B. Given a compact oriented n-manifold X, let

ν : X → BSO

denote the stable normal Gauss map of X. The stable Gauss map is a somewhat subtle
concept: ν is defined by the classifying map of the normal bundle of an embedding X → Rn+k

for k >> n. Letting k tend to infinity, the space of such embeddings is contractible and hence
ν is a well-defined stable vector bundle over X.

A (B, µ)-structure on X is an equivalence class of maps ν̄ : X → B which lift ν over µ; we
spell out the equivalence below. In particular, there is a commutative diagram:

B

µ

��
X

ν //

ν̄
;;

BSO.

A (B, µ)-structure on ν̄ : X × [0, 1] defines (B, µ)-structures on ν̄0 and ν̄1 on X × {0} and
X×{1} and two (B, µ)-structures on X are called equivalent if they are so related. A normal
(B, µ)-manifold is a pair (X, ν̄) as above. For later use we record the following

Definition 2.1 (Normal k-smoothing). A normal k-smoothing in (B, µ) is a normal (B, µ)-
manifold (X, ν̄), where ν̄ : X → B is a (k + 1)-equivalence; i.e. ν̄ induces an isomorphism
on homotopy groups πi for i ≤ k and a surjection on πk+1.

Given a (B, µ)-structure ν̄1 : X1 → B and a diffeomorphism f : X0
∼= X1, there is a

canonical pull-back B-structure f ∗(ν̄1) on X0. If (X0, ν̄0) and (X1, ν̄1) are B-manifolds, a
(B, µ)-diffeomorphism

f : (X0, ν̄0) ∼= (X1, ν̄1)

is a diffeomorphism f : X0 → X1 such that f ∗(ν̄1) and ν̄0 define equivalent B-structures on
X0.

We now turn to the relation of (B, µ)-bordism. A (B, µ)-structure ν̄ on X defines a
canonical (B, µ)-structure on X×[0, 1] via pull-back, denoted π∗(ν̄). If π∗(ν̄)i := π∗(ν̄)|X×{i},
i = 0, 1, denotes the restriction of π∗(ν̄) to each end of X × [0, 1], then ν̄ = π∗(ν̄)0 and

−ν̄ := (π∗ν̄)1 = π∗(ν̄|X×{1})
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is the (B, µ)-structure defined on the other end of X × [0, 1] via π∗(ν̄). More generally, if
W is an (n+ 1)-manifold with boundary ∂W = X0 ∪X1, the disjoint union of two closed n-
manifolds, and if ν̄ : W → B is a (B, µ)-structure on W , then ν̄ restricts to give B-structures
ν̄0 : X0 → B and ν̄1 : X1 → B. In this case (X0, ν̄0) and (−X1,−ν̄1) are (B, µ)-bordant. For
example, if f : (X0, ν0) ∼= (X1, ν1) is a (B, µ)-diffeomorphism between closed manifolds then
the s-cobordism

(X0 × [0, 1]) ∪f (X1 × [1, 2])

admits the structure of a (B, µ)-bordism between (X0, ν̄0) and (X1, ν̄1). In particular, (B, µ)-
diffeomorphic closed manifolds are (B, µ)-bordant.

The n-dimensional (B, µ)-bordism group is the group of (B, µ)-bordism classes of closed
n-dimensional (B, µ)-manifolds with addition given by disjoint union and additive inverse
given by −[M, ν̄] = [−M,−ν̄]:

Ωn(B;µ) := {(X, ν̄)| (X, ν̄) is closed n-dimensional (B, µ)-manifold}/(B, µ)-bordism.

2.2. Stable complex structures. An example of (B, µ)-manifolds of primary interest in
this paper is given by

(B, µ) = (BU,F )

where F : BU → BO is the canonical forgetful map between classifying spaces. A (BU,F )-
manifold is nothing but a stably complex manifold. Notice that an almost complex structure
J on a 2q-manifold X (that is, a reduction of the structure group of the tangent bundle of X
from SO(2q) to U(q)) naturally induces a stable complex structure on τX , the stable tangent
bundle of X. As there is a canonical bundle isomorphism,

τX ⊕ νX ∼= ε,

where νX is the stable normal bundle of X and ε denotes the trivial stable bundle, a stable
complex structure on τX induces a stable complex structure on νX : choose the unique stable
complex structure on νX so that the sum with the given stable complex structure on τX is the
trivial stable complex structure on ε. We shall denote the stable normal complex structure
associated to (W,J) by SJ or sometimes ζX .

As in the even-dimensional case, an almost contact structure ϕ on a closed (2q + 1)-
manifold M (that is, the reduction of the structure group from SO(2q+ 1) to U(q)) induces
a stable complex structure Sϕ = ζ on the stable normal bundle of M . (We will also call
the stabilized structures complex rather than contact in the odd-dimensional case.) Since
stable tangential complex and stable normal complex structures determine each other, we
will focus on the normal picture (although in the applications we will need results for the
tangential structures).

Building on the discussion of (B, µ)-manifolds from Section 2.1, we now establish the basic
notions in stable complex surgery which we shall use throughout this paper. Let

η : B → BU

be a fibration, where, as before, B has the homotopy type of a CW complex with a finite
number of cells in each dimension. We regard (B, η) as a stable complex vector bundle over
B with underlying oriented bundle F ◦η : B → BSO. We shall be interested in the situation
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described by the following commutative diagram:

(1) B

η

��

F◦η

$$
X

ζ //

ζ̄
==

BU
F // BSO.

Here X is an oriented manifold with stable normal bundle ν = F ◦ ζ, (X, ζ) is a compatibly
oriented stably complex manifold and (X, ζ̄) is a (B,F ◦η)-manifold. Since F is fixed, we shall
call (X, ζ̄) a (B, η)-manifold for short: this simply means that (X, ζ̄) is a (B,F ◦η)-manifold.

Definition 2.2 (ζ-compatible (B, η)-manifold). In the situation of the commutative diagram
(1) above, we say that ζ̄ : X → B is a ζ-compatible (B, η)-manifold; i.e., (X, ζ̄) is a (B,F ◦η)-
manifold with underlying stably complex manifold (X, ζ).

It follows from the definitions that (−X,−ζ̄) is a (−ζ)-compatible (B, η)-manifold and that
a (B,F ◦ η)-diffeomorphism f : (X0, ζ̄0) ∼= (X1, ζ̄1) is also a stably complex diffeomorphism
f : (X0, η ◦ζ0) ∼= (X1, η ◦ζ1). Of fundamental importance in this work are the (B, η)-bordism
groups.

Definition 2.3 ((B, η)-bordism). We define

Ωn(B, η) := Ωn(B,F ◦ η)

to be the bordism group of (B,F ◦ η)-bordism classes of closed n-dimensional (B,F ◦ η)-
manifolds as defined at the end of Section 2.1.

For the purposes of understanding Stein fillings, we shall be interested in the case where ζ̄
is a k-smoothing for certain k: recall that this means that ζ̄ : X → B is a (k+1)-equivalence.
One may ask whether for some stably complex manifold (X, ζ) there are any ζ-compatible
normal k-smoothings ζ̄ : X → B at all. In fact this is always the case because the map
ζ : X → BU can be factorised up to homotopy as a composition

X
ζ̄−−→ Bk

ζ

ηkζ−−→ BU,

where ζ̄ is a (k + 1)-equivalence and ηkζ is a fibration. The space Bk
ζ and the maps ζ̄ and ηkζ

make up the kth Postnikov factorisation of ζ. The existence of the kth Postnikov factoriation
is proven in [Ba, Theorem 5.3.1], its defining properties are identified in Definition 2.4 below
and we discuss some examples in Section 2.5. In general, for any k ≥ 0, a map f : X → Y
between CW -complexes, has a kth Postnikov factorisation f ' ηkf ◦ f̄ by maps f̄ : X → Y k

f

and ηk : Y k
f → Y . Such factorisations are built by first converting f into a fibration and then

working inductively so that there are fibrations Y k
f → Y k−1

f with fibre K(πk(F ), k) where F
is the homotopy fibre of f : X → Y .

Definition 2.4 (Complex normal k-type). Let (X, ζ) be a stably complex manifold. The
complex normal k-type of (X, ζ), denoted (Bk

ζ , η
k
ζ ), is defined to be the fibre homotopy type

of the fibration ηkζ in the following diagram:

Bk
ζ

ηkζ
��

X
ζ //

ζ̄
>>

BU.
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The fibration ηkζ is uniquely defined up to fibre homotopy type by the following properties:

(1) the map ζ̄ is a (k + 1)-equivalence,
(2) the map ηkζ is a (k+ 1)-coequivalence, i.e. (ηkζ )∗ : πj(B

k
ζ )→ πj(BU) is injective when

j = k + 1 and an isomorphism if j > k + 1.

We conclude this subsection by considering the role of the choice of normal (q − 1)-
smoothing ζ̄ : X → B on the bordism class [X, ζ̄] ∈ Ω2q+1(B, η). Our method is to adapt
the key point of the proof of [Kr1, Proposition 7.4] to the complex setting. Given a stable
complex vector bundle η : B → BU , let Aut(B, η) be the group of fibre homotopy classes
of fibre self-homotopy equivalences of η. That is, Aut(B, η) consists of fibre homotopy
equivalence classes of maps α : B ' B which make the following diagram commute:

B
α //

η
��

B

η
��

BU
Id // BU.

The group Aut(B, η) acts on the set of (B, η)-diffeomorphism classes of complex normal k-
smoothings in (B, η) by mapping a complex normal k-smoothing ζ̄ : X → B to the complex
normal k-smoothing α ◦ ζ̄ : X → B.

Lemma 2.5 (cf. [Kr1, Proposition 7.4]). Suppose that (X0, ζ0) and (X1, ζ1) are stably complex
manifolds and that for i = 0, 1, ζ̄i : Xi → Bk

ζ0
is a ζi-compatible normal k-smoothing in

(Bk
ζ0
, ηkζ0), the complex normal k-type of (X0, ζ0). If f : (X0, ζ0) ∼= (X1, ζ1) is a stably complex

diffeomorphism, then there is a fibre homotopy self-equivalence α ∈ Aut(Bk
ζ0
, ηkζ0) such that

f is a (Bk
ζ0
, ηkζ0)-diffeomorphism from (X0, α ◦ ζ̄0) to (X1, ζ̄1).

Proof. The maps

ζ̄0, f
∗(ζ̄1) : X0 → Bk

ζ0

determine two complex normal k-smoothings on X0. Now the universal properties of Post-
nikov stages of maps [Ba, Corollary 5.3.8] ensure that there is a fibre homotopy equivalence
α : (Bk

ζ0
, ηkζ0) ' (Bk

ζ0
, ηkζ0) such that α ◦ ζ̄0 and f ∗(ζ̄1) are equivalent (Bk

ζ0
, ηkζ0)-structures on

X0. By definition, this means that f is a (Bk
ζ0
, ηkζ0)-diffeomorphism from (X0, α ◦ ζ̄0) to

(X1, ζ̄1). �

The following corollary is an important consequence of Lemma 2.5 which arises from the
fact that the induced action of Aut(Bk

ζ , η
k
ζ ) on Ωn(Bk

ζ ; ηkζ ) is by group automorphisms.

Corollary 2.6. Let (Bk
ζ , η

k
ζ ) be the normal k-type of (X, ζ). If ζ̄ : X → Bk

ζ is a closed ζ-

compatible normal k-smoothing such that [X, ζ̄] = 0 ∈ Ωn(Bk
ζ ; ηkζ ), then for all ζ-compatible

normal k-smoothings ζ̂ : X → Bk
ζ we have that [X, ζ̂] = 0 ∈ Ωn(Bk

ζ ; ηkζ ).

Proof. Applying Lemma 2.5 to (X, ζ̄) and (X, ζ̂) we deduce that there is a fibre homotopy

equivalence α : (Bk
ζ , η

k
ζ ) ' (Bk

ζ , η
k
ζ ) such that (X, ζ̂) is (Bk

ζ , η
k
ζ )-diffeomorphic to (X,α ◦ ζ̄).

Hence [X, ζ̂] = α∗([X, ζ̄]) = 0. �
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2.3. Stable and unstable surgery. Propagating contact structures over Weinstein handles
requires information about almost contact structures of M . On the other hand, computations
in (B, η)-bordism require the use of the stable normal bundle of M . In this subsection we
prove two lemmas which allow us to move between these two settings.

Recall that hk+1 := Dk+1 ×Dn−k is an (n+ 1)-dimensional (k + 1)-handle. Let (M,ϕ) be
a closed (2q + 1)-dimensional almost contact manifold and set n := 2q + 1. For an almost
complex k-surgery on (M,ϕ) we require the following data:

(1) An embedding φ : Sk ×Dn−k →M ;
(2) An almost complex structure J on

Wφ := (M × I) ∪φ hk+1,

extending the natural almost complex structure ϕ× I on M × I ⊂ Wφ induced by ϕ.

The result of this surgery is the other boundary component of W , denoted Mφ. It is an
almost contact manifold with almost contact structure ϕφ := J |Mφ

.

Definition 2.7 (Almost complex surgery). In the situation above, we shall say that the
almost contact manifold (Mφ, ϕφ) is obtained from (M,ϕ) by a k-dimensional almost complex
surgery.

When we work with stably complex manifolds, we have the analogous situation, where
almost contact structures and almost complex structures on the tangent bundle are replaced
first by stable complex structures on the tangent bundle and then by stable complex struc-
tures on the normal bundle. Thus to perform stable complex k-surgery on a stably complex
n-manifold (M, ζ), we require an embedding φ : Sk × Dn−k → M along with an extension
of the stable complex structure ζ to a stable complex structure on the trace of the surgery
Wφ = (M × I) ∪φ hk+1. In this case we shall say that (Mφ, ζφ) is obtained from (M, ζ) via
stable complex surgery.

Given an almost contact manifold (M,ϕ), let (M, ζ) denote the stably complex manifold
defined by ϕ.

Lemma 2.8. Let (M,ϕ) be a (2q+1)-dimensional almost contact manifold and (W, ζW ;M,Mφ)
the trace of a stable complex k-surgery on (M, ζ) with k ≤ 2q. Then there is an almost com-
plex structure J on W with SJ = ζW and which restricts to ϕ× I on M × I.

(Notice that the above lemma is stated for k ≤ 2q — in our applications, however, we will
use the statement only in the range k ≤ q + 1.)

Proof. First we notice that the stable normal complex structure on W can be converted to
a stable tangential complex structure on W which stabilies ϕ× I when restricted to M × I.
Our problem is to reduce structure group of the tangent bundle of W to U(q + 1), and we
must do this relative to the chosen reduction corresponding to ϕ×I on M×I. We encounter
the unstable lifting problem which maps to the stable lifting problem:

M × I

��

ϕ×I // BU(q) // BU(q + 1)

��

// BU

��
W

44

τW // BSO(2q + 2) // BSO,
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where τW classifies the tangent bundle of W . The lifting obstructions for these problems lie
in the groups

Hk+1(W,M ; πk(SO(2q+2)/U(q+1))) and Hk+1(W,M ; πk(SO/U)),

and the unstable lifting obstruction maps to the stable lifting obstruction under the co-
efficient homomorphism S∗ : πk(SO(2q+2)/U(q+1)) → πk(SO/U). But the map S∗ is an
isomorphism for k ≤ 2q by [Gr, p. 432]. Hence the vanishing of the stable obstruction en-
sures the vanishing of the unstable obstruction. It follows therefore that there is an almost
complex structure J on W compatible with (M × I, ϕ× I). �

Note that in the setting of Lemma 2.8 there may be several homotopy classes of almost
contact structures ϕ′ on Mφ such that Sϕ′ is homotopic to ζφ. The almost complex struc-
ture J will induce one such structure J |Mφ

on Mφ. To obtain an almost complex bordism
(W,J ; (M,ϕ), (Mφ, ϕ

′)) for a specific almost contact structure ϕ′ we may need to find an
alternative bordism.

Lemma 2.9. Suppose that the two almost contact structures ϕ and ϕ′ on a manifold M2q+1

are stably equivalent. Then there is an almost contact structure ϕd on the sphere S2q+1 with
the property that (M,ϕ)#(S2q+1, ϕd) and (M,ϕ′) are equivalent as almost contact mani-
folds, and furthermore (S2q+1, ϕd) bounds an almost complex (2q+2)-manifold with a handle
decomposition of handles of indices ≤ q + 1.

Proof. The homotopy classes of almost contact structures in a given stable class can all be
obtained from a given almost contact representative by connected sum with almost contact
structures on spheres. Homotopy classes of almost contact structures on spheres are in turn
parametrised by elements in the group π2q+1(SO(2q + 1)/U(q)). Furthermore, as noted in
[Ge2, p. 1201], results of Sato that build on work of Morita show that for q even one can
realise all actual homotopy classes of almost contact structures via contact structures on
various standard Brieskorn spheres, which are in particular Stein fillable. The Stein fillings
then provide the required almost complex (2q + 2)-manifolds.

A similar observation holds when q is odd, by utilising the calculations of [DG]. One
simply takes the product of even dimensional spheres W = Sq+1×Sq+1. The stable tangent
bundle of W is trivial, so we choose a stable trivialisation. After removing a ball we obtain
a stably complex filling of S2q+1 which is built of two (q + 1)-handles and a zero-handle.
Thus the stable almost complex structure determines a unique complex structure J• on
W • = W \ int(D2q+1). Using the notation of [DG] we have o(W •, J•) = 2 and the formulae
of [DG, p. 3831] allow one to realise all possible unstable almost contact structures in any
equivalence class of stable almost contact structures via connect sums with ∂W •. Applying
boundary connect sums with W • allows us to move through all the homotopy classes of
contact structures on S2q+1 which are stably trivial and this proves the lemma. �

2.4. The surgery lemmas. In this subsection η : B → BU is again a stable complex vector
bundle. The following two lemmas are consequences of a theorem of Wall [Wa3, Theorem 3].

Lemma 2.10 (Filling lemma). Let (M,ϕ) be an almost contact (2q+1)-manifold with in-
duced stable complex structure ζ and complex normal (q − 1)-type (Bq−1

ζ , ηq−1
ζ ). If q ≥ 2,

then the following are equivalent:

(1) (M,ϕ) is the boundary of a compact almost complex (2q + 2)-manifold (W,J) with
handles only of index q + 1 and smaller.
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(2) For any ζ-compatible normal (q−1)-smoothing ζ̄ : M → Bq−1
ζ , we have

[M, ζ̄] = 0 ∈ Ω2q+1(Bq−1
ζ ; ηq−1

ζ ).

(3) For some stable complex bundle (B, η) and some ζ-compatible normal (q−1)-smoothing
ζ̄ : M → B, we have

[M, ζ̄] = 0 ∈ Ω2q+1(B; η).

Proof. (1) ⇒ (2): Suppose that (W,J) is as in the statement of the lemma. The almost
complex structure J defines a stable complex structure ζW : W → BU . Let (Bq−1

ζW
, ηq−1
ζW

) be

the complex normal (q − 1)-type of (W, ζW ) and let ζ̄W : W → Bq−1
ζW

be a (q − 1)-smoothing

in Bq−1
ζW

. Let i : M → W be the inclusion. Then the map

ψ := ζ̄W ◦ i : M → Bq−1
ζW

defines a (Bq−1
ζW

, ηq−1
ζW

)-structure on M which is compatible with ζ = Sϕ since J |∂W = ϕ.
Since the smooth manifold W admits a handle decomposition with handles only of index
(q+ 1) or less, by turning such a decomposition upside down we obtain that W has a handle
decomposition starting from M and adding handles of dimension (q+1) and higher. It follows
that i : M → W is a q-equivalence and hence the map ξ : M → Bq−1

ζW
is a q-equivalence.

Since (Bq−1
ζW

, ηq−1
ζW

) is the complex normal (q − 1)-type of W , the map ηq−1
ζW

: Bq−1
ζW
→ BU is

a q-coequivalence. It follows that (Bq−1
ζW

, ηq−1
ζW

) is a model for the complex normal (q − 1)-

type of (M, ζ) and so we identify (Bq−1
ζ , ηq−1

ζ ) = (Bq−1
ζW

, ηq−1
ζW

). By construction ψ : M →
Bq−1
ζ is a complex normal (q − 1)-smoothing and (W, ζ̄W ) is a (Bq−1

ζ , ηq−1
ζ )-null bordism of

(M,ψ). It follows that [M,ψ] = 0 ∈ Ω2q+1(Bq−1
ζ ; ηq−1

ζ ). Now by Lemma 2.5, [M, ζ̄] = 0 ∈
Ω2q+1(Bq−1

ζ , ηq−1
ζ ) for any complex normal (q − 1)-smoothing ζ̄ : M → Bq−1

ζ .

(2)⇒ (3): Take (B, η) = (Bq−1
ζ , ηq−1

ζ ).

(3) ⇒ (1): Let (W, ζ̄W ) be a B-nullbordism of (M, ζ̄). Using surgery below the middle
dimension as in [Kr2, Proposition 4], we may assume that ζ̄W : W → B is a (q+1)-equivalence
and in particular there are isomorphisms of fundmental groups π = π1(M) ∼= π1(B) ∼=
π1(W ). If i : M → W denotes, the inclusion, the commutative diagram

πi(M)

ζ̄∗ $$

i∗ // πi(W )

(ζ̄W )∗zz
πi(B),

and the facts that ζ̄ : M → B is a q-equivalence and ζ̄W : W → B is a (q+1)-equivalence show
that the inclusion i : M → W is a q-equivalence. By a theorem of Wall [Wa3, Theorem 3],
it follows that W is diffeomorphic to a manifold obtained from M by attaching handles in
dimension (q + 1) and higher.

Turning the above handle decomposition upside down, we see that W has a handle decom-
position consisting of k-handles with k ≤ q + 1. Moreover, the (B, η)-strucure on W defines
a stable complex structure ζW on W . Applying Lemma 2.8 to the handlebody decomposi-
tion of W we deduce that W admits an almost complex structure J such that SJ = ζW .
The almost complex structure J induces some almost contact structure J |∂W on M such
that SJ |∂W = Sϕ. It follows that ϕ = J |∂W + ϕ0 where ϕ0 ∈ π2q+1(SO(2q + 1)/U(q)) is
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a stably trivial almost contact structure on S2q+1. By Lemma 2.9 the almost contact man-
ifold (S2q+1, ϕ0) admits a Stein filling (W0, σ0) and in particular an almost complex filling
(W0, J0). It follows that the boundary connected sum (W\W0; J\J0) is an almost complex
filling of J |∂W + ϕ0 = ϕ. �

The above result admits a ‘relative’ version, where now we examine bordisms between two
smoothings:

Lemma 2.11 (Stable surgery Lemma). Let (W, ζ̄W ;M0,M1) be a (B, η)-bordism between
normal (q− 1)-smoothings (M0, ζ̄0) and (M1, ζ̄1) of dimension 2q+ 1 ≥ 5. Then for j = 0, 1
the bordism W admits a handlebody decomposition relative to Mj consisting of handles of
index k ≤ q + 1.

Proof. Let ij : Mj → W , j = 0, 1 denote the inclusion maps. Using surgery below the
middle dimension as in [Kr2, Proposition 4], we may assume that ζ̄W : W → B is a (q + 1)-
equivalence. Now consider the following commutative diagram

πi(M0)

(ζ̄0)∗ ((

(i0)∗ // πi(W )

(ζ̄W )∗

��

πi(M1)
(i1)∗oo

(ζ̄1)∗vv
πi(B).

Since the maps ζ̄i : Mi → B are q-equivalences and ζ̄W : W → B is a (q + 1)-equivalence, it
follows that each inclusion ij : Mj → W is a q-equivalence. By [Wa3, Theorem 3], W admits
a handlebody decomposition relative to Mj+1 consisting of handles of index k′ ≥ q + 1. If
we turn this handbody decomposition upside down we obtain a handlebody decomposition
of W relative to Mj consisting of handles of index k ≤ q + 1. �

We next give the unstable version of the previous lemma:

Lemma 2.12 (Unstable surgery Lemma). Let (M0, ϕ0) and (M1, ϕ1) be almost contact man-
ifolds of dimension 2q+1 ≥ 5 with associated stable complex structures ζ0 and ζ1. Suppose
for i = 0, 1, that ζ̄i : Mi → B, are ζi-compatible normal (q − 1)-smoothings in a stable
complex bundle (B, η) which are (B, η)-bordant. Then there is an almost complex bordism
(W,J ; (M0, ϕ0), (M1, ϕ1)) between (M0, ϕ0) and (M1, ϕ1) such that for j = 0, 1 the manifold
W admits a handlebody decomposition relative to Mj consisting of handles of index k ≤ q+1.

Proof. Let us give the proof for j = 0, the proof for j = 1 is similar. By Lemmas 2.8 and
2.11 there is an almost complex bordism (W,J ; (M0, ϕ0), (M1, ϕ1)) where W is obtained from
M0 by attaching handles of index (q + 1) or less and where the almost contact structure ϕ′1
satisfies Sϕ′1 = Sϕ1. It follows that ϕ1 = ϕ′1 + ϕ0 where ϕ0 ∈ π2q+1(SO(2q + 1)/U(q)) is a
stably trivial almost contact structure on S2q+1. By Lemma 2.9 the almost contact manifold
(S2q+1, ϕ0) admits an almost complex filling (W0, J0) with handles of indices ≤ q+1. Taking
the boundary connected sum of W and W0 at the M1 boundary component of W we obtain
an almost complex bordism (W\W0, J\J0; (M0, ϕ0), (M1, ϕ1)) where W\W1 has a handlebody
decomposition relative to M0 consisting of handles of index (q + 1) or less. �

2.5. Complex normal k-types. In this subsection, we identify the complex normal k-type
(Bk

ζ , η
k
ζ ), of a general stably complex manifold (X, ζ) under certain assumptions for k = 1

and k = 2. These computations will play crucial roles in our applications (cf. Section 4). We
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shall use the following notation. Since we do not distinguish between stable complex bundles
and their classifying maps, we shall write f ⊕ g : X × Y → BU for the exterior Whitney
sum of stable complex bundles classified by maps f : X → BU and g : Y → BU . Also, we
let πSU : BSU → BU be the map of classifying spaces induced by the inclusion SU ⊂ U .

Lemma 2.13. Let (X, ζ) be a stably complex manifold with π = π1(X).

(1) If ζ∗ : π2(X)→ π2(BU) is onto then

(B1
ζ , η

1
ζ ) =

(
K(π, 1)×BU, prBU

)
.

(2) If c1(ζ) = 0 ∈ H2(X) then

(B1
ζ , η

1
ζ ) =

(
K(π, 1)×BSU, πSU ◦ prBU

)
.

Proof. Both prBU and πSU ◦ prBU are 2-coequivalences. Thus, from the defining properties
of the second Postnikov approximation of ζ : X → BU , it suffices to find maps ζ̄ : X → B1

ζ

which are 2-equivalences and which factor ζ over η1
ζ .

(1) Let u : X → K(π, 1) classify the universal covering of X and define ζ̄ by

ζ̄ := (u× ζ) : X → K(π, 1)×BU.
The assumption that ζ∗ in onto on π2 ensures that ζ is a 2-equivalence and clearly prBU◦ζ̄ = ζ.

(2) Since c1(ζ) = 0, there is a lift of ζ to ζ ′ : X → BSU . Define ζ̄ by

ζ̄ := (u× ζ ′) : X → K(π, 1)×BSU.
Since π2(BSU) = 0, ζ is a 2-equivalence and clearly πSU ◦ prBU ◦ ζ̄ = ζ. �

Now we consider the complex normal 2-type of (X, ζ). Let p2 : X → P2(X) denote a
3-equivalence from X to its second Postnikov stage, P2(X).

Lemma 2.14. Let (X, ζ) be a stably complex manifold and let γζ by the unique complex line
bundle over P2(X) such that c1(p∗2(γζ)) = −c1(ζ). Then

(B2
ζ , η

2
ζ ) =

(
P2(X)×BSU, γζ ⊕ πSU

)
.

Proof. By definition, the map on second cohomology induced by p2 is an isomorphism:
p∗2 : H2(P2(X)) ∼= H2(X). Hence there is a (unique isomorphism class of) line bundle γζ
over P2(X) such that p∗2(γX) = −c1(ζ). The stable complex bundle ξ := ζ ⊕ p∗2(γζ) satisfies

c1(ξ) = c1(ζ)− c1(ζ) = 0 ∈ H2(X),

and so ξ admits an SU -structure classified by a map ξ′ : X → BSU . We define ζ̄ by

ζ̄ := (p2 × ξ′) : X → P2(X)×BSU.
Since BSU is 3-connected and π3(P2(X)) = 0, ζ̄ is a 3-equivalence. By construction we have
(γζ ⊕ πSU) ◦ ζ̄ = ζ and clearly γζ ⊕ πSU is a 3-coequivalence. It follows that (B2

ζ , η
2
ζ ) is the

complex normal 2-type of (X, ζ). �

3. Contact structures and complex normal bordism

After recalling the necessary definitions and the statement of Eliashberg’s h-principle, we
state our main surgery theorems, Theorems 3.7 and 3.8. The proofs of these theorems rest
on the discussion presented in Section 2.4.
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3.1. Symplectic fillability and contact surgery. Recall that a symplectic manifold
(W,ω) is a (2q + 2)-dimensional manifold W with a closed 2-form ω such that ωq+1 6= 0
at every point in W . In particular, a symplectic manifold carries a canonical orientation.
Recall, furthermore, that a cooriented, codimension-1 distribution ξ on a (2q + 1)-manifold
M is a contact structure if there is a 1-form α such that ker(α) = ξ and

α ∧ (dα)q 6= 0.

Note that this then also determines an orientation of M . Two contact manifolds (M0, ξ0)
and (M1, ξ1) are contactomorphic if there is a diffeomorphism φ : M0 →M1 such that

φ∗(ξ0) = ξ1.

We now recall the various notions of fillability for contact structures.

Definition 3.1 (Strongly symplectically fillable and exactly fillable). A contact manifold
(M, ξ) is called strongly symplectically fillable if it bounds a compact symplectic manifold
(W,ω) and there is an outward pointing vector field V near ∂X such that the Lie derivative
satisfies LV ω = ω, and λ = ιV ω is a defining 1-form for ξ. If the symplectic form ω is exact
then we say that (M, ξ) is exactly fillable.

A further specialisation of the notion of fillability is that of Stein fillability. Recall that a
Stein domain is a compact, complex manifold (W,J) with boundary that admits a function
φ : W → [0, 1] so that ω = −ddCφ is a symplectic form and φ−1(1) = ∂W is a regular level.

Definition 3.2 (Stein fillable). A contact manifold (M, ξ) is called Stein fillable if it bounds
a Stein domain (W,J) such that ξ = J(TM) ∩ TM .

These notions of fillability fit into the following sequence of inclusions of contactomorphism
classes of contact manifolds:

(2) {Stein fillable} ⊆ {exactly fillable} ⊆ {strongly fillable}.

Surgery on an isotropic sphere Sk in a contact manifold (M2q+1, ξ) can be performed in
a way that is compatible with the contact structure. If k ≤ q and 2q + 1 ≥ 5 then any
embedded sphere can be realised by an isotropic sphere and such surgeries can be realised
by the attachment of a symplectic or “Weinstein” (k + 1)-handle hk+1 := Dk+1 ×D2q+1−k,
provided that the associated almost complex structure on the product manifold M2q+1×[0, 1]
extends over the trace (M2q+1× [0, 1])∪hk+1 of the surgery (cf. [E1, CE]) . Furthermore, the
symplectic nature of the handle attachment shows that the symplectic fillability of a contact
structure is preserved under such contact surgeries. In addition, Eliashberg showed that
when attaching a Weinstein handle to a Stein manifold, the Stein structure also extends.
(For more details concerning contact surgery and Weinstein handles we refer to [CE] or [Ge4]
or [We].)

Theorem 3.3. Let (M2q+1, ξ) be a contact manifold of dimension 2q+1 ≥ 5 with associated
almost contact structure ϕ. Suppose that k ≤ q and that (M ′, ϕ′) is obtatined from (M,ϕ)
via a k-dimensional almost complex surgery with trace (M × I) ∪ hk+1 as in Defintion 2.7.
Then M ′ admits a contact structure ξ′. If is (M2q+1, ξ) symplectically or exactly fillable,
then so is (M ′, ξ′). Moreover, if (W,J) is a Stein filling of (M2q+1, ξ) then there is J ′ on
W ∪ hk+1 such that it is a Stein filling of (M ′, ξ′). �
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Remark 3.4. Although [Ge4, Theorem 6.3.1] is not stated explicitly for exact fillability, the
proof also holds in the case of exact fillability, since attaching Weinstein handles does not
affect the exactness of the symplectic form on the filling.

Applying Theorem 3.3 inductively over a handle decomposition, one obtains the following
(cf. [CE], Theorem 8.15):

Corollary 3.5 (Eliashberg’s h-principle). Let (W,J) be a compact (2q + 2)-dimensional
almost complex manifold with handles only in dimensions q+1 or less. Then J is homotopic
to an almost complex structure J̃ so that (W, J̃) is a Stein filling of M = ∂W and in
particular, M is Stein fillable. �

3.2. Surgery theorems. In this subsection we state our main theorems concerning Stein
fillings and contact surgery. The results will be mainly translations of the surgery theoretic
results from Section 2.4. We begin with the result corresponding to Lemma 2.9.

Lemma 3.6. Suppose that the almost contact manifold (M,ϕ) can be realised a contact
structure ξ. Then every homotopy class of almost contact structure which is stably equivalent
to ϕ admits a contact structure obtained from ξ by connected sum with a Stein fillable contact
structure on S2q+1.

Proof. The proof is a simple combination of the proof of Lemma 2.9 and Corollary 3.5: the
almost contact structures found on S2q+1 in the proof of Lemma 2.9 are Stein fillable contact
structures, and the boundary connect sum of two Stein fillings is a Stein filling. �

Using the notation and terminology of Section 2, we obtain the following bordism charac-
terisation of Stein fillability, proving (an expanded version of) Theorem 1.2:

Theorem 3.7 (Filling Theorem). Let (M,ϕ) be a closed almost contact (2q + 1)-manifold
with induced stable complex structure ζ and complex normal (q−1)-type (Bq−1

ζ , ηq−1
ζ ). If

q ≥ 2, then the following are equivalent:

(1) (M,ϕ) admits a Stein-fillable contact structure.
(2) For any ζ-compatible normal (q−1)-smoothing ζ̄ : M → Bq−1

ζ , we have

[M, ζ̄] = 0 ∈ Ω2q+1(Bq−1
ζ ; ηq−1

ζ ).

(3) For some stable complex bundle (B, η) and some ζ-compatible normal (q−1)-smoothing
ζ̄ : M → B, we have

[M, ζ̄] = 0 ∈ Ω2q+1(B; η).

Proof. For stable almost contact structures this is just a combination of Lemma 2.10 and
Eliashberg’s h-principle (cf. Corollary 3.5). Lemma 3.6 then implies that any almost contact
structure in a given stable class can be realised as a Stein fillable contact structure, as soon
as one can. �

Similar arguments provide

Theorem 3.8 (Surgery Theorem). Let (M0, ϕ0) and (M1, ϕ1) be almost contact manifolds
of dimension 2q+1 ≥ 5 with associated stable complex structures ζ0 and ζ1. Suppose for
i = 0, 1, that ζ̄i : Mi → B are ζi-compatible normal (q − 1)-smoothings in a stable complex
bundle (B, η) such that

[M0, ζ̄0] = [M1, ζ̄1] ∈ Ω2q+1(B; η).
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Then (M0, ϕ0) admits a contact structure if and only if (M1, ϕ1) does. Moreover, (M0, ϕ0)
admits a fillable contact structure in any sense (cf. display (2) above) if and only if (M1, ϕ1)
does.

Proof. By Lemma 2.11, there is a (B, η)-bordism (W, ζ̄W ) between (M0, ζ̄0) and (M1, ζ̄1) such
that (W, ζ̄W ) is obtained from (Mi, ζ̄i)×[0, 1], i = 0, 1, by attaching k-handles, k ≤ q+1, over
which the almost complex structure extends. The result now follows from Theorem 3.3 above.
This then gives contact structures in the desired stable class of almost contact structures.
However, by Lemma 3.6 one can then realise all almost contact structures via connected sum
with certain contact structures on spheres. As all these contact structures are Stein fillable,
this does not affect the fillability of the contact structures. �

Remark 3.9. The idea of constructing contact structures via surgery techniques is not new,
and Geiges and Thomas, in particular, have employed such methods to prove the existence
of contact structures under various topological assumptions. Indeed, using the explicit de-
scription of normal 1-types given in Lemma 2.13, one can deduce the Bordism Theorem of
[Ge3] as a special case of Theorem 3.8. The main benefit of Theorem 3.8 is that it provides
a unified approach to this point of view without making any assumptions on the almost
contact structures involved.

In the following sections we will use the Filling Theorem above to produce Stein fillable
contact structures and obstructions to Stein fillability. The Surgery Theorem, on the other
hand, is useful for finding contact structures on manifolds which cannot carry Stein fillable
structures as we now explain. Let β denote a class of contact structures which is closed
under Weinstein handle attachment and which includes Stein fillable contact structures; for
example β could be the class of symplectically fillable contact structures. We define

Ωβ
2q+1(B; η) ⊂ Ω2q+1(B, η)

to be the set of bordism classes with representatives ζ̄ : N → B such that ζ̄ is ζ-compatible
and such that (N, ζ) admits a contact structure ξ in the class β. We emphasise that here we
make no connectivity assumption on the map ζ̄ : N → B.

Corollary 3.10. Let (M,ϕ) be an almost contact (2q + 1)-manifold with associated stable
complex structure ζ and let (B, η) be a stable complex bundle. If q ≥ 2, the map ζ̄ : M → B
is a ζ-compatible normal (q − 1)-smoothing and

[M, ζ̄] ∈ Ωβ
2q+1(B, η),

then (M, ζ) admits a contact structure in the class β.

Proof. By assumption, there is a contact manifold (N, ξ) with associated stable complex
structure ζN and with a ζN -compatibe (B, η)-structure ζ̄N : N → B such that [N, ζ̄N ] =
[M, ζ̄] ∈ Ω2q+1(B, η). By [Kr2, Proposition 4], we may perform (B, η)-surgeries of dimension
q or less on ζ̄ : N → B to obtain a (q − 1)-smoothing ζ̄N ′ : N

′ → B, with induced stable
complex structure ζ ′ say. By Lemmas 2.8 and 2.9 and Theorem 3.3, (N ′, ϕ′) admits a contact
structure ξ′ in the class β and with associated almost contact structure ϕ′ which stabilises
to ζ ′. Applying Theorem 3.8 to (N ′, ϕ′) and (M,ϕ), we deduce that (M,ϕ) admits a contact
structure in the class β. �

The line of reasoning from the proof of Corollary 3.10 was pursued in [BCS1] for β the
class of all contact structures. There contact structures on manifolds of the form M × S2
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with M contact were shown to exist by finding Stein cobordisms from M×T 2 and applying a
result of Bourgeois [Bou] which provides a contact structure for this latter manifold once M
is contact. More generally, Corollary 3.10 gives a framework for approaching the symplectic
version of the Stein Realisation Problem 1.1:

Problem 3.11 (Symplectic Relaization Problem). Determine which almost contact struc-
tures on a given manifold can be realised by strongly/exactly fillable contact structures. Does
the answer depend on whether one considers strong or exact fillings?

4. Simply connected 7-manifolds

As an application of the methods developed in Section 3, we now give a proof of Theo-
rem 1.3. The proof will show that the Stein fillability obstruction of Theorem 3.7 vanishes
by showing that the relevant bordism group is itself trivial.

Before turning to the computation of the bordism group, however, we show that every
7-manifold considered in Theorem 1.3 admits an almost contact structure.

To start the argument, recall that a manifold M admits a spinc structure, that is, a lift
of the structure group of TM from SO(n) to the group SpinC(n), if and only if the second
Stiefel-Whitney class w2(M) ∈ H2(M ;Z2) admits an integral lift. (The Lie group SpinC(n)
can be defined as the extension of SO(n) by S1 with the property that SpinC(n)→ SO(n) is
the unique nontrivial principal S1-bundle over SO(n).) Since each manifold M in Theorem
1.3 is simply connected and has torsion free π2(M) ∼= H2(M), the mod 2 reduction map
H2(M)→ H2(M ;Z2) is onto, and so M admits a spinc structure.

Notice that U(n) ⊂ SO(2n), and since any S1-bundle over U(n) is trivial (by the fact that
H2(U(n)) = 0), we have that the restriction of the bundle SpinC(2n)→ SO(2n) over U(n)
is trivial. Consequently SpinC(2n) contains U(n) × S1, so in particular U(n) embeds into
SpinC(2n). This embedding provides a homomorphism of topological groups U → SpinC.
Similarly, SU(n) embeds into SO(2n), and since SU(n) is simply connected, this embedding
lifts to an embedding SU(n)→ Spin(2n) (recall that Spin(2n)→ SO(2n) is the nontrivial
double cover of SO(2n)). This construction then provides a homomorphism of topological
groups SU → Spin.

We first show that every spinc structure on a 7-manifold is induced by an almost contact
structure.

Lemma 4.1. A compact oriented 7-manifold X admits an almost contact structure if and
only if it admits a spinc structure. Moreover, any spinc structure on X is induced from some
almost contact structure on X.

Proof. Elementary obstruction theory applied to the fibration sequence U(3)→ U(4)→ S7

shows that any stable complex structure ζ on X can be destabilised to an almost contact
structure ϕ: the argument is analogous to the proof of Lemma 2.8. Hence it is enough
to show that X admits a stable complex structure if and only if X admits a stable spinc

structure, that is, a map into BSpinC covering the map X → BSO given by the stable
tangent bundle. Since a stable complex structure on X induces a spinc structure on X, we
only need to show that any spinc structure on X can be lifted to a stable complex structure.

The homomorphism of topological groups U → SpinC induces a map of classifying spaces
which gives a fibre bundle

(3) SpinC/U
i−→ BU −→ BSpinC.
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By Bott periodicity the quotient SpinC/U is 5-connected and π6(SpinC/U) ∼= Z. Suppose
that θ : X → BSpinC is a spinc structure on X. We must show that the following lifting
problem has a solution:

BU

��
X

::

θ // BSpinC.

Since SpinC/U is 5-connected, the primary obstruction to lifting θ is a cohomology class
θ∗(α) ∈ H7(X), where we have identified π6 (SpinC/U) with Z and the universal obstruction
class α ∈ H7(BSpinC) is defined below. We shall show that 2α = 0. Since H7(X;Z) is
torsion free, it follows that θ∗(α) = 0 and hence θ lifts to a stable complex structure on X.

It remains to define α and to prove that 2α = 0. Let x ∈ π6(SpinC/U) ∼= Z be a
generator. Since SpinC/U is 5-connected, there is a generator x̂ ∈ H6(SpinC/U) such that
〈x̂, ρ(x)〉 = 1 where ρ : π6(SpinC/U)→ H6(SpinC/U) is the Hurewicz homomorphism. The
class x̂ is transgressive in the Leray-Serre cohomology spectral sequence of the fibration (3),
and we define

α := τ(x̂) ∈ H7(BSpinC),

where τ : H6(SpinC/U) → H7(BSpinC) is the transgression homomorphism. Since the
kernel of τ is the image of the homomoprhism i∗ : H6(BU)→ H6(SpinC/U) ∼= Z, it suffices
to show that the image of i∗ is the subgroup of index two. Now H∗(BU) = Z[c1, c2, c3, . . . ]

is the polynomial algebra on the Chern classes and the composition S6 x−→ SpinC/U
i−→ BU

determines the stable complex vector bundle x∗i∗(EU) over S6 where EU → BU is the
universal bundle. By [Hu, Corollary 9.8], every complex bundle E over S6 is such that
c3(E) ∈ 2 · H6(S6) and moreover there is a complex bundle E0 over S6 where c3(E0) is
twice a generator of H6(S6). It follows that i∗(H6(BU)) = 2 ·H6(SpinC/U) and the lemma
follows. �

We now reduce the proof of Theorem 1.3 to the calculation of certain bordism groups.
Let ϕ be an almost contact structure on M , with associated stable complex structure ζ,
let H = H2(M) and let γ be the complex line bundle over the Eilenberg-MacLane space
K(H, 2) with c1(γ) = c1(ζ) ∈ H2(K(H, 2);Z) ∼= H2(M ;Z). By Lemma 2.14, the complex
normal 2-type of the stably complex manifold (M, ζ) is

(B2
ζ ; η

2
ζ ) = (K(H, 2)×BSU ; γ ⊕ πSU),

where πSU : BSU → BU is map induced by the inclusion SU → U and ⊕ denotes the
exterior Whitney sum of complex bundles: for further details, see Section 2.5. It follows
that there is an isomorphism of bordism groups

(4) Ω7(B2
ζ ; η

2
ζ )
∼= ΩSU

7 (K(H, 2); γ),

where is the latter group is a certain γ-twisted SU -bordism group of K(H, 2). This is the
bordism group of triples (N, f, α) where N is a closed smooth manifold, f : N → K(H, 2) is
a map and α is an SU structure on the Whitney sum of f ∗(γ) and the stable normal bundle
of N .

The remainder of this subsection gives the proof of the following proposition.

Proposition 4.2. For any finitely generated free abelian group H and for any complex line
bundle γ over K(H, 2), we have ΩSU

7 (K(H, 2); γ) = 0.
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We shall need the following result on SU -bordism groups.

Lemma 4.3. If k is not divisible by 4 then ΩSU
2k+1 = 0.

Proof. By [Stn, p. 117], we know that ΩU
∗ = 0 for any odd dimension ∗ = 2k + 1. Also by

[Stn, p. 238], the kernel of the forgetful homomorphism ΩSU
∗ → ΩU

∗ is the torsion subgroup
of ΩSU

∗ . But by [Stn, p. 248], the torsion subgroup of ΩSU
2k+1 vanishes if k is not divisible by

4, concluding the proof. �

For the case H = 0 in Proposition 4.2, by Lemma 4.3 implies that ΩSU
7 = 0 as required.

Hence we assume that H is not the zero group. We wish to compute the γ-twisted SU -
bordism of K(H, 2). A very similar situation is discussed in [KS, Section 6] where Kreck
and Stolz compute certain twisted spin bordism groups of K(Z, 2). Since the Thom space
of the exterior Whitney sum of bundles is homotopy equivalent to the smash product of
the individual Thom spaces, just as in [KS, §6], the Pontrjagin-Thom construction gives an
isomorphism

(5) ΩSU
∗ (K(H, 2); γ) ∼= π∗(MSU ∧ T (γ)) ∼= Ω̃SU

∗ (T (γ)).

Here MSU is the Thom spectrum defined by special unitary boridsm, T (γ) is the Thom

space of the bundle γ over K(H, 2), ∧ denotes the smash product of spectra and Ω̃SU
∗

denotes reduced special unitary bordism groups. As a consequence of (5), there is an Atiyah-
Hirzebruch spectral sequence (AHSS),

E2
p,q = Hp+2(T (γ); ΩSU

q ) =⇒ ΩSU
p+q(K(H, 2); γ),

which converges to the associated graded object of a filtration on ΩSU
p+q(K(H, 2); γ). By the

Thom isomorphism, H̃∗(T (γ)) is a free module over H∗(K(H, 2)) with generator the Thom
class U ∈ H2(T (γ)) of γ. As a consequence, H∗(T (γ)) vanishes in odd degrees. Now, by
Lemma 4.3, ΩSU

2k+1 = 0 for k = 1, 2, 3 and ΩSU
1
∼= Z2. It follows that the 7-line of the E2-page

of the AHSS above has only one non-vanishing term and that is

E2
6,1 = H8(T (γ); ΩSU

1 ) ∼= H6(K(H, 2); ΩSU
1 ).

We claim that E3
6,1 = 0, which proves Proposition 4.2. To see that E3

6,1 = 0, we need to
understand the following differentials in the AHSS:

(6) d2
8,0 : H10(T (γ))→ H8(T (γ);Z2) and d2

6,1 : H8(T (γ);Z2)→ H6(T (γ);Z2).

Since the map SU → Spin is a 6-equivalence, these differentials for SU -bordism will coincide
with the corresponding differentials for spin bordism. The differentials in the spin case have
been computed by Teichner [Te, Lemma 2.3.2]. Hence we have the following lemma.

Lemma 4.4 ([Te, Lemma 2.3.2]). Let ρ2 : H∗(T (γ))→ H∗(T (γ);Z2) be the homomorphism
induced by reduction mod 2 and let (Sq2)∗ : H∗+2(T (γ);Z2)→ H∗(T (γ);Z2) be the dual of the
Steenrod squaring operation Sq2 : H∗(T (γ);Z2)→ H∗+2(T (γ);Z2). Then the differentials in
(6) above are given by

d2
8,0 = ρ2 ◦ (Sq2)∗ and d2

6,1 = (Sq2)∗.

�

The following lemma is equivalent to the claim that E3
6,1 = 0 in the AHSS and hence

completes the proof of Proposition 4.2.



THE TOPOLOGY OF STEIN FILLABLE MANIFOLDS IN HIGH DIMENSIONS I 19

Lemma 4.5. For all finitely generated free abelian groups H and for all complex line bundles
γ over K(H, 2) we have

Ker(d2
6,1) = Im(d2

8,0).

Proof. The lemma is trivial if H = 0, so we assume that H in non-zero. We give the proof by
viewing the situation from the point of view of homological algebra over the field Z2. Recall
that T (γ) denotes the Thom space of γ. We define a chain complex (C∗(H, γ), d) by setting

Ci(H, γ) := H2i+2(T (γ);Z2), for i ≥ 0

and defining the differential d by

di+1 := (Sq2)∗ : H2i+4(T (γ);Z2))→ H2i+2(T (γ);Z2).

To see that the differential satisfies d2 = 0, we first recall the Adem relation Sq2Sq2 =
Sq3Sq1, which entails that Sq2Sq2 = 0 on H∗(T (γ);Z2) since the non-zero mod 2 cohomology
groups of T (γ) are concentrated in even degrees. It follows that (Sq2)∗(Sq2)∗, which is the
dual of Sq2Sq2, vanishes.

Since the homomorphism ρ2 : H10(T (γ)) → H10(T (γ);Z2) is onto, to prove the lemma it
suffices to show that the third homology group of the chain complex (C∗(H, γ), d) vanishes:

H3(C∗(H, γ), d) = 0.

In the case where H ∼= Z, it is a simple exercise using the Thom isomorphism to check that
the homology of (C∗(Z, γ), d) is trivial if w2(γ) 6= 0, and if w2(γ) = 0 then

H∗(C∗(Z, γ), d) ∼=
{

Z2 ∗ = 0
0 ∗ > 0.

We shall prove the general case by induction from these two cases. Let γ be a complex
line bundle over K(H, 2). When H has rank greater than one, let H = H0 ⊕ Z with the
property that c1(γ)|H0 = 0. (If c1(γ) = 0, then any decomposition of H will do, if c1(γ) 6= 0
then take H0 := Ker(c1(γ) : H → Z).) Observe that there is a split short exact sequence

H0 → H
π−→ Z, such that γ ∼= π∗γ′ for the map π : K(H, 2)→ K(Z, 2) and for some complex

line bundle γ′ over K(Z, 2). If CX denotes the trivial line bundle over a space X, then there
is an isomorphism of complex vector bundles

CK(H,2) ⊕ γ ∼= CK(H0,2) ⊕ γ′.

where the first ⊕ denotes the usual Whitney sum over K(H, 2) and the second ⊕ the exterior
Whitney sum over K(H0, 2) × K(Z, 2) = K(H, 2). Since the Thom space of the exterior
Whitney sum of bundles is homotopy equivalent to the smash product of the Thom spaces
of each bundle,

T (γ) ∧ S2 'M(CK(H0,2)) ∧ T (γ′).

If x ∈ H∗(M(CK(H0,2));Z2) and y ∈ H∗(T (γ′);Z2) and x ∧ y denotes their exterior cup

product in H∗(M(CK(H0,2)) ∧ T (γ′);Z2), then the Cartan formula for Sq2 gives

Sq2(x ∧ y) = Sq2x ∧ y + Sq1x ∧ Sq1y + x ∧ Sq2y = Sq2x ∧ y + x ∧ Sq2y

since Sq1x and Sq1y have odd degree and are thus zero. Thus there is an isomorphism of
chain complexes

(C∗(H0 ⊕ Z, γ), d) ∼= (C∗(H0, 0), d)⊗ (C∗(Z, γ′), d),
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where ⊗ denotes the tensor product of chain complexes. Applying the Kunneth theorem
for the homology groups of a tensor product of chain complexes over Z2 inductively gives us
that H3(C∗(H, γ), d) = 0 for all groups H and all complex line bundles γ. This completes
the proof of the lemma. �

Proof of Theorem 1.3. Since a closed, oriented, simply connected manifold M with torsion
free π2(M) admits a spinc structure, Lemma 4.1 implies the existence of an almost contact
structure ϕ on M . By Equation (4), Proposition 4.2 implies Ω7(B2

ζ ; η
2
ζ ) = 0 where ζ = Sϕ.

It follows that for any ζ-compatible normal 2-smoothing ζ̄ : M → B2
ζ , we have [M, ζ] = 0 ∈

Ω7(B2
ζ , η

2
ζ ). By Theorem 3.7 the almost contact manifold (M,ϕ) is then Stein fillable. �

5. Stein fillings of homotopy spheres

Recall that an n-dimensional homotopy sphere is a closed, smooth, oriented manifold Σ
which is homotopy equivalent to Sn. The set of oriented diffeomorphism classes of homotopy
n-spheres forms an abelian group Θn under the operation of connected sum:

Θn := { [Σ] |Σ ' Sn}.
For n ≥ 5, every homotopy n-sphere Σ is homeomorphic to Sn [Sm], hence Θn may be
regarded as the group of oriented diffeomorphism classes of smooth structures on the n-
sphere.

We now recall some fundamental facts about the group Θn proved by Kervaire and Milnor.
For further information, we refer the reader to [KM, Le] and [Lü, 6.6]. Let O denote the
stable orthogonal group, πSn the nth stable homotopy group of spheres and recall the J-
homomorphism

Jn : πn(O)→ πSn .

Since πSn is a finite group, the cokernel of Jn, Coker(Jn), is also finite. We state the following
theorem of Kervaire and Milnor only for the case of interest to us where n = 2q + 1 ≥ 5.

Theorem 5.1 ([KM, Section 4], [KM, Theorem 6.6]). For 2q + 1 ≥ 5 the abelian group
Θ2q+1 lies in a short exact sequence

0 −→ bP2q+2 −→ Θ2q+1
η−→ Coker(J2q+1) −→ 0

where bP2q+2 denotes the finite cyclic group of homotopy (2q + 1)-spheres which bound par-
allelisable manifolds. �

When we move to the stable complex setting, we have the following

Example 5.2. Every homotopy (2q + 1)-sphere Σ is stably parallelisable by [KM, Theorem
3.1] and hence admits an almost contact structure ϕ with stabilisation ζ := Sϕ. The complex
normal (q − 1)-type of (Σ, ζ) is independent of the choice of ϕ and is given by

(Bq−1
ζ , ηq−1

ζ ) = (BU〈q+1〉; πq+1),

where πq+1 : BU〈q+1〉 → BU is the qth connective cover of BU , i.e. πq+1 is the universal map
such that πi(BU〈q+1〉) = 0 for i ≤ q and (πq+1)∗ : πi(BU〈q+1〉) ∼= πi(BU) for i ≥ q + 1.

For homotopy spheres bounding parallelisable manifolds we have the following well-known
proposition.

Proposition 5.3. Every homotopy sphere Σ ∈ bP2q+2 is Stein fillable.



THE TOPOLOGY OF STEIN FILLABLE MANIFOLDS IN HIGH DIMENSIONS I 21

Proof. In order to exhibit an explicit Stein filling for Σ, we use the fact that every Σ ∈ bP2q+2

is diffeomorphic to a ‘Brieskorn sphere’, [Br, Korollar 2]. That is, Σ ∼= Σ(a1, a2, . . . , aq+2) is
realised as the intersection of the singular hypersurface

H0 = {(z1, . . . , z2q+2) | za11 + za22 + . . .+ z
aq+2

q+2 = 0} ⊂ Cq+2

with the unit sphere S2q+3 ⊂ Cq+2 for suitable ai ∈ N. A Stein filling is then given by
considering the part of a regular hypersurface

Hε = {(z1, . . . , z2q+2) | za11 + za22 + . . .+ z
aq+2

q+2 = ε}

that intersects the unit ball B2q+4 ⊂ Cq+2 for any small ε 6= 0 and the strictly plurisubhar-
monic function is given by ||z||2. �

When we move to homotopy (2q+1)-spheres mapping non-trivially to Coker(J2q+1), there
is no known example admitting a Stein filling. The following proposition, which is a more
precise version of Theorem 1.4 from the introduction, is a consequence of Theorem 3.3 as well
as results of Wall and Schultz about homotopy spheres bounding highly-connected manifolds.

Theorem 5.4. Let Σ2q+1 be a homotopy sphere which maps non-trivially into Coker(J2q+1).

(1) If q 6≡ 1, 3, 7 mod 8 or if q ≡ 1 mod 8 and q > 9 or if q = 7 or 15, then Σ is not
Stein fillable.

(2) If q = 9 or if q ≡ 3, 7 mod 8, then there is a cyclic subgroup CU
q ⊂ Coker(J2q+1) such

that Σ is Stein fillable if and only if Σ maps to zero in Coker(J2q+1)/CU
q .

(a) For q = 9, we have CU
9
∼= 0 or Z2.

(b) For q ≡ 7 mod 8, we have CU
8k−1 ⊂ 4 · Coker(J16k−1).

There are many cases where the group Coker(J2q+1)/CU
q is non-zero: we discuss some ex-

amples in Corollary 5.6 and Lemma 5.8 below. By the Generalized Poincaré Conjecture,
Theorem 5.1 and Theorem 5.4 imply the following

Corollary 5.5. In general, the existence of a Stein fillable contact structure depends on the
smooth structure of M and not simply the underlying homeomorphism type of M . �

Proof of Theorem 5.4. Let (W,J) be a Stein filling of Σ2q+1. Since W has handles only
in dimension (q + 1) or less, it follows that W is obtained from Σ by attaching handles of
dimension (q+1) or greater. Hence W is q-connected and so Σ bounds a q-connected smooth
manifold W with a stable complex structure ζ̄W . This constrains the diffeomorphism type
of Σ as recorded in the statement of the proposition, as we now explain.

The classification of oriented q-connected (2q + 2)-manifolds with boundary a homotopy
sphere is given in [Wa2]. Such manifolds are homotopy equivalent to a finite wedge of
(q + 1)-spheres and are classified by triples

(H,λ, α) = (Hq+1(W ), λW , αW )

where (Hq+1(W ), λW ) is the usual intersection form of W , which is a unimodular bilinear
form over the integers, and αW : Hq+1(W )→ πq(SO(q+ 1)) is a quadratic refinement of λW
as explained in [Wa2, Lemma 2]. The stablisation of αW is a homomorphism

SαW : Hq+1(W )→ πq(SO),
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which describes the stable tangent bundle of W along each (q + 1)-sphere in the homotopy
type of W . In particular, W admits a complex structure if and only if

(7) Im(SαW ) ⊂ Im
(
πq(U)→ πq(SO)

)
.

To study the diffeomorphism type of the homotopy sphere Σ = ∂W , Wall [Wa1, Theorems
2 & 3] defined the bordism group

A
〈q+1〉
2q+2 := {[W ] |W is q-connected and ∂W ∼= Σ},

the rel. boundary bordism group of smooth oriented q-connected (2q + 2)-manifolds with
boundary a homotopy sphere. (The notation is from [Sto] and a similar notation appears in
[Wa2, §17].) In analogy, we define the bordism group

A
BU〈q+1〉
2q+2 := {[W,J ] |W is q-connected and ∂W ∼= Σ},

to be the rel. boundary bordism group of almost complex q-connected (2q+ 2)-manifolds with
boundary a stably complex homotopy sphere. We consider the homomorphisms

A
BU〈q+1〉
2q+2

F−−→ A
〈q+1〉
2q+2

∂−−→ Θ2q+1
η−−→ Coker(J2q+1)

where F remembers only the orientation underlying an almost complex structure, ∂ is de-
fined by taking the diffeomorphism type of the bounding homotopy sphere, and η is the
homomorphism from Theorem 5.1. The above discussion shows that the group

CU
q := Im(η ◦ ∂ ◦ F ) ⊂ Coker(J2q+1)

is isomorphic to the group of Stein fillable homotopy spheres modulo bP2q+2. Wall [Wa2,

Theorem 2] computed the bordism group A
〈q+1〉
2q+2 by proving that it is isomorphic to a certain

Witt group of quadratic forms (H, λ, α) as above. We do not go into the details but sum-
marise the facts relevant for our proof. By [Wa2, Theorem 4] η ◦ ∂ = 0 for 3 ≤ q ≤ 7 and
hence CU

q = 0 in these dimensions. For q ≥ 8, there is an isomorphism

Φ: A
〈q+1〉
2q+2

∼= L1−q(e)⊕
(
πq(SO)⊗ πq(SO)

)
, [H, λ, α] 7→

(
σ(H,λ, α), α̂2

)
.

Here L1−q(e) denotes the 4-peroidic surgery obstruction group, α̂ ∈ H is an element such
that λ(x, α̂) = α(x) for all x ∈ H, intrepreted mod 2 if πq(SO) ∼= Z2, and α̂2 = λ(α̂, α̂).

By definition, the summand L1−q(e) ⊂ A
〈q+1〉
2q+2 corresponds to the subgroup generated by the

stably parallelisable spheres, and hence ∂(Φ−1(L1−q(e))) ∈ bP2q+2. We therefore concentrate
on the other summand.

Let F∗ : πq(U) → πq(SO) be the homomorphism induced by U → SO. From (7) above,
we see that for q ≥ 8 there is an isomorphism

ΦU : F
(
A
BU〈q+1〉
2q+2

) ∼= L1−q(e)⊕
(
Im(F∗)⊗ Im(F∗)

)
.

It follows that CU
q is the zero group if F∗ = 0. Given our knowledge of the homomorphism

πq(U) → πq(SO) this occurs unless q ≡ 1, 3, 7 mod 8. When q ≡ 1, 3, 7 mod 8, we see that
CU
q is the cyclic group generated by the element(

η ◦ ∂ ◦ (ΦU)−1
)(

0, F∗(1)⊗ F∗(1)
)
∈ Coker(J2q+1),

where 1 ∈ πq(U) is a generator. For q ≡ 1, 3 mod 8, F∗ is onto. However, if q = 8k + 1 > 9
Schultz [Sc, Corollary 3.2] states that η◦∂ = 0, proving that CU

8k+1 = 0 if 8k+1 > 9. Finally,
for q ≡ 7 mod 8, F∗(πq(U)) ⊂ πq(SO) is a subgroup of index two and so the bilinearity of
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the tensor product ensures that CU
q = 4 · Im(η ◦ ∂). When q = 15, we have Coker(J31) ∼= Z2

2,

[R, Table A3.3], and hence CU
15 = 0. �

We now give some examples of exotic spheres which are not Stein fillable. Since every
homotopy sphere has a unique spin structure, there is a homomorphism ωSpin : Θn → ΩSpin

n ,
given by mapping a homotopy sphere to it spin bordism class. Recall now the α-invariant

α : ΩSpin
∗ → KO∗

which is a ring homomorphism from spin bordism to real K-theory defined by taking the
KO-valued index of the Dirac operator on a spin manifold, [Hi, §4.2]. Composing α with
ωSpin we obtain the α-invariant for homotopy spheres

α : Θn → ΩSpin
n → KOn.

It is known that in all dimensions 8k + 1, k ≥ 1, there are exotic spheres with non-trivial
α-invariant in KO8k+1

∼= Z2. The existence of such spheres follows from theorems of Milnor
and Adams as is explained in [Hi, p. 44]. If α(Σ) = 1 then Σ does not bound a spin manifold.
On the other hand, a Stein filling of Σ is 4k-connected and in particular admits a unique
spin structure. Hence we obtain an alternative proof of the following special case of Theorem
5.4.

Lemma 5.6. If Σ ∈ Θ8k+1 has α(Σ) = 1 ∈ KO8k+1 then Σ is not Stein fillable. �

Next we show that taking connected sum with α-invariant-1 homotopy spheres can often
destroy the Stein fillability of more general manifolds. Since π8k+1(SO/U) = 0, it follows
that every homotopy (8k + 1)-sphere has a unique stable complex structure ζΣ. Given a
stably complex manifold (M, ζ), we shall write (M]Σ, ζ]ζΣ) for the stably complex manifold
obtained by taking the connected sum of the stably complex manifolds (M, ζ) and (Σ, ζΣ).

Proposition 5.7. Let (M,ϕ) be a Stein fillable almost contact manifold of dimension 8k+1
with ζ := Sϕ and c1(ζ) = 0. If Σ is a homotopy (8k+1)-sphere with α(Σ) = 1 ∈ KO8k+1,
then the stably complex manifold (M]Σ, ζ]ζΣ) is not Stein fillable.

Proof. Since c1(ζ) = 0, there is a lift of the normal complex structure ζ : M → BU to BSU .
It follows that there is a map of stable complex bundles F : (B4k−1

ζ , η4k−1
ζ ) → (BSU, πSU).

The bundle map F induces a homomorphism of bordism groups

F∗ : Ω8k+1(B4k−1
ζ ; η4k−1

ζ )→ ΩSU
8k+1.

Since (M,ϕ) is Stein fillable by Theorem 3.7, every (4k−1)-smoothing ζ̄ : M → B4k−1
ζ is null-

bordant. Moreover π8k+1(SO/U) = 0 and thus Σ admits a unique (B4k−1
ζ , η4k−1

ζ )-structure

ζ̄Σ. The connected sum (M]Σ, ζ̄]ζ̄Σ) is a (ζ]ζΣ)-compatible normal (4k − 1)-smoothing in
(B4k−1

ζ , η4k−1
ζ ). Now we have

F∗([M]Σ, ζ̄]ζ̄Σ]) = [Σ, ζΣ] 6= 0 ∈ ΩSU
8k+1,

where the last inequality holds since the homomorphism SU → Spin induces a homomor-
phism ΩSU

∗ → ΩSpin
∗ . Since α(Σ) = 1, it follows that [Σ, ζΣ] 6= 0 ∈ ΩSU

8k+1. The above

argument therefore shows that [M]Σ, ζ̄]ζ̄Σ] 6= 0 ∈ Ω8k+1(B4k−1
ζ ; η4k−1

ζ ), and so by Theorem
3.7, (M]Σ, ζ]ζΣ) is not Stein-fillable. �



24 JONATHAN BOWDEN, DIARMUID CROWLEY, AND ANDRÁS I. STIPSICZ

We next construct an exotic 9-sphere Σ which lies the kernel of the α invariant α : Θ9 →
KO9, but which does not bound a parallelisable manifold. By Theorem 5.4, this homotopy
sphere is not Stein fillable, but from a topological point of view, one can argue that it is one
of the “least exotic” homotopy spheres which is not Stein fillable.

By Theorem 5.1 above and results of Toda [To, p. 189], there is a short exact sequence

0→ bP10 → Ker(α)→ Z2 → 0.

We shall given a explicit description of a homotopy sphere Σ where [Σ] generates Kerα/bP10.
We first recall the well-known plumbing pairing

σp,q : πp(SO(q))× πq(SO(p)) 7−→ Θp+q+1, (β, γ) 7−→ ∂W (S(β), S(γ)),

where S : πp(SO(q))→ πp(SO(q + 1)) is the the stabilisation homomorphism and

W (S(β), S(γ)) := (Dq+1×̃S(β)S
p+1) ∪Dq+1×Dp+1 (Dp+1×̃S(γ)S

q+1)

is the compact smooth (p+ q + 2)-manifold obtained by plumbing the disc bundles of S(β)
and S(γ) together: see for example [Sc, Remark p. 741]. We let β5 ∈ π3(SO(5)) ∼= Z and
γ3 ∈ π5(SO(3)) ∼= Z2 be generators and define the homotopy 9-sphere

Σ9
β5,γ3

:= σ3,5(β5, γ3).

Notice that there is a homotopy equivalence W (S(β5), S(γ3)) ' S4∨S6, so that the manifold
W (S(β5), S(γ3)) cannot admit a Stein structure, but from the point of view of the dimensions
of the handles, W (S(β5), S(γ3)) is as close as possible to admitting a Stein structure.

Lemma 5.8. The homotopy 9-sphere Σβ5,γ3 maps to a generator of Ker(α)/bP10
∼= Z2.

Proof. The proof starts with the exotic 8-sphere Σ8 ∈ Θ8
∼= Z2. By [Sto, Satz 12.1] and [Hu,

Proposition 12.20], there is a diffeomorphism Σ8 ∼= ∂W (β5, δ4) where β5 ∈ π3(SO(5)) is as
above and δ4 ∈ π4(SO(4)) is given by the composition τS4 ◦ η3 : S4 → S3 → SO(4), where
τS4 is the characteristic map of the tangent bundle of the 4-sphere and η3 is essential. We
claim that δ4 = S(δ3) where δ3 ∈ π4(SO(3)) ∼= Z2 is a generator. To see this, we use the
commutative diagram of exact sequences

π3(SO(3))

◦η3
��

S // π3(SO(4))

◦η3
��

E3 // π3(S3)

◦η3
��

π4(SO(3))
S // π4(SO(4))

E4 // π4(S3),

where the horizontal sequences are part of the homotopy long exact sequence of the fibration
SO(3)→ SO(4)→ S3, the vertical maps are given by pre-composition with η3, and the map
E3 takes the Euler class of the corresponding bundle. Since E3(τS4) = ±2 ∈ π3(S3) ∼= Z, it
follows that E3(τS4) ◦ η3 = 0 and so E4(τS4 ◦ η3) = 0. Hence τS4 ◦ η3 ∈ Im(S). Since Σ8 is
non-standard, τS4 ◦η3 is non-zero and this proves the claim. It follows that Σ8 ∼= σ3,4(β4, δ3),
where β4 ∈ π3(SO(4)) stabilises to β5.

To relate Σ8 to Σβ5,γ3 we shall use the Milnor-Munkres-Novikov pairing [La2, p. 583],

τp,q : πp(SOq)×Θq 7−→ Θp+q, (α,Σ) 7−→ ∂W (α,Σ),

where W (α,Σ) is the plumbing manifold

(Dq×̃αSp+1) ∪Dp+1×Dq (Dp+1 × Σq)
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obtained by plumbing the disc bundle of α with the trivial (p + 1)-disc bundle over the
homotopy sphere Σ. By [Sc, Theorem 2.5], if µn ∈ π1(SO(n)) ∼= Z2 is a generator for n ≥ 3,
then

τ1,8(µ8, σ3,4(β4, δ3))) = σ3,5(Sβ4, δ3 ◦ η4),

so long as the Samelson product S(β4) ∗ S(µ4) ∈ π4(SO(5)) is trivial: we assume this for
now and complete the proof. Since γ3 = δ3 ◦ η4, it follows that Σβ5,γ3

∼= τ1,8(µ8,Σ
8). But it

is clear from the definition of the pairing τp,q that η(τ1,8(µ8,Σ8)) = [η(Σ8) ◦ η8] ∈ Coker(J9).
But by [To, p. 189], [η(Σ8) ◦ η8] 6= 0 ∈ Coker(J9) and so Σβ5,γ3 does not belong to bP10. On
the other hand, Σβ5,γ3 bounds a spin manifold by construction and so Σβ5,β3 ∈ Ker(α).

To complete the proof, we must show that the Samelson product β5 ∗ µ5 vanishes. It
suffices to show that β4 ∗µ4 vanishes. Recall that the Samelson product β4 ∗µ4 : S4 → SO(4)
is defined to be the homotopy class of the map induced on S4 by the following map

S3 × S1 → SO(4), (x, λ) 7→ β4(x)µ4(y)β−1
4 (x)µ−1

4 (y).

Now, we represent β4 and µ4 by the following maps:

β4(x)(y) = x · y and µ4(λ)(y) = y · λ,

where y ∈ H is a quaternion, x ∈ S3 a unit quaternion and λ ∈ S1 ⊂ S3 a unit complex
number. Evidently β4(x), µ4(λ) ∈ SO(4) commute for all values of (x, λ) and hence the
Samelson product β4 ∗ µ4 vanishes. �

By Lemma 5.3 homotopy spheres in bP2q+2 ⊂ Θ2q+1 (i.e. the ones mapping trivially to
Coker(J2q+1)) are all Stein fillable, while Theorem 5.4 shows that many homotopy spheres
with non-trivial image in Coker(J2q+1) do not admit Stein fillings. This observation naturally
leads us to the following

Conjecture 5.9. A homotopy sphere Σ2q+1 is Stein fillable if and only Σ2q+1 ∈ bP2q+2. That
is, in the notation of Theorem 5.4, CU

q = 0 for all q.

Notice that while Theorem 5.4 shows that many exotic spheres are not Stein fillable, those
same homotopy spheres might admit symplectically fillable contact structures.

Problem 5.10 (Symplectic fillability of homotopy spheres). Do all homotopy spheres admit
symplectically fillable contact structures? If not, then determine all those that do.

The positive resolution of this problem would imply that symplectic fillability is invariant
under the action of the group of exotic spheres under connect sum. Notice that although our
Filling Theorem 3.7 is not useful in searching for symplectic fillings which are not also Stein
fillings, Corollary 3.10 may be helpful in finding symplectically fillable contact structures on
homotopy spheres which do not admit Stein fillings.

6. Further properties of Stein fillable manifolds

In this section we discuss several topological properties of Stein fillable manifolds.
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6.1. (Co)homological obstructions to Stein fillability. In this subsection we discuss
topological obstructions to Stein fillability, which are not present in dimension 3, and some of
their consequences. (See also [PP] and [EKP] for similar obstructions.) As usual, let (M,ϕ)
be an almost contact manifold with associated stable complex structure ζ, let (Bq−1

ζ , ηq−1
ζ )

be the complex normal (q−1)-type of (M, ζ) and let ζ̄ : M → Bq−1
ζ be a ζ-compatible normal

(q − 1)-smoothing. We begin by observing that there is a commutative diagram,

Bq−1
ζ

pB×ηq−1
ζ

��

ηq−1
ζ

))
M

ζ

66

pM×ζ
// Pq−1(M)×BU prBU

// BU,

where Pq−1(B) ' Pq−1(M) is the (q−1)st Postnikov stage of M and B, and the maps
pM : M → Pq−1(M) and pB : B → Pq−1(M) are q-equivalences. We see that the induced
homomorphism

(pB × ηq−1
ζ )∗ : Ω2q+1(Bq−1

ζ )→ ΩU
2q+1(Pq−1(M))

is such that (pB × ηq−1
ζ )∗([M, ζ̄]) = [(M, ζ), pM ]. Applying Theorem 3.7 we obtain

Lemma 6.1. If [(M, ζ), pM ] 6= 0 ∈ ΩU
2q+1(Pq−1(M)), then (M, ζ) does not admit a Stein

fillable contact structure. �

The following proposition combines Lemma 6.1 with other elementary observations to give
obstructions to Stein fillability. Let π = π1(M) denote the fundamental group of M .

Proposition 6.2. Suppose that (M,ϕ) is an almost contact manifold of dimension 2q+1 ≥ 5
that admits a Stein fillable contact structure and let u : M → K(π, 1) be the classifying map
of the universal cover of M . Then the following hold:

(1) The homomorphism u∗ : Hi(M ;Z)→ Hi(K(π, 1)) vanishes for q+ 2 ≤ i ≤ 2q+ 1. In
particular u∗([M ]) = 0 ∈ H2q+1(K(π, 1)) , where [M ] denotes the fundamental class
of M .

(2) M is not aspherical.
(3) For any β ∈ Hj(Pq−1(M)) and for any k-tuple {i1, . . . , ik} of positive integers with

2q + 1 − j = 2
(
Σk
n=1 in

)
, all products of the form p∗M(β) ∪ ci1(ζ) ∪ · · · ∪ cik(ζ) ∈

H2q+1(M) vanish.
(4) For any k-tuple {i1, . . . , ik} of positive integers with Σk

n=1 in = q, all products of
Chern classes ci1(ζ) ∪ · · · ∪ cik(ζ) ∈ H2q(M) vanish.

Proof. (1) Let (W, ζ̄W ) be a B-nullbordism of (M, ζ̄). After surgery we may assume that
W has no handles in dimension greater than q + 1 and hence Hi(W ;Z) = 0 for i > q + 1.
Now ν̄ : M → B factors over W and u : M → K(π, 1) can be factored as uB ◦ ν̄ : M → B →
K(π, 1), where uB : B → K(π, 1) classifies the universal covering of B.

(2) If M is aspherical then M ' K(π, 1) and so u∗([M ]) is a generator of the group
H2q+1(K(π, 1)) ∼= Z. Now apply part (1).

(3) The integer
〈p∗M(β) ∪ ci1(ζ) ∪ · · · ∪ cik(ζ), [M ]〉

is an invariant of unitary bordism of Pq−1(M). By Lemma 6.1 this integer vanishes for the
unitary Pq−1(M)-manifold ((M, ζ), pM). Since H2q+1(M) ∼= Z, this finishes the proof.
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(4) We apply part (3) with β ∈ H1(Pq−1(M)) = H1(M) and then use a version of part (1)
with mod Z/p coefficients to conclude that ci1(ζ) ∪ · · · ∪ cik(ζ) vanishes in H2q(M ;Q) and
also in H2q(M ;Z/p) for all primes p. It follows that ci1(ζ) ∪ · · · ∪ cik(ζ) = 0 ∈ H2q(M). �

Proposition 6.2 allows us to prove the following

Corollary 6.3. In general, the Stein fillability of an almost contact manifold (M,ϕ) depends
on the choice ϕ and not just the underlying diffeomorphism type of M .

Proof. The manifold M = S1×S6 clearly admits a Stein fillable almost contact structure ϕ0

since M = ∂(S1 ×D7). On the other hand, S6 admits an almost complex structure J with
c3(J) = 2 ∈ H6(S6). For the induced almost contact structure ϕ1 on M , Proposition 6.2 (4)
implies that (M,ϕ1) is not Stein fillable. �

As a consequence of Proposition 6.2, we obtain obstructions to the Stein fillability of
certain Boothby-Wang contact structures.

Example 6.4 (Boothby-Wang contact structures). A Boothby-Wang contact structure on a
(nontrivial) principal S1-bundle

S1 −→ E
π−→ B

over a symplectic base (B,ω) of dimension 2q with c1(E) = [ ω
2π

] is given as the kernel of an
S1-invariant 1-form α which is non-vanishing on the fibers and satisfies dα = π∗(ω) for some
integral symplectic form ω.

Note that the associated disc bundle of the principal S1-bundle E is a strong symplectic
filling (see, e.g., [GS], Lemma 3), which is not Stein since it is homotopy equivalent to the
2q-dimensional base B. (However, if the base is CP 2 and the Euler class of the bundle is
a generator of H2(CP 2;Z), then the total space is the 5-sphere which is of course Stein
fillable.) On the other hand we do have the following example:

Example 6.5 (Lens spaces). Let L5
k be the standard 5-dimensional lens space with cyclic

fundamental group of order k. That is, L5
k is the quotient of

S5 = {(z1, z2, z3) ∈ C3 | |z1|2 + |z2|2 + |z3|2 = 1},
with the action of a generator of Zk defined by

(z1, z2, z3) 7→ (µz1, µz2, µz3)

for µ ∈ C a kth root of unity. The resulting manifold inherits an S1-bundle projection
π : L5

k → CP 2. Since the classifying map of the universal cover u induces a non-trivial map

u∗ : Hi(L
5
k)→ Hi(K(Zk, 1)),

we conclude that although the lens spaces L5
k are symplectically fillable (by the Boothby-

Wang construction), by Lemma 6.2 (1) they are not Stein fillable for all k ≥ 2. (Obstructions
for Stein fillability of these manifolds were already noticed in [EKP], cf. also [PP].)

In conclusion, we see both examples of Boothby-Wang contact structures which are Stein
fillable, and others which are not. This observation leads to the following question:

Problem 6.6 (Fillability of Boothby-Wang manifolds). Determine which Boothby-Wang
manifolds are Stein/exactly fillable.
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By recent work of Massot, Niederkrüger and Wendl [MNW], Proposition 6.2 also gives exam-
ples of exactly fillable contact structures that are not Stein fillable in all dimensions. Such
examples were discussed in [Bow] for 3-dimensional manifolds, although in this case the non-
fillability only applied to certain contact structures rather than to the manifolds themselves.
We are now in the position to provide the proof of Theorem 1.5 from the Introduction:

Proof of Theorem 1.5. By [MNW, Theorem C], there are exact symplectic fillings of the
form M × [0, 1] such that both ends are convex in all dimensions 2q+2. The manifolds M
are quotients of contractible Lie groups and are consequently aspherical. After attaching a
Weinstein 1-handle to M × [0, 1], we obtain an exact filling of N = −M#M . Assuming that
q > 1, π1(N) is the free product two copies of π1(M) and so there is a homotopy equivalence
K(π1(N), 1) ' K(π1(M), 1)∨K(π1(M), 1). Since M is aspherical, we see that the classifying
map of the universal cover of N maps non-trivially on H2q+1(N). Hence by Proposition 6.2
(1), N is not Stein fillable if q > 1. �

6.2. Stein fillability and orientations. A cooriented contact structure ξ = ker(α) de-
termines an orientation of the underlying (2q + 1)-manifold M , since the form α ∧ (dα)q is
nowhere vanishing. When we speak of an oriented manifold admitting a contact structure, we
mean that the orientation determined by the contact structure is the given one. Moreover, if
the dimension of M is of the form 4k+1, and hence the dimension of the Stein filling of M is
of the form 4k+ 2, then taking the conjugate complex structure on W reverses orientations.
The resulting Stein fillable contact structure then gives the opposite coorientation of ξ, i.e.
replaces α by −α, which in turn swaps the orientation determined by the contact structure.
So in these dimensions it is clear that M is Stein fillable if and only if −M is.

However, if the dimension of M is 4k+3, then this is not immediately clear and it is indeed
false in dimension 3, with many examples given by Seifert fibred spaces, the most famous
of which is the Poincaré homology sphere [Li]. On the other hand, Eliashberg’s h-principle
implies the following

Proposition 6.7. Let (M,ϕ) be an almost contact (2q + 1)-dimensional manifold with q ≥
2 and associated stable complex structure ζ. Then (M, ζ) is Stein fillable if and only if
(−M,−ζ) is.

Proof. The fact that any Stein filling of (M, ζ) is a manifold with boundary means that TW
admits a nonvanishing section and thus as complex bundles

(TW, J) ∼= (E, J |E)⊕ C.
We then define an almost complex structure J̄ by taking J |E on E and the conjugate com-
plex structure on C. The almost complex structure J̄ then induces the orientation −W ,
and applying Eliashberg’s h-principle gives a Stein fillable contact structure on −M with
associated stable complex structure −ζ. �

7. Subcritical Stein fillings and Stein fillings of products

We fix a closed almost contact (2q+1)-manifold (M,ϕ) and as usual we let ζ = Sϕ denote
the stable complex structure induced by the almost contact structure ϕ. A subcritical Stein
filling of (M,ϕ) is a Stein filling (W,J) of (M,ϕ) where W admits a handle decomposition
with handles of dimension q and less. Subcritical Stein fillings have special properties; see
[CE].



THE TOPOLOGY OF STEIN FILLABLE MANIFOLDS IN HIGH DIMENSIONS I 29

Another filling question is the following: suppose that (F, JF ) is an almost complex struc-
ture on a closed, orientable surface F . Then we can ask if the product almost contact
manifold (M × F, ϕ × JF ) admits a Stein filling. It is easy to see that if (M,ϕ) has a
subcritical Stein filling, then (M × F, ϕ × JF ) is Stein fillable: if (W,JW ) is the subcriti-
cal filling of (M,ϕ) then (W × F, JW × JF ) is an almost complex manifold with boundary
(M × F, ϕ× JF ) which admits a handle decomposition with handles of dimension q + 2 and
less (and the dimension of W × F is 2q + 4), therefore Eliashberg’s h-principle implies the
result.

We shall further relate the two questions about Stein fillings to the bordism theory of
(Bq

ζ , η
q
ζ), the complex normal q-type of (M, ζ). We pose five related questions:

(A) When does (M,ϕ) admit a subcritical Stein filling?
(B) When does (M × F, ϕ× JF ) admit a Stein filling?
(C) When does [M, ζ̄] = 0 ∈ Ω2q+1(Bq

ζ , η
q
ζ) hold?

(D) When does ζ̄∗([M ]) = 0 ∈ H2q+1(Bq
ζ ) hold?

(E) When does THq(M), the torsion subgroup of Hq(M), vanish?

We next graphically summarise the relationship between positive answers to the questions
above, writing g(F ) > 0 for the case where F has positive genus; see Theorem 7.1 below.

(A)

�%

+3 (B) +3

if g(F ) > 0
lt

(D) +3 (E)

(C)

9A

Theorem 7.1 (Subcritical Filling Theorem). Let (Bq
ζ , η

q
ζ) be the complex normal q-type of

(M, ζ) and let ζ̄ : M → Bq
ζ be any ζ-compatible normal q-smoothing. If q ≥ 2, then the

following hold.

(1) If (M,ϕ) admits a subcritical filling then [M, ζ̄] = 0 ∈ Ω2q+1(Bq
ζ , η

q
ζ).

(2) If [M, ζ̄] = 0 ∈ Ω2q+1(Bq
ζ , η

q
ζ) then (M × F, ϕ× JF ) admits a Stein filling.

(3) If (M ×F, ϕ× JF ) admits a Stein filling and g(F ) > 0, then the bordism class [M, ζ̄]
satisfies [M, ζ̄] = 0 ∈ Ω2q+1(Bq

ζ , η
q
ζ). In particular, (M, ζ) is Stein fillable.

(4) If (M × F, ϕ× JF ) admits a Stein filling then ζ̄∗([M ]) = 0 ∈ H2q+1(Bq
ζ ).

(5) If ζ̄∗([M ]) = 0 ∈ H2q+1(Bq
ζ ) then THq(M) = 0.

Proof. (1) The proof is similar to the proof of part (1) of Lemma 2.10. Let (W, ζW ) denote
the subcritical filling with its induced stable complex structure; it is built from (M, ζ) by
adding handles with stable complex structure of dimension q + 2 and higher. Therefore the
complex normal q-type of M can be identified that of W and the claim follows.

(2) Let ζF be the stable normal complex structure defined by JF , let Pq(F ) be the qth

Postnikov stage of F and let pF : F → Pq(F ) be a (q+1)-equivalence (if g(F ) > 0, then
Pq(F ) = K(π1(F ), 1)), and let LζF be the unique complex line bundle over Pq(F ) such that
c1(ζF ) = p∗F (c1(LζF )). The complex normal q-type of (M × F, ζ × ζF ) is given by

(Bq
ζ×ζF , η

q
ζ×ζF ) = (Bq

ζ × Pq(F ), ηqζ ⊕ LζF ),
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where, as in Section 2.5, ηqζ ⊕ LζF denotes the exterior Whitney sum of stable complex

bundles. By assumption there is a (Bq
ζ , η

q
ζ)-null bordism (W, ζ̄W ) of (M, ζ̄). We observe that

ζ̄W × pF : W × F → Bq
ζ × Pq(F )

is a (Bq
ζ×ζF , η

q
ζ × LζF )-nullbordism of (M × F, ζ × ζF ). By Theorem 3.7, (M × F, ϕ× JF ) is

Stein fillable.
(3) If g(F ) > 0, then F is a K(π, 1) manifold and Pq(F ) = F . It follows that the complex

normal q-type of (M × F, ζ × ζF ) is given by

(Bq
ζ×ζF , η

q
ζ×JF ) = (Bq

ζ × F, η
q
ζ ⊕ LζF ),

where LζF is defined as in the proof of (2). There is a canonical isomorphism of bordism
groups

θ : Ω∗(B
q
ζ × F, η

q
ζ ⊕ ζF ) ∼= Ω

(Bqζ ,η
q
ζ )

∗ (F ;LζF )

with range the ζF -twisted (Bq
ζ , η

q
ζ)-bordism group of F . Taking the transverse inverse image

of a point x ∈ F defines a homomorphism

t : Ω
(Bqζ ,η

q
ζ )

∗ (F ;LζF )→ Ω∗−2(Bq
ζ , η

q
ζ).

On the other hand, taking the product with (F, ζF ) defines a homomorphism

Π: Ω∗(B
q
ζ , η

q
ζ)→ Ω∗+2(Bq

ζ × F, η
q
ζ ⊕ ζF ), [X, ζX ] 7→ [X × F, ζX × ζF ].

From the definitions of the above homomorphisms, we see that there is a commutative
diagram

Ω∗(B
q
ζ , η

q
ζ)

Π

��

id

**
Ω∗+2(Bq

ζ × F, η
q
ζ ⊕ ζF )

θ // Ω
(Bqζ ,η

q
ζ )

∗+2 (F ;LζF )
t // Ω∗(B

q
ζ , η

q
ζ).

If (M ×F, ϕ× JF ) is Stein fillable, then by Theorem 3.7, [M ×F, ζ̄ × ζ̄F ] = Π([M, ζ]) = 0 ∈
Ω2q+3(Bq

ζ × F, η
q
ζ ⊕ ζF ). The diagram then shows that that [M, ζ̄] = 0 ∈ Ω2q+1(Bq

ζ , η
q
ζ).

(4) If (M ×F, ζ × ζF ) is Stein fillable then by Theorem 3.7 all (ζ × ζF )-compatible normal
q-smoothings of (M × F, ζ × ζF ) bound over (Bq

ζ × Pq(F ), ηqζ × LζF ). As a consequence,

(ζ̄ × pF )∗([M × F ]) = 0 ∈ H2q+3(Bq
ζ × Pq(F )).

Since (pF )∗([F ]) ∈ H2(Pq(F )) ∼= Z is a generator, the result now follows from the Kunneth
theorem.

(5) Recall that the linking form of M is a nonsingular bilinear pairing

THq(M)× THq(M)→ Q/Z.

We will show that the assumption ζ̄∗([M ]) = 0 ensures that the linking form of M vanishes,
and this can only happen if THq(M) vanishes.

Let p : Hq(M) → THq(M) be a splitting and let p : K(Hq(M), q) → K(THq(M), q) also
denote the induced map of Eilenberg-MacLane spaces. The map qM : M → K(Hq(M), q)
inducing the identity on Hq is such that the composition

M
qM−−−→ K(Hq(M), q)

p−−→ K(THq(M), q)
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satisfies (p ◦ qM)∗([M ]) 6= 0 ∈ H2q+1(K(THq(M)), q) if THq(M) 6= 0: This follows from
the cohomological definition of the linking form and its nonsingularity. But since the map
ζ̄ : M → Bq

ζ is a (q + 1)-equivalence, it follows that qM can be factored through ζ̄. Hence if

ζ̄∗([M ]) = 0 then (p ◦ qM)∗([M ]) = 0, the linking form of M vanishes, and THq(M) = 0. �

Example 7.2. The converse of (1) in Theorem 7.1 (that [M, ζ̄] = 0 ∈ Ω2q+1(Bq
ζ , η

q
ζ) implies

that (M,ϕ) is subcritically Stein fillable) does not hold. Notice first that the adaptation
of the proof breaks down, since the surgery method of [Kr2] works only up to the middle
dimension. Indeed, if Σ ∈ bP2q+2 is exotic, then Σ admits an almost contact structure with
stabilisation ζ such that [Σ, ζ] = 0 ∈ Ω2q+1(Bq

ζ , η
q
ζ), but Σ does not admit a subcritical Stein

filling: a subcritical Stein filling of a homotopy sphere must be contractible, implying that
the filling is diffeomorphic to the disk and that the homotopy sphere is standard.

Example 7.3. A simple example of a Stein fillable manifold M with the property that M×S2

is not Stein fillable is provided by M = S1×S2×S2: by the fact that M = ∂(S1×S2×D3)
we see that it is Stein fillable, while Proposition 6.2 implies that S1 × S2 × S2 × S2 is not
Stein fillable.

Theorem 7.1 shows that the existence of a subcritical filling of (M,ϕ) places strong con-
straints on the topology of M . We next pursue this point further for simply connected
manifolds in dimensions 5 and 7. Let S3×̃S2 and S5×̃S2 be the total spaces of the nontrivial
linear n-sphere bundle over the 2-sphere, n = 3, 5.

Proposition 7.4. Suppose that (M,ϕ) is a simply connected almost contact manifold of
dimension 5 or 7 and that (M,ϕ) admits a subcritical Stein filling.

(1) If M has dimension 5, then there are nonnegative integers r, s such that M is diffeo-
morphic to one of the connected sums

]r(S
3 × S2) or (S3×̃S2)]r(S

3 × S2),

depending on whether M is spin or not.
(2) If M has dimension 7 and π2(M) is torsion free, then there are integers r, s such that

M is diffeomorphic to one of the connected sums

]r(S
5 × S2)]s(S

4 × S3) or (S5×̃S2)]r(S
5 × S2)]s(S

4 × S3),

depending on whether M is spin or not.

Proof. If (W,J) is a subcritical filling of (M,ϕ), then W is obtained from M by attaching
(q + 2)-handles and higher. It follows that the map M → W is a (q + 1)-equivalence. Now
by Theorem 7.1 (1), (3), (4) and (5), THq(M) = 0 and so THq(W ) = 0. Since W is also
a simply connected manifold consisting only of handles of dimension q or less, we conclude
the following: if q = 2, it follows the W is homotopy equivalent to a wedge of 2-spheres and
if q = 3, then W is homotopy equivalent to wedge of 2-spheres and 3-spheres. Note that
for the case q = 3 we use the assumption that π2(M) ∼= H2(M) is torsion free. It follows,
using the terminology of [Wa2] that the manifold W is then a stable thickening of a wedge of
spheres. By [Wa2, Propsition 5.1] stable thickenings are classified up to diffeomorphism by
their homotopy type and the map classifying their stable tangent bundle. Now for the W we
consider, [W,BSO] ∼= H2(W ;Z2), the bijection being given by the second Stiefel-Whitney
class. If \ denotes the boundary connected sum of manifolds with boundary and D4×̃S2 and



32 JONATHAN BOWDEN, DIARMUID CROWLEY, AND ANDRÁS I. STIPSICZ

D6×̃S2 denote the non-trivial linear disc bundles over S2, we deduce that W is diffeomorphic
to one of the following manifolds:

Dimension 5: \r(D
4 × S2) or (D4×̃S2)\r(D

4 × S2),

Dimension 7: \r(D
6 × S2)]s(D

5 × S3) or (D6×̃S2)]r(D
6 × S2)]s(D

5 × S3),

and the proposition follows. �

We conclude this section by viewing Example 7.2 in a more general framework. Let
Ls,τ2q+2(π) denote the group of units in the surgery obstruction monoid l2q+2(π), which was
defined in [Kr2, §6]. (The notation is from [Kr1, §4] and differs from [Kr2]. In addi-
tion, Ls,τ2q+2(π) may be identified with the group obstruction group LC2q+2(π) of [Wa4, 17D].)
The group Ls,τ2q+2(π) acts on the set of (Bq

ζ , η
q
ζ)-diffeomorphism classes of complex normal

q-smoothings ζ̄ : M → Bq
ζ without changing the (Bq

ζ , η
q
ζ)-bordism class. That is, writing

(M+ρ, ζ̄+ρ) for the action of ρ ∈ Ls,τ2q+2(π) on (M, ζ̄), we have

[M, ζ̄] = [M+ρ, ζ̄+ρ] ∈ Ω2q+1(Bq
ζ , η

q
ζ).

For example, if M is simply connected, then Ls,τ2q+2(e) ∼= Z or Z2 as q is odd or even, and the

action of Ls,τ2q+2(e) is via connected sum with (Σ, ζ̄Σ), where Σ is a generator of bP2q+2 and

ζ̄Σ is a certain a (Bq
ζ , η

q
ζ)-structure on Σ.

Question 7.5. Suppose that ζ̄ : M → Bq
ζ is a normal q-smoothing such that [M, ζ̄] = 0 ∈

Ω2q+1(Bq
ζ , η

q
ζ). Under what conditions on M can we deduce that there is an element ρ ∈

Ls,τ2q+2(π) such that (M+ρ, ζ̄+ρ) admits a subcritical Stein filling? For example, if M is simply

connected, is there a homtopy sphere Σ ∈ bP2q+2 such that (M]Σ, ζ̄]ζ̄Σ) admits a subcritical
Stein filling?
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[Lü] W. Lück, A basic introduction to surgery theory, ICTP Lecture Notes Series 9, Band 1, “School on

High-dimensional manifold theory” Trieste 2001, ICTP, Trieste 2002. Available at http://www.him.

uni-bonn.de/lueck/publications.php
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