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Intermittent �uid pulses in the Earth's crust can explain a variety of geological phenomena,
for instance the occurrence of hydraulic breccia. Fluid transport in the crust is usually
modeled as continuous Darcian �ow, ignoring that suf�cient�uid overpressure can cause
hydraulic fractures as �uid pathways with very dynamic behavior. Resulting hydraulic
fracture networks are largely self-organized: opening andhealing of hydraulic fractures
depends on local �uid pressure, which is, in turn, largely controlled by the fracture
network. We develop a crustal-scale 2D computer model designed to simulate this
process. To focus on the dynamics of the process we chose a setup as simple as
possible. Control factors are constant overpressure at a basal �uid source and a constant
“viscous” parameter controlling fracture-healing. Our results indicate that at large healing
rates hydraulic fractures are mobile, transporting �uid inintermittent pulses to the surface
and displaying a 1/fa behavior. Low healing rates result in stable networks and constant
�ow. The ef�ciency of the �uid transport is independent from the closure dynamics of
veins or fractures. More important than preexisting fracture networks is the distribution
of �uid pressure. A key requirement for dynamic fracture networks is the presence of a
�uid pressure gradient.

Keywords: hydraulic fracturing, fracture network, �uid �ow, intermittent �uid �ow, Earth's crust, dynamics fracture
network, hydraulic breccia

Introduction

Fluid �ow in the Earth's crust is evidenced by a variety of geological phenomena, including
veins and hydraulic breccias. Veins are dilatant structures, typically fractures, �lled with minerals
that precipitated from �uid (see review of [1], and references therein). Hydraulic breccias are
fragmented rocks where the fragmentation is mainly caused by chaotic fracturing due to �uid
overpressure [2–5], as opposed to tectonic breccias where the diminution is due to tectonic stresses,
typically along faults [6–8].

Both veins and breccias usually show evidence for repeated fracturing. Veins commonly
exhibit microstructures that are indicative of the “crack-seal mechanism” [9], where a
crack repeatedly opens and is subsequently sealed again by mineral growth (Figure 1).
This crack-sealing, which can be repeated thousands of timesin a single vein, indicates
that �uid �ow is not continuous, but intermittent: �uid pressure builds up to exceed
the tensional strength of the rock and cause failure, after which �ow can occur until
the fracture permeability is sealed o� again [9–13]. Hydraulic breccias also typically show
indications of repeated fracturing in the form of clasts in clasts and brecciated cement
[4, 14].
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Although evidence for intermittent �uid �ow is abundant,
relatively little is known on the duration of and time spans
between fracturing events. An indirect indication can be achieved
by considering �uid �ow velocities and total �uxes. Theoretical
considerations of fracture propagation velocity, and hence
velocity of contained �uid, range from m/yr to m/s [15, 16]. The
large range is mostly due to uncertainty in the fracture toughness
of rocks. Field observations suggest that �ow velocities can reach
the upper end of the range. For example, [17] and [18] estimated
�ow velocities of 0.01–0.1 m/s from the size of grains that were
carried up by the �uid. Using similar arguments, [24] derived
�ow velocities in excess of 5 m/s in a �uidized breccia with
m-sized clasts from the Cloncurry District, Australia.

Weisheit et al. [4] describe a hydraulic breccia, the Hidden
Valley Breccia, Australia, that is 10 km2 in outcrop and contains
clasts that range from< 0.1 mm to> 100 m in size. It formed over
a period of more than 150 million years, as basement gneisses
were exhumed in this area by over 12 km [19]. The estimated
amount of �uid to have produced this breccia is about 20 km3.
Assuming a porosity of 10% and a �ow rate of 1 m/s, at the upper
end of the aforementioned range, the estimated duration of �ow
(1 t) would only be about 2100 s, or a mere few hours. This
is a minute fraction of the> 100 million years it took to form
the breccia. Even if the �ow rate was 1 m/yr, the total duration
would only be about 2100 years. Fluid �ow must therefore have
been highly intermittent with only very occasionally short bursts
of �ow, and extremely long periods of pressure buildup. This
mechanism can result in dense networks of veins composed of
many crack-seal events that formed over long periods of time
[e.g.,20].

Intermittent �ow is predicted to occur when the matrix
permeability of a rock is insu�cient to accommodate �uid �ow
[21, 22]. This leads to an increase in �uid pressure and opening
of hydrofractures. When exceeding a critical length, thesecan

FIGURE 1 | Microphotograph and sketch of a crack seal vein from
fossiliferous Cretaceous limestone in the Jabal Akhdar Dome, Oma n
[20]. (A) Overview of one half of the vein, composed of hundreds of
individual crack-seal veinlets.(B) Distributed crack-seal veinlets, each tens
of mm in width are visible in a close up.(C) Schematic development stages
of the vertcially stretched fossil fragment in(B). The actual order of fracture
events cannot be determined from the thin section image. Plane-polarized
light.

become mobile by propagation on one end and closure at the
other. Such “mobile hydrofractures” thus propagate together with
their contained �uid and can reach velocities in the order of
m/s [16, 22, 23]. Possible �uid sources which may generate the
necessary �uid pressure for hydraulic brecciation and hydraulic
fracturing are �uid released by igneous intrusions [24], �uid
release due to decompression [25, 26] or mineral dehydration
reactions [27]. Dehydration of the mineral biotite appears to be
the main �uid source in case of Hidden Valley [4].

In contrast, classically large-scale �uid �ow is assumed totake
place by slow, convective �uid percolation, typically driven by
topography or thermal instabilities, for example due to igneous
intrusions [28, 29]. Such convective �ow requires a �uid pressure
that is close to hydrostatic, which is incompatible with the high,
supra-lithostatic �uid pressures required to fracture rocks to
produce veins and breccias [1].

A number of numerical models for hydrofracture formation
exist already [30, 31] while new models are continuously
developed [e.g.,32–36]. The current interest in these models
is mainly triggered by the enormous economic importance of
arti�cial hydraulic (aka “fracking”) as a means of oil and gas
extraction. However, these models are focused on the micro-to
meso-scale, where single cracks and fractures can be numerically
resolved. Existing numerical models for crustal scale �ow, on
the other hand, do not consider the interplay between �uid
�ow and hydraulic fracturing, but assume that the intrinsic
matrix permeability of rocks is the only relevant parameter
[e.g., 37–39]. Miller and Nur [21] developed a crustal scale
cellular automaton model which was able to capture the general
dynamics of large scale hydraulic fracture networks, but wasn't
based on realistic concepts for �uid propagation and closing of
fractures.

To our knowledge, the numerical model developed and
applied in this study is the �rst discrete crustal scale 2D
model which integrates �uid �ow dynamics and hydrofracture
formation. This setup permits modeling of dynamic hydraulic
fracture networks and the derivation of the key control factors.
The setup is intentionally simple compared to the “real”
crust, since we are interested in the general characteristics
of the fracture patterns and the e�ciency of the transport
mechanism.

Below we �rst show that the transport mechanism of crustal
�uid must include hydraulic fracturing in order to explain the
hydraulic rocks at Mount Painter. In a second step we investigate
the hydraulic fracture patterns which develop in a simpli�ed
crust in a 2D model. We exclude the consideration of �ner
geological intricacies in the model, e.g., geological layering. Of
more importance in this context are the in�uence of a crustal
scale pressure gradient and the rate of closure of hydraulic
fractures.

Fluid Flow and Hydraulic Fracturing in the
Earth's Crust

The basic law governing laminar �uid �owq over a distanceL
through porous media is Darcy's law:
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q D K
1

�
Pf � � H2Ogz

�

L
; (1)

wherer H2O is the density of water,Pf the �uid pressure,g earth's
acceleration,K the hydraulic conductivity,L the distance andz
the height di�erence between start point and end point of the
�uid �ow. In case of vertical �uid �ow, and with reference to the
surface,L D z andPf ;surfaceD 0.

It is commonly assumed that �uid overpressure causes tensile
fracturing [e.g.,33, 40, 41, 43]. Therefore, �uid pressure is non-
destructive as long as one of the following relation holds, which
are commonly applied fracture conditions [compare for instance
[33, 44, 47]:

Pf < � 3 C Pcr (2)

or

� 1 � � 3 � 4Pcr (3)

where � 1 and � 3 are the maximum and minimum principal
normal stress in the solid and Pcr is the tensile strength of the
material. Here, tensile stress is negative.

The state of stress in the crust is probably among the most
controversial issues in geology/geophysics. While it is generally
safe to assume hydrostatic conditions for the �uid pressure,the
conditions for solid stress in the crust are a topic of continuous
debate. Elastic theory links uniaxial vertical loading stress to the
horizontal stress via a function of the Poisson ratio� , which is
typically about 0.2–0.3 for geological materials. However,new
data [48] suggests that solid stress in the crust is approximately
isotropic if external tectonic stress is absent and below c. 1000 m
depth., i.e.,� 3 � � 1. The reason is that the loading stress is mainly
compensated by brittle plastic deformation at this depth.

We apply this criterion in the numerical model, which
means that we e�ectively adapt the so-called lithostatic stress
model [e.g.,49], which assumes isotropic solid stress conditions.
This choice has been partly made because one of the speci�c
aims of this study was to use a simpli�ed model, and to
focus on the driving forces. The driving force for hydraulic
fracturing is mainly the �uid pressure, independent of a speci�c
crustal stress model, due to the nature of the �uid pressure
gradient.

This means that the modeled solid stress �eld is probably
not exactly correct very close to the surface. However, the range
of possible horizontal stress values that has been reported is
large and includes the isotropic stress case (sv=sh D 1) till
approximately 250 m depth [48]. Since we are concerned with
the �uid �ow at a larger depth rather than in surface vicinity,
this was considered an acceptable compromise. This compromise
deems even more acceptable as we have to assume a permanent
open fracture network close to the surface, whose non-dynamic
behavior is not within the scope of interest for this study.

Under these conditions the criterion for failure is simply:

� Pe� > Pcr; (4)

wherePe� D s3 � Pf is the e�ective pressure. Theoverpressure
Po is de�ned asPo D � Pe� , if Pe� < 0. Obviously, hydraulic
fracturing occurs ifPo > Pcr.

FIGURE 2 | (A) Idealized pressure gradients in the Earth's crust. Due to its
higher density, the lithostatic (solid) pressure increases with depth faster than
the hydrostatic (�uid) pressure. The effective pressure (Peff D Ps � Pf ) is
in-between. (B) Formation of mobile hydrofractures [after 1]. The different
pressure gradients of �uid and solid lead to �uid overpressurein the upper part
of a fracture and to �uid underpressure at the lower part of thefracture. The
fracture moves upward. Please note that the average �uid pressure in a
hydraulic fracture is identical to the pressure in the solid.

Figure 2Ashows the idealized increase of �uid and solid stress
with depth. Due to di�erent gradients of �uid pressure and solid
pressure (Ps) the di�erence betweenPe� and Ps increases with
depth. Therefore, at large depth a required �uid pressure in order
to initialize hydraulic fracturing is larger than at a shallower
depth. This has the additional e�ect that the �uid pressure
gradient in the vicinity of a �uid source is often higher at large
depth than it is at shallower crustal levels, resulting in larger �ow
velocities on fractures at depth (Equation 1). Another e�ect of
the di�erent �uid and solid pressure gradients is the potential
formation of mobile hydraulic fractures (Figure 2B, [1]).

Equation (1) in combination with the criterion for hydraulic
fracturing (Equations 2–4) permits the calculation of the
necessary minimum conductivity that crustal rocks must have
in order to conduct �uid �ow with a given �ow rate. A
potential �uid source in the Earth's crust are metamorphic
dehydration reactions, which are caused by changing pressure
and temperature conditions.

For simplicity we consider the mineral reaction biotite!
feldspar C Fe/Mg-oxide C water as the single �uid source,
which has been suggested for the Mount Painter breccias [4].
We further assume that the reaction occurs at a depth of 16
km depth [e.g.,4, 50]. With a tensile strength of 1 MPa [44]
the �uid pressure is very close to the lithostatic pressure if
hydraulic fracturing is initiated. If we assume a volumetric�ux of
1 m/s, which has been suggested for Mount Painter, a necessary
minimum conductivity of approximately 6� 10� 5 m/s for the
conducting material follows from Equation (1). The conductivity
of non-fractured crustal material is approximately in the range
of 10� 9–10� 12 ms/s [43], several orders of magnitude too small
to allow the necessary �uid �ow from the source zone to the
surface.

It must be concluded that �uid transport on the scale as
observed at Mount Painter can occur only along fractures.
These fractures may be either stationary or dynamic and mobile,
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TABLE 1 | Material parameters used in the simulations.

Matrix porosity Matrix Fracture Tensile Solid Water densit y Water Water

conductivity conductivity strength density bulk modulus vi scosity

Value 0.01 10� 9 m/s 10� 2 m/s 106 Pa 2700 kg/m3 1000 kg/m3 2.59 Pa 1.05� 3 Pa s

Source [42] [43] [43] [44] [1] [45] [45] [46]

depending on the evolution of the �uid stress �eld and the rate
of fracture closure/healing once the �uid pressure decreases. If
fractures heal slowly enough, fractures remain open between
intermittent �uid pulses, and the fracture network is therefore
stationary. The most dominant contributions to the closureof
fractures arehealing(plastic deformation; [49], see alsoFigure 4)
andsealing(e.g., due to mineral precipitation or cataclasis; [40]).

Numerical Model

The computer model consists of a 2D section of crustal
dimensions through a material with constant porosity and
conductivity of the undamaged rock matrix, which represents
a simpli�ed Earth's crust. Fluid �ow through porous rocks
and through fractures can be modeled as Darcian �ow, using
Equation (1). We solve the Darcy equation with a Monte Carlo
approach applied to an explicit �nite di�erence solution on a
regular square grid, which allows the computation of �uid �ow
in highly anisotropic and heterogeneous media. The nodes in
this grid represent fractured or undamaged material with two
di�erent prede�ned hydraulic conductivities (Table 1). Fractures
can be either horizontally or vertically oriented, therefore the
fracture conductivity is anisotropic.

Fracture nucleation and fracture propagation are distinctly
di�erent steps in the simulations. Nucleation takes place once
�uid pressure at a node is su�ciently high to cause fracturing
in either the horizontal or vertical direction, according to the
fracture criterion outlined in Equations (2–4). In order tomodel
the inherent disorder of the material, Gaussian noise is applied
to the tensile strength of the nodes and to the conductivity of
fractures. The solid stress is considered to be isotropic (see cp the
discussion in Section Fluid Flow and Hydraulic Fracturing in the
Earth's Crust), meaning that fracture nuclei increase conductivity
in both directions, horizontal and vertical.

In the numerical model a layer of constant overpressure
at the lower model boundary serves as the �uid source. This
allows us an assessment of the e�ciency of the �uid transport
in the system as the e�ective conductivity of the system
once the system reaches a state of dynamic equilibrium. We
coined the term “e�ective conductivity” for this study, which
describes the averaged conductivity from the source at the lower
boundary to the sink at the surface. Other �uid sources, for
instance a constant production of �uid mass instead of constant
pressure, wouldn't allow a similarly simple description of the
system.

The overpressure at the lower system boundary is freely
selectable in each simulation. The rate of �uid production is
therefore a direct function of the e�ciency of the �uid transport

FIGURE 3 | Fractures propagate if the �uid pressure at a neigh boring,
already fractured node is larger than the local fracture crite rion. Here, a
vertical fracture propagates from layer 1 to layer 2, where it is arrested.sH,
horizontal solid stress;Pf , �uid pressure; Pcr , critical stress.

from the source to the surface. Geologically, this might represent
a pressure controlled �uid-producing mineral reaction.

Nodes are assumed to be mechanically coupled, which is
a typical assumption for the formation and propagation of
hydraulic fractures [e.g.,40, 51]. Thus, fractures propagate if the
�uid stress at an already fractured node is su�ciently high to
ful�ll the fracture condition at aneighboringnode too:

Pn
s � Pf < Pn

cr;

where the superscriptn refers to the neighbor node (Figure 3).
Time stepping is often a non-trivial issue in the modeling

of geological processes, where long-term processes cause and
interact with dynamic processes on far shorter time scales.
The computer simulations use adaptive time steps with a �xed
maximum1 tmax. Time steps1 t are determined by an estimate
of the minimum time it takes to build up su�cient pressure at the
existing fracture tips to cause further fracture propagation.If this
time estimate is larger than1 tmax, 1 t is set to1 tmax.

Closing and healing of fractures is a complex process, which
involves elastic and viscous closure of the fracture and dissolution
and precipitation of minerals within the fracture former fracture
aperture. Here we assume that a fracture is closed by viscous
�ow of the solid matrix into irregularities of the fault surface
once Pe� > 0 only, an assumption which is suitable for the
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FIGURE 4 | Model for the closure of a fractured area by viscous �o w of
the solid into the fractured rock. The fracture is assumed to be formed by
fractured clasts rather than by clear cut fracture walls. These clasts act as
barriers against a simple elastic closure of the fracture once �uid pressure
within the fracture zone is smaller than the solid pressure.Therefore, the
fracture closes by viscous �ow of the surrounding rock into the cavities made
up by the clasts.

given fundamental assumption of damage zones or tectonic
breccias rather than discrete faults with clear cut parallelwalls
(cp Figure 4). Because the impact of the fracture closure rate on
the dynamics of the fracture network is one of the major interests
in this study, the solid viscosity is considered homogeneous
throughout the entire system. The fracture aperture is a function
of the former �uid overpressure in the fracture and is calculated
by a solution adapted from Maugis [51].

Setup of Numerical Simulations and
Results

General Setup
Material parameters are compiled inTable 1. The following
parameters are identical in all conducted simulations: the system
size is 8000 (horizontal) by 16,000 m (vertical), with a distance
1 l between �uid source and �uid sink of 15,750 m. A resolution
of 100 � 200 grid points is commonly used, but has been
occasionally compared to results with a solution of 150� 300 in
order to test the resolution dependency of the model. Gaussian
normal distribution on the tensile strength of nodes assumes a
mean strength of 1 MPa and a standard deviation of 0.1 MPa. The
basal source layer with constant �uid overpressurePo D const
and the �uid sink with Pf D 0 Pa are located at opposed system
boundaries.

Modeling of individual fractures and fracture planes in a
crustal scale model requires a resolution which is not achievable
with today's computational equipment. The model therefore

assumes that fractures form as fracture networks and a�ect the
entire area de�ned by a gridpoint. Comparing the results from
simulations with di�erent resolutions did not show a change
of the system behavior regarding fracture mobility and �uid
transport e�ciency.

In order to test the in�uence on the dynamics of the fracture
network, Po of the �uid source is varied between 0.5 and
2.0 MPa during the simulations and the solid viscosityn between
1017 and 1023 Pa s, which can be assumed to be close to
the geologically realistic lower and upper limit [52, 53]. We
assume here that fractured nodes have the same conductivityas a
typical sedimentary breccia [54–56], since fracturing in the crust
typically results in the formation of a damage zone rather than an
isolated fracture plane [34, 57].

The choice of a crustal stress model is a rather di�cult one
since the topic is still under intense debate. The model assumes
a isotropic lithostatic solid stress, which is probably a good
approximation in case of a vertical crustal section, given thatthe
depth is considerably larger than� 1 km and external tectonic
forces are absent (compare discussion in Section Fluid Flow
and Hydraulic Fracturing in the Earth's Crust). This assumption
ignores natural variations in the horizontal stress �eld, which are
frequently observed drill-holes, but are di�cult to quantify in a
model [58, 59].

Experiments in a System without Pressure
Gradient (“Horizontal” Pro�le)
In order to test the in�uence of the pressure gradient on the
dynamics of fracture formation and propagation, we compare
the time evolution of hydraulic fractures through a vertical 2D
section through the crust (1 z D 16:000 m) with a horizontal
section (1 z D 0 m). Fluid stress is constant in the case of a
horizontal section, i.e.,dPf /dL D 0.

Figure 5displays the resulting hydraulic fracture pattern, the
�uid mass change with time (1 mf /t) and the fractured area in the
horizontal system. The �uid source is located at the left system
boundary with a constant overpressurePo D 1.2 MPa while the
sink is at the right of the system. Thus, the hydraulic head over
the entire system length is1 H = 1 P D 1.2 MPa, identical to
simulations set in a vertical pro�le.

The �nal fracture network that develops in these experiments
is stationary. Close to the source a fracture front develops, which
is replaced by individual fractures once the front reaches a certain
distance from the sink (Figure 5). Fractures do not close once
formed but maintain su�cient �uid overpressure to keep existing
fractures open.

If fractures penetrate the sink, a large amount of �uid is
quickly drained into a �uid burst, creating the large negative
peaks inFigure 5B. Once a su�cient number of fractures reach
the sink, an equilibrium between �uid production and �uid
drainage is reached and the �uid mass remains approximately
constant (Figure 5, constant conditions are reached from 3000
years onward). From this point on the fracture pattern is
stationary. Due to the constant �uid overpressure in fractures, the
fracture viscosity is irrelevant to the development of the fracture
network and the fault patterns are identical whethern D 1017

or 1023 Pa s. Negative spikes in the �uid mass change between
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FIGURE 5 | Final fracture pattern (A), �uid mass change with time
(1 m f / t ) (B) and total fractured area in % (C) in an simulation where the
hydraulic fracture propagation is calculated for a horizontal 2D section
through the crust, i.e., in the absence of an initial pressur e gradient.
The situation is somewhat similar to �ow to a well. Low viscosity conditions
(n D 1017 Pa s), i.e., fractures close quickly.(A) Fractured nodes arewhite.
Fluid source is a constant layer with constant �uid pressurePf D 1:2 MPa at
the left boundary of the model, the sink is at the right boundary with constant
Pf D 0 Pa, similar to experiments with vertical fracture propagation. Fractures
propagate until the source is suf�ciently connected to the sink, at which point
�ow becomes stable. The fracture network is stationary, eventhough the
viscosity is low. The �uid mass in the system remains constantfrom this point
on (B). Negative peaksare created by rapid drainage of the system �uid mass
when a fracture reaches the other side and �uid pressure is rapidly released.
From 3000 a onwards no further fracturing occurs.(C) Propagation of the
fracture front is fast at the beginning, then slows down and converges against
zero, which is indicated by a constant percentage of fractured material in the
system.

1500 and 2700 years (Figure 5B) correlate with the permanent
opening of single fractures, which cause sudden and very e�cient
drainage resulting in a short dewatering event. Once the fracture
network is e�cient enough to provide continuous pathways from
the source to the sink, both the fracture distribution and the �uid
mass in the system remain constant.

Unlike the vertical experiments described below, we were
unable to establish a permanent pulsating regime in these
experiments. If the �uid pressure at the source is to small,
�ow occurs within the rock matrix. If pressure is high, a stable
fracture pattern develops, where the total number of fractures
increases with the pressure at the source. Dynamic �ow and
fracture formation, however, seem to rely on the presence of a
�uid pressure gradient, as in the numerical simulations discussed
below.

Experiments with Fluid Pressure Gradient
(Vertical Pro�le)
If basal �uid overpressure is su�ciently large (starting already at
Po � 0:8 MPa, due to the noise on the tensile strength), hydraulic

fractures form and drain the �uid produced at the basal �uid
source toward the surface. In all experiments the fractured area
increases until the fracture network is e�cient enough to create
equilibrium between �uid production at the basal �uid source
and �uid drainage at the surface.

Two sets of simulations have been computed: one set withn D
1017 and 1023 Pa s (Figures 6–10). A detailed description follows
in the sections below. The �uid overpressure of the �uid source
was varied between 0.5 and 2.0 MPa. The characteristic values
in Figures 6, 9—the fractured area and the balance between
�uid production and �uid drainage 1 mf =t—reach near-stable
plateaus with recurring patterns, indicating that the system
is in a dynamic or stable equilibrium (discussed in Section
Intermittency of Fluid Flow).

Low Viscosity Simulations (Quick Fracture Healing)
Results for a viscosity mode (n D 1017 Pa s) are displayed in
Figure 6. At 0.85 MPa basal overpressure stationary hydraulic
fractures form at locations with low tensile strength and
propagate upwards from there. Although these fractures are
spatially stationary, they are in a dynamic equilibrium as their
tips open and close periodically.

Increasing the basal overpressure to 0.9 MPa leads to the
formation of verticalmobile fracture clusters, which transport
�uid pulses to the surface. The horizontal location of these
vertical pathways is stationary and depends on the distribution
of the tensile strength at the boundary layers between �uid
source and non-�uid producing rock matrix. With increasing
overpressure the horizontal width and the vertical extend of
the fractured areas increase, and accordingly the total amount
of fractured rock material. At a basal overpressure of approx.
1.8 MPa the system is completely fractured and fracture are
stationary.

At the beginning of each low viscosity simulation �uid is
transported by small mobile hydraulic fractures along distinct
vertical pathways. These pathways are de�ned by the tensile
strength at the interface between �uid source and rock matrix.
These mobile fractures precede the fracture front and lead to
permanent elevated �uid pressure along these vertical lines
(Figure 7, right). Fractures propagate from both the surface,
where e�ective stress is close to zero, and from the sink. Withthe
onset of fracture formation at the surface in the more dynamic
system withn D 1017 Pa s, �uid is more e�ciently drained and an
intermediate plateau in the development of the �uid mass change
with time 1 mf =t is reached.

It is not intuitively clear why fractures form far from the �uid
source and close to the surface (Figure 7, left panel). The reason
is the increase of the �uid pressure along the �uid pathways
(Figure 7, right panel). This permanent increase, coupled with
�ow enabled by the background permeability of the material,
leads occasionally to fracturing even if the �uid source is
in a distance. This phenomenon a�ects primarily rocks at a
shallow depth, because the necessary increase in �uid pressure
is comparatively low.

The interplay of the fracture network with the stress �eld
is visible in Figure 8, where the e�ective stress is displayed
at a random time after the system reached the state of
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FIGURE 6 | Final fracture pattern, �uid mass change ( 1 m f / t ) and total
fractured area in % in experiments with vertical hydraulic fracture
propagation at low viscosity n D 1017 Pa s. Fractured nodes arewhite.
Fluid source is a constant layer with constant �uid overpressure at the
bottom boundary of the model. The sink is at the top boundary with constant
�uid pressure Pf D 0 Pa, representing a free surface. With increasing
overpressure, the total fractured area increases until theentire system is
damaged. Fracture clusters are dynamic and are mobile in thevertical

direction, moving upwards. The horizontal position is �xed and determined
by the Gaussian noise. Stable fracture patterns occur at �xedbasal
overpressures of 0.5 and 2.0 MPa. Periodic changes of the fractured area
and of the �uid mass, even after �uid production and �uid drainage are in
equilibrium, illustrate the dynamic nature of the fracturepattern and the �uid
�ow. Red line: From the marked time step onward the system is considered
to be in a stable state. Power spectral density inFigure 11 is calculated for
the stable state.

dynamic equilibrium. If hydraulic fractures form only along
distinct vertical pathways (at a basal overpressure of 0.9 MPa),
the e�ective stress along these pathways increases, potentially
boosting formation of future fractures along these lines. Fractures
close at locations where the e�ective stress is high (cp.Figure 8at
basal overpressure of 1.1 MPa).

High Viscosity Simulations (Slow Fracture Healing)
If the viscosity of the solid phase is increased ton D 1023

Pa s fracture patterns are near-stationary, regardless of the

overpressure at the source. The stability of the fracture network
results from relatively large time interval which is necessary
to close these fractures in between �uid pulses (Figure 9). The
e�ective stress �eld (Figure 10) is a function of the fracture
pattern.

An intermediate plateau of1 mf =t (approximately about
0.005–0.01 kg/s) is reached shortly before the �uid networkis
completed. This is similar to low viscosity simulations, but has
a di�erent reason: the plateau is reached once a �rst front of
distinct hydraulic fractures reaches the surface. The interstitial
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spaces between these fractures function as propagation path for
a secondary fracture front. Once this secondary fracture front
reaches the surface, �uid production and �uid drainage reacha
balanced state and1 mf =t ! 0.

Intermittency of Fluid Flow
If a signal is random can be distinguished by the power spectral
distribution (“psd”).Figure 11displays the psd calculated for the
normalized fractured area of various simulations. The signal is
typical of the forma f� a, with a in the range 1.27–1.95, a clear sign
that the signal is not random white noise, but shows a correlation
in time.

FIGURE 7 | Fracture pattern and effective stress at an intermed iate
state of the development of the fracture network with n D 1017 Pa s.
Vertical experiment with �xed basal overpressure of 0.9 MPa (cp. Figure 6 ). An
initial front of mobile fractures develops early on in the development,
generating columns of increased �uid pressure. This leads tothe formation of
vertical hydraulic fractures nucleating at and propagation downward from the
surface, where the difference between hydrostatic �uid pressure and lithostatic
pressure is small (cp.Figure 2 ).

In two cases the psd in the upper frequency band is non-
linear. This a�ects simulations with a basal overpressures of
1.1/0.85 MPa and a viscosityn D 1017. This result is most
probably related to issues with relatively small spatial resolution
or time intervals of the simulations. In these cases thea has been
calculated for the linear part only. A value ofa D 4:0 results
for the linear region in the lower frequency band in case of the
simulation with overpressure 1.1 MPa/n D 1017, but this value
can be attributed to the error.

Numerical simulations with near-stationary fracture networks
developa D 0, indicating constant values with some numerical
random noise. This is the case in simulations where basal
overpressure is relatively large (compareFigures 6, 9). Psd plots
whith a = 0 were omitted fromFigure 11.

The evolution of the fracture pattern for a particular
simulation (with 0.9 MPa overpressure/n D 1017) is shown in
Figure 12. Figure 12Ashows the vertical movement of fracture
clusters in system snapshots from three consecutive years. When
a cluster arrives at the surface �uid drainage occurs. The
alternation with of fracture clusters with healed material causes
the intermittency of the �uid �ow. Figure 12B displays the
time evolution of the fracture state of a horizontal sectionat
4000 m depth through a simulation. After c. 400 years the onset
of a fracture pattern can be seen. From then on intermittent
fracturing and healing occurs in almost regular intervals.

Transport Ef�ciency of Fracture Networks
The e�ciency of the fracture network to transport �uid can
be characterized by the hydraulic conductivity over the total
system length from source to sink, which will be termed the
e�ective conductivityKe� in the following.Ke� is calculated from
Equation (1):

Ke� D
qL

Psource
f � � H2OgL

:

The resulting conductivity of the system in the stable stateis
plotted against the overpressure of the �uid source inFigure 13.
Conductivity increases linearly with the �uid overpressureat the

FIGURE 8 | Effective stress �elds after equilibrium between �u id
production and drainage is reached in vertical experiments w ith
viscosity n D 1017 Pa s. Preferred �uid pathways show heightened �uid

pressure (very good visible at basal overpressure of 0.9 MPa). At a basal
overpressure of 1.1 MPa, the heightened effective stress inareas of
temporary non-fractured areas is obvious.

Frontiers in Physics | www.frontiersin.org 8 August 2015 | Volume 3 | Article 63



Sachau et al. Dynamics of hydraulic fracture networks

FIGURE 9 | Final fracture pattern, �uid mass change ( 1 m f / t ) and total
fractured area in % in experiments with vertical hydraulic frac ture
propagation at high solid viscosity n D 1023 Pa s. Fractured nodes are
displayed in white. Most hydraulic fractures remain permanently open after
their formation, and dynamic. Vertical clusters of hydraulic fractures, as under

low viscosity conditions, do not occur, but continuous fractures develop
connect between �uid source and surface. The vertical distribution of these
fractures is determined by the Gaussian noise. Red line: From the marked
time step onward the system is considered to be in a stable state. The power
spectral density inFigure 11 is calculated for the stable region.

FIGURE 10 | Effective stress �eld after equilibrium between �u id production and drainage is reached in vertical experiment s with high viscosity n D
1023 Pa s. Fluid pathways are signi�ed by lowered effective pressures.
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FIGURE 11 | 1/fa power spectral density (psd), calculated from the
normalized fractured area in the simulations shown in Figures 6 , 9
with Welch's method. a is calculated by linear regression for the near-linear
intervals in the lower frequency band (red line). Not shown is the psd for
systems wherea D 0 (white noise), which was the case forn D

1017/overpressureD 2.0 MPa, n D 1017/1.0 MPa and n D 1017/1.1 MPa (cp
Figures 6 , 9). For comparison the psd for a random time series (a D 0). The
psd is close to 1/f if overpressure is small,a increases with increasing
overpressure. The non-linearity at high frequencies of some simulations is
probably related to the resolution and the simulation time.

source layer until it reaches a constant maximum, starting at
an overpressure of approx. 1 MPa (Figure 13), which is also the
mean tensile strength of the material.

This means that the mean e�ciency of the �uid transport
is independent of the fracture dynamics and the mobility of
fractures. Even before equilibrium is reached, the e�ciency of the
di�erent types of fracture networks in terms of �uid extraction
from source to sink is similar (cp. the �uid mass change per time
in Figures 6, 9). The main di�erence between static and dynamic
fracture networks is the occurrence of �uid pulses in case of a
dynamic fracture network, in di�erence to near-continuous �ow
in case of a stationary network.

Discussion

Dynamics of the Fracture Pattern
The development of dynamic fracture patterns in the computer
simulations—in di�erence to a stable stationary fracture
network—depends on the following three preconditions:

� The �uid overpressure is close to the mean tensile strength of
the material, otherwise either no fractures form or the entire
system fractures homogeneously,

� A �uid pressure gradient is present, as is the case in vertical
pro�les through the Earth's crust, and

� Fractures close quickly (i.e., the matrix viscosity is low),once
the �uid pressure dropped below the solid pressure of the rock
matrix.

The interface layer between the �uid source and the rock matrix
is particularly important for the dynamics of the process. It
works similar to a valve: once su�cient �uid migrated from the
source into the adjacent rock mass, vertical hydraulic fractures
nucleate and propagate toward the surface, thus transporting
large amounts of �uid in a short period of time. Once the
interface layer is su�ciently drained and the �uid pressure is
lower than the matrix solid pressure, fractures close and the
process starts again. This process leads to a non-random 1/fa type
signal once the system reaches a state of dynamic equilibrium,
with 1 < a < 2.
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FIGURE 12 | Time evolution of fracture clusters, demonstrated w ith the
simulation using n D 1017 and a basal overpressure of 0.9 MPa (see
Figure 6). (A) Three subsequent snapshots of the fracture pattern. A single
cluster is highlighted for clarity. Note the vertical movement at � 2000 m per
year. (B) Time evolution of fractures in a 1D section through the simulation.
Section line is marked by the red rectangle, located at 4000 mdepth. Onset of
the fracture/healing process after c. 300. The �gure illustrates the intermittency
of the fracture opening/healing process, which is induced byintermittent �uid
�ow.

Preferred vertical �uid pathways develop according to
the Gauss distribution at the interface. If a fracture closes,
the �uid it transported is trapped and increases the local
�uid pressure due to the very low matrix conductivity. The
amount of additional �uid which is required to reactivate
these nodes as fractures again is signi�cantly smaller than
in the adjacent material. These areas of heightened �uid
pressure from potential future pathways for hydraulic fractures
and quick �uid transport. Coupled with the non-destructive
background di�usion of the �uid this can even lead to
fracture initiation in a distance to the �uid source (Figure 6,
left).

If the viscosity of the surrounding solid matrix is at 1023 Pa
s fracture closure is typically slower than pressure build up and
hydraulic fracture patterns are stationary. Fluid mass balance
is reached once the fracture network is capable of draining the
entire �uid mass produced at the basal source. At this point the
fractured area and the drained �uid mass converge to constant
values, regardless of speci�c parameters. Periodic deviations from

FIGURE 13 | Effective conductivity of the total system betwee n source
and sink after equilibrium between �uid production and �uid d rainage
exists, drawn against various overpressure values for the ba sal layer.
Red: slow fracture closure (n D 1017 Pa s). Blue: fast fracture closure (n D
1017 Pa s). To avoid scaling problems the conductivity has been normalized by
the highest value of both plots. The development of the conductivity is almost
identical, regardless of the viscosity and the dynamics of the fracture network.

the equilibrium occur ifn is small, and are most signi�cant at a
slight overpressure of approx. 1.1–1.3 MPa.

Of particular interest to the dynamics of intermittent �uid
�ow are the amplitude and the frequency of �uid pulses.
Pulses occur in simulations with a more dynamic low viscosity
setting, visible in the rate of change of the �uid mass in the
system (Figures 5, 8). The amplitude of �uid burst grows from
low overpressure values till the overpressure is identical with
the mean tensile stress is reached. A further increase of the
�uid overpressure leads to the elimination of �uid bursts with
small amplitudes, but still allows large �uid pulses in regular
intervals.

Comparing the horizontal setup (without a �uid pressure
gradient) to the results derived from vertical setups, it
becomes clear that the �uid pressure gradient is essential
for the development of dynamic fracture networks and �uid
pulses.

The presented numerical method and simulations illustrate
how a dynamic �uid �ow system works, and the conditions under
which they can e�ciently transport large volumes of �uid to
upper levels in the crust. These models are critical to understand
highly complex transport systems, such as the ones responsible
for the formation of large hydraulic breccias or dense networks
of crack-seal veins.

The dynamics observed in the simulations—in particular the
periodic changes of the �uid mass in the system, which was
observed in most setups—might help to explain phenomena
as the initially discussed hydraulic breccia, which dependson
intermittent large scale �uid pulses.

It is of great interest to note that the e�ciency of the �uid
transport is virtually independent of the closing rate of the
fractures. This means that velocity and dynamics of the �uid
transport do not depend on the existence and reactivation of
preexisting fracture networks, at least under model conditions.
Potential �uid pathways are characterized by heightened local
�uid pressure, which is a byproduct of previous �uid �ow
transport on fractures.
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Summary and Conclusion

Fluid transport in the crust involves the formation of hydraulic
fractures if the �uid overpressure at the source is su�cient.
Geological evidence for this process exists, for instance inform
of crack-seal veins or hydraulic breccias.

We simulated the dynamics of the vertical �uid �ow from a
�uid source with a constant overpressure to the surface, including
the evolution of hydraulic fracture patterns. The ability toclose
fractures, once �uid pressure is lower than the solid pressure,
is controlled by the matrix viscosity, which is taken to be at
its uppermost and lowermost geologically realistic limits. The
solid stress �eld is probably approximately accurate below 250m
depth, please note the discussion in Sections Fluid Flow and
Hydraulic Fracturing in the Earth's Crust and General Setup.

Hydraulic fracture patterns may be either dynamic or stable,
depending on the ability of fractures to close quickly, once the
�uid pressure is released. In the dynamic case hydraulic fractures
form mobile clusters and �uid transport occurs in periodic
pulses. The reason is a valve function of the interface between
�uid source and matrix rocks, where �uid pressure builds up by
Darcian �ow until it is su�cient to initiate fracture formation
and quick removal of �uid mass toward the surface. The fracture
dynamics follows a 1/fa pattern, with 1< a < 2. If fractures
heal slowly, the fracture network is stable and �uid �ow is nearly
constant.

The e�ciency of the �uid transport is identical in both
cases, regardless of the dynamics of the fracture network.
While the dynamics of �uid �ow and fracture formation di�ers
considerably between the two settings, the e�ciency of the �uid
transport is not a�ected. Both systems have the same e�ective

hydraulic conductivity. This is even more remarkable since the
overpressure at the �uid source is constant, which means that
the �uid production is entirely controlled by the e�ciency ofthe
transport mechanism. This means, in turn, that the existence ofa
stable fracture network is not as important as often assumed,as
long as �uid overpressure is su�cient to initiate fracturing. More
important than a fracture network are areas of heightened �uid
pressure, where a relatively small amount of additional �uidis
su�cient to initiate further fracturing. These areas are generally
created by previous generations of hydraulic fracture swarms.

A key parameter for the dynamic fracture evolution is the
presence of a �uid pressure gradient. In absence of a gradient
fracture, as is the case of the “horizontal” setup, stable networks
are being formed.
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