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2Departamento de Matemática e Estat́ıstica, Universidade Estadual de Ponta Grossa,
84030-900, Ponta Grossa, PR, Brazil.

3 Institute for Complex Systems and Mathematical Biology, University of Aberdeen,
AB24 3UE, Aberdeen, UK, EU

4Departamento de F́ısica, Universidade Federal do Paraná, 81531-990, Curitiba, PR,
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Abstract

We study the dynamic range of a cellular automaton model for a neuronal
network with electrical and chemical synapses. The neural network is sep-
arated into two layers, where one layer corresponds to inhibitory, and the
other corresponds to excitatory neurons. We randomly distribute electri-
cal synapses in the network, in order to analyse the effects on the dynamic
range. We verify that electrical synapses have a complementary effect on
the enhancement of the dynamic range. The enhancement depends on the
proportion of electrical synapses as compare to the chemical ones, and also
on the layer that they appear.
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1. Introduction

The cerebral cortex contains neurons and their fibres [1]. These neurons
are grouped together into functional or morphological units, called cortical
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areas [2], each of them playing a well-defined role in the processing of infor-
mation in the brain [3]. Hence the theoretical understanding of the principles
of organisation and functioning of the cerebral cortex can shed light on the
knowledge of many distinct and important subjects in neuroscience [4]. One
relevant subject is psychophysics, that analyses the perceptions due to ex-
ternal stimuli [5].

Studies about the relation between sensation and stimulus by measuring
the quantity of both factors were realised by Weber and Fechner [6]. They
proposed that the relation was logarithmic [7]. However, Stevens proposed a
theory based on a power-law relation between stimulus and response, where
the exponent depends on the type of stimulation [8].

The capacity of a biological system to discriminate the intensity of an
external stimulus is characterized by the dynamic range (DR) [9]. DR is a
range of intensities for which receptors can encode stimuli [8, 10, 11]. It is
the logarithm of the difference between the smallest and the largest stimulus
value for which the responses are not too weak to be distinguished or too
close to saturation, respectively. The lower and upper bounds are arbitrarily
chosen due to the fact that the scaling region is well fit by a power law. In
other words, small changes do not affect our results. The visual and the
auditory perception have high dynamic range. The human sense of sight can
perceive changes in about ten decades of luminosity, and the hearing covers
twelve decades in a range of intensities of sound pressures [7]. The DR of
the human visual is important in the design of high dynamic range display
devices [12]. Whereas the DR of the hearing is used for cochlear implants
[13].

In this work we study the dynamic range of a cellular automaton modeling
a neural network whose neurons are connected with electrical and chemical
synapses [14]. We consider that the chemical synapses can be excitatory or
inhibitory, and a layered model [15], where one layer consists of excitatory
neurons, and the other layer consists of inhibitory neurons. Network con-
sisting of excitatory and inhibitory neurons was considered to describe the
primary visual cortex [16]. Pei and collaborators [17] investigated the be-
haviour of excitatory-inhibitory excitable networks with an external stimuli.
They suggested that the dynamic range may be enhanced if high inhibitory
factors are cut out from the inhibitory layer. In our work, we consider a neu-
ral network in which neurons interact by chemical and electrical synapses in a
excitatory-inhibitory layered model. Our main results are: the derivation of
an equation for the dynamic range for a random neural network with chemi-
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cal and electrical synapses, and to show a result that allow us to demonstrate
that the electrical synapses in the excitatory layer have an influence on the
dynamic range more significative than in the inhibitory layer, due to the fact
that the electrical synapses in the excitatory layer are responsible for the
complementary effect of dynamic range enhancement.

This paper is organised as follows: in Section 2 we introduce the cellular
automaton rule, and the random network. Section 3 shows our analytical and
numerical results obtained for the dynamic range. The last section presents
the conclusions.

2. Neuronal network model of spiking neurons

We consider a cellular automaton model in that a node can spike, xi = 1,
when stimulated in its resting state, xi = 0 (i = 1, ..., N). When a spike
occurs there is a refractory period until the node returns to its resting state,
xi = 2, ..., µ − 1. During the refractory period no spikes occur. There are
excitatory and inhibitory connections linking nodes unidirectionally. The
pre-synaptic node whose out chemical synapses is excitatory (inhibitory) is
called an excitatory (inhibitory) node. Excitatory nodes increase the proba-
bility of excitation of their connected nodes, while inhibitory nodes decrease
this probability. The network presents also electrical connections, that are
bidirectional links.

The dynamics of the cellular automaton is given by:

1. if xi(t) = 0, then

• a node can be inhibited by an excited inhibitory node j (xj(t) = 1)
with probability Bij, remaining equal to zero in the next time step;

• a node can be excited by an excited excitatory node j′ (xj′(t) = 1)
with probability Bij′ ;

• a node with electrical connection can be excited by an excited
node j′′ with probability Aij′′ .

• a node can be excited by an external stimulus with probability r.

2. if xi ̸= 0, then xi(t+1) = xi(t)+1 (mod µ), where xi(t) ∈ {0, 1, ..., µ−1}
is the state of the ith node at time t. In other words, the node spikes
(xi = 1) and after that remains insensitive during µ− 2 time steps.
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Figure 1: Scheme of the E-I layered network with one excitatory layer (E-layer), and
one inhibitory layer (I-layer). The lines with blue filled circles represent the excitatory
connections, the lines with red filled squares represent the inhibitory connections, and the
other links represented by black saw lines are the electrical connections.

The weighted adjacency matrices Aij and Bij describe the strength of inter-
actions between the nodes. The matrix Aij contains information about the
electrical connections, and the matrix Bij about the excitatory and inhibitory
connections. The connection architecture is described by a random graph,
in that the connections are randomly chosen [18]. We separete the neurons
by layers. Figure 1 shows the scheme of the E-I layered network, where the
E layer contains Ne excitatory nodes, and the I layer contains Ni inhibitory
nodes. Then, the layered network has a total of Ne + Ni = N nodes. The
excitatory connections (blue lines) go from excitatory nodes (blue circles) to
other nodes, the inhibitory connections (red lines) go from inhibitory nodes
(red circles) to other nodes, and the electrical connections are bidirectional
(black sawed lines). Each layer can have nodes interacting by both excitatory
and inhibitory connections.

The neuron responses are obtained through the density of spiking neuron

p(t) =
1

N

N∑
i=1

δ(xi(t), 1), (1)

where δ(a, b) is the Kronecker delta. With the density we calculate the

4



average firing rate

F = p(t) =
1

T

T∑
t=1

p(t), (2)

T is the time window chosen for the average.
The update rules for neurons in E and I layer are the same. In order to

estimate analytically the average firing rate, we calculate the mean-field map
for p(t) at a long time

p(t+ 1) = [1− (µ− 1)p(t)](1− Schp(t))
fiKch (3)

× {r + (1− r)[1− (1− Schp(t))
feKch(1− Selp(t))

Kel ]},

in which, according to mean-field approximation, we have Sch = Bij is the
strength of excitatory and inhibitory interactions, Sel = Aij is the strength of
electrical interactions, fe = Ne/N and fi = Ni/N are the fraction of excita-
tory and inhibitory nodes, respectively. The average degree of chemical con-
nections is denoted by Kch, and Kel denotes the average degree of electrical
connections. The average degree is calculated by assuming randomly chosen
pairs of nodes. The term [1− (µ− 1)p(t)] is the approximate probability of
finding a neuron in the resting state, the term (1−Schp(t))

fiKch is related with
the inhibitory interactions, and the term [1−(1−Schp(t))

feKch(1−Selp(t))
Kel ]

is related with excitatory and electrical connections.
In the stationary state we can write p∗ = p(t+ 1) = p(t), and as a result

for large time we have F ≈ p∗. To obtain an approximate analytical value
for the firing rate (F ) for the case of small density of spiking neuron (p(t)),
and without an external perturbation (r = 0), we linearise Eq. (3) around
p(t) = 0, and find

p∗ ≈ [1− (µ− 1)p∗](1− fiσp
∗)[1− (1− feσp

∗)(1− εp∗)], (4)

where in a mean-field approximation [10] σ = KchSch is the average chemical
branching ratio of nodes in the E-layer, and ε = KelSel is the average electrical
branching ratio of nodes, representing the overall strength of chemical and
electrical interaction in the network. Then, we have nonzero solution

p∗ ≈ ε+ σfe − 1

(µ− 1)(ε+ σfe) + σ(ε+ σfefi)
. (5)

Figure 2 exhibits the firing rate varying σ for different values of ε. The
symbols correspond to simulation according to celular automaton rules, and
the lines correspond to the theoretical values from Eq. (5).
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Figure 2: (Colour online) Firing rate versus branching ratio σ for N = 105, Kch = 10,
Sel = 1, µ = 5, r = 0, (a) fe = 1, and (b) fe = 0.8. The symbols correspond to simulation
results, and the lines are the theoretical values according to Eq. 5.

There is a critical value of the average branching ratio σc in that the
firing rate increases from zero. In other words, limr→0 F = 0 if σ < σc, and
limr→0 F > 0 if σ > σc. We can see through Figures 2(a) and (b) that σc

depends on fe and ε. Equation (5) allows us to obtain the dependence, given
by σc = (1 − ε)/fe, by assuming that p is null. In Figure 3 we compare the
simulation result (symbols) with the equation for σc (lines). It is possible
to see a good agreement. This shows that chemical and electrical connec-
tions complement themselves for obtaining the critical point σc. The larger
(smaller) the electrical branching rate in the network, the smaller (larger)
the chemical branching rate must be.

3. Dynamic Range

The ratio between the largest and smallest possible values of a changeable
quantity is called dynamic range. The standard definition of the dynamic
range is [19]

∆ = 10 log10
rhigh
rlow

, (6)
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Figure 3: (Colour online) σc versus ε for fe = 0.5 (blue triangles), fe = 0.8 (red squares),
and fe = 1.0 (black circles). The lines are from the analytical expression σc = (1− ε)/fe.

where rhigh and rlow are the average input rates for Fhigh and Flow, respectively
(Fig. 4). The high firing rate is obtained from Fhigh = F0 + 0.95(Fmax − F0),
and the low firing rate is from Flow = F0 + 0.05(Fmax − F0), where F0 is the
value for the minimum saturation, and Fmax is the value for the maximum
saturation. If the system has a refractory time µ − 2, the maximum firing
rate Fmax is equal to 1/µ.

Taking the limit of Eq. (3) as p approaches zero

p ≈ [1− (µ− 1)p]e−fiσp[r + (1− r)(1− e−p(feσ+ε))], (7)

which allow us to obtain rlow by doing r = rlow. Then, the dynamic range is
given by

∆ = −10 log10

[
1− eFlow(feσ+ε)

rhigh
+

Flowe
Flow(σ+ε)

rhigh − (µ− 1)Flowrhigh

]
. (8)

We have verified that rhigh is approximately equal to 0.75 for our simulation
considering N = 105, and µ = 5. By means of F0 (Eq. 5) the firing rate Flow

can be calculated through relation Flow = F0 + 0.05(Fmax − F0).
In Figure 5 we compare the dynamic range calculated using simulation

(a) and from Eq. (8) in (b). We can see that the dynamic range is maximum
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Figure 4: Average firing rate as a function of the average input rate.

for σc, which is obtained by assuming that r = 0. In the subcritical region
for σfe + ε < 1 it is possible to observe that weak stimuli are amplified
and the sensitivity is enlarged, as a result of the activity propagation among
neighbours. Therefore, the dynamic range increases with σ and ε. In the
supercritical region for σfe + ε > 1 the dynamic range decreases due to the
fact that the average firing rate is positive, and masks the effect of weak
stimuli. The theoretical result shows a good agreement with the simulation,
except for the supercritical region. This occurs due to the fact that the values
of p(t) are not around zero in the supercritical region, and we have considered
p(t) around zero to obtain analytical results.

3.1. Influence of electrical synapses

Pei and collaborators [17] investigated a excitatory-inhibitory excitable
cellular automaton considering undirected random links. They verified that
the dynamic range can be enhanced if the nodes with high inhibitory factors
in the inhibitory layer are cut out. In this work, we are considering not only
chemical synapses (directed links), but also electrical synapses (undirected
links). Our interest is to understand the role of the electrical synapse in
the dynamic range. For that goal Figure 5 shows the dynamic range for a
network that has electrical synapses randomly distributed in all the network.
We make further analysis considering the effect of electrical synapses on the
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Figure 5: (Colour online) Dynamic range as a function of σ and ε for N = 105, Kch = 10,
Sel = 1, fe = 0.8, and µ = 5. The simulation is showed in (a), and the result according to
Eq. (8) is showed in (b).

dynamic range in two cases: (i) randomly distributed in the excitatory layer,
and (ii) randomly distributed in the inhibitory layer.

Figure 6(a) shows the dynamic range for a network where electrical synapses
are distributed in the excitatory layer. We can see that the behaviour of the
dynamic range is similar to the one reported in Figure 5. The maximum
dynamic range follows the equation for σc, namely the dynamic range can
be enhanced increasing the amount of electrical synapses with the decrease
of chemical synapses in the excitatory layer. However, when the electrical
synapses are randomly distributed in the inhibitory layer, we do not ob-
serve a similar behaviour for the maximum dynamic range. In this case, the
electric connections contribute little for the dynamic range, but it is clearly
dependent on the chemical synapses.

4. Conclusions

We have modelled a neuronal network using cellular automaton which
models the behaviour of a neural network where neurons interact by elec-
trical and chemical synapses. The chemical synapses are separated into two
layers, where one layer corresponds to excitatory, and the other corresponds
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Figure 6: (Colour online) Dynamic range as a function of σ and ε for N = 105, Kch = 10,
Sel = 1, fe = 0.8, and µ = 5. We consider randomly distributed electrical synapses in (a)
excitatory layer, and (b) inhibitory layer.

to inhibitory.
Our aim has been to determine the dynamic range as a function of the

types of synapses. Reference [17] shows theoretical analysis and simulations
considering undirected connections. In this work, we have considered undi-
rected electrical and directed chemical connections. Electrical and chemical
synapses are relevant in cells found in the retina [20, 21], and cells in olfactory
bulb [22].

We have obtained theoretical results for the average firing rate, and for
the critical value of the average branching ratio that exits the network, al-
lowing it to fire and consequently allowing information to be transmitted.
From the equation of the average firing rate, we obtained an equation for the
dynamic range. This equation shows that the dynamic range is maximum
for the critical average branching ratio. The equation presents a remarkable
agreement with our simulations, mainly around the critical average branching
rate. We verified an increase of the dynamic range in the subcritical region,
and a decrease in the supercritical region. As a result, we verified that the en-
hacement of the dynamic range depends on the parameters ε and σ that are
associated with the intensities of the electrical and chemical synapses, respec-
tively. Moreover, our results show that electrical synapses in the excitatory
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layer have an influence on the dynamic range more significative than when
electrical synapses are placed in the inhibitory layer. The complementary
effect occurs due to electrical synapses in the excitatory layer.
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[18] P. Erdös, A. Rényi, Publ. Math. 6 (1950) 290-297.

[19] S. Firestein, C. Picco, A. Menini, J. Physiol. 468 (1993) 1-10.

[20] S. Hidaka, Y. Akahori, Y. Kurosawa, J. Neurosci. 24 (2005) 10553-10567.

[21] R. Publio, C.C. Ceballos, A.C. Roque, PLoS ONE 7 (2012) e48517.

[22] T. Kosaka, M.R. Deans, D.L. Paul, K. Kosaka, Neurosci. 134 (2005)
757-769.

12


