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Abstract  

Using fibre reinforced polymers (FRP) is increasing across many industries. Although FRP are laid-up in the near-net shape, 
several cutting operations are necessary to meet quality and dimensional requirements. Modelling of cutting is essential to 
understand the physics of the cutting phenomena and to predict quality and cost of products. This paper aims at reviewing the 
current practice in modelling of cutting FRP including analytical, numerical, mechanistic and empirical approaches, with emphasis 
on analytical models of cutting forces and delamination. Processes detailed include orthogonal cutting, drilling, milling and turning. 
Finally, advances in machining of metal-composite stacks are presented. 
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1. Introduction  

The use of composite materials is increasing in many 
industries such as aerospace, automotive and sports 
equipment due to their superior properties to metallic 
materials. Fibre reinforced polymers (FRP) are the most 
widely used composites with carbon or glass as 
reinforcement constituent. Machining operations are 
required to obtain the necessary shape, dimensions and 
surface quality of the composites parts. Modelling of 
cutting is important for predicting the quality and cost of 
manufacturing processes by calculating fundamental 
process outputs such as cutting forces, stresses and 
strains and/or industry relevant outputs such as tool wear 
and surface quality. Modelling of cutting can be done 
using one of four main approaches namely, analytical, 
numerical, mechanistic and empirical. Selecting one 
approach over others depends on the type of input data, 
available computation resources, the desired output 
variables and the required level of accuracy. Modelling 
of cutting composites is challenging task due to (i) the 
composites’ anisotropic and heterogeneous nature (ii) 
the inherent complexity of the cutting process.  

This paper therefore, discusses the applications of the 
different modelling approaches to conventional cutting 

processes of composites with emphasis on analytical 
modelling of cutting forces and delamination.  

2. Modelling of FRP Cutting  

Most of the research on cutting composites has 
adopted the empirical approach, which is very useful in 
observing the process variables and their relative 
importance however, theoretical studies are needed to 
understand the physics of FRP cutting [1].   

2.1. Orthogonal cutting  

Orthogonal cutting is the most studied process 
theoretically and experimentally because it is 2D 
problem [2] thereby, it is easier to study. Majority of the 
analytical studies focused on calculating cutting forces. 
Takeyama and Iijima [3] proposed a model based on the 
minimum energy principle to predict the cutting and 
thrust forces. The model agreed fairly well with 
experiments, despite being criticised because it does not 
account for the effect of machining direction and for the 
lack of transparency in obtaining the shear angle values 
[4]. Subsequently, it was observed by Bhatnagar et al. 
[5] that crack propagation happens along the fibre 
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direction in the range 90o to 180o, thus they developed a 
cutting force model based on Merchant’s principle of 
minimum energy by substituting the shear plane angle 
with the fibre orientation angle. The study confirmed the 
significance of fibre orientation and cutting direction on 
cutting forces values and on tool-chip friction on the 
rake face. Later, Zhang [6, 7] proposed new analytical 
model by dividing the cutting domain into three regions 
(i) chipping region (region 1) in front of the rake face of 
the tool, (ii) pressing region (region 2) under the nose of 
the tool and (iii) bouncing region (region 3) below the 
relief face of the tool as shown in Fig. 1. Cutting and 
feed forces were calculated in each region and then 
superimposed to calculate the total cutting forces. The 
model was built for fibre orientation less than 90o since 
beyond that; additional damage mechanisms exist that 
are not captured by the model. 

 
 
 
 
 
 
 
 
 

 
Fig. 1. Deformation zones in orthogonal cutting of FRPs [6] 

 
Later, Sahraie-Jahromi and Bahr [8] extended 

Zhang’s model to the range 90o to 180o by proposing 
additional damage mechanisms for that region. They 
identified three main damage mechanisms namely; fibre 
micro-buckling, fibre-matrix de-bonding and fibre 
bending then calculated the cutting and thrust forces 
accordingly and compared it with experiments. The 
accuracy of predictions was limited due to the mismatch 
in materials properties and boundary conditions between 
the model and experiments and due to non-uniform 
distribution of fibres among the matrix.  

Subsurface stresses were studied analytically by 
Gururaja and Ramulu [1] who proposed a model to 
calculate stress fields in the subsurface area after 
orthogonal cutting of FRPs by modelling the effect of 
the cutting tool as line load profile inclined with an 
angle. The effect of anisotropy on stress fields varied 
with changes in volume fraction and fibre orientation.   

Numerical methods can have more predictive power 
than analytical because it is possible to include more 
variables in the study and to account for more failure 
mechanisms [9].  Finite element methods (FEM) have 
been applied extensively to study composites machining; 
refer to Dandekar and Shin’s review [9]. FEM models 
require defining material model, element failure criteria 
for chip formation and tool-chip contact models. 

Moreover, using FEM in machining requires remeshing 
because of the large deformations and severe element 
distortion. Remeshing is time consuming, can be 
complicated for 3D problems and for every iteration, 
studied quantities should be projected on the new mesh 
leading to gradual accumulation of error [10]. Moreover, 
FEM is not well suited for modelling discontinuities if 
they do not coincide with elements’ boundaries [11].  

Meshfree methods are group of numerical methods 
for solving partial differential equations in which the 
studied domain is discretised through non-connected 
nodes rather than connected elements. This eliminates 
part or whole of the meshing process [12]. Some 
advantages in using meshfree methods in machining 
problems are (i) the ability to simulate large 
deformations and discontinuities without the need for 
remeshing, (ii) the flexibility in adding or removing 
nodes without worry about their relation to neighbouring 
nodes [12], (iii) better integration with CAD/CAE/CAM 
software [10], (iv) elimination of separation criteria and 
arbitrary contact conditions [13]. Meshfree methods 
include: smoothed particle hydrodynamics, finite 
pointset method, element-free Galerkin, reproducing 
kernel particle, moving least square interpolations and 
constrained natural element method. These methods 
have been applied to solid mechanics problems [10, 12, 
14, 15], machining of metals [16-24], as seen in Fig. 2 
and to fracture of composite materials [11, 25, 26]. 

 
 
 

 
 
 
 
 

 
Fig. 2. Orthogonal cutting simulation using smoothed particle 
hydrodynamics: (a) 3D view and (b) effective plastic strain [18] 

Few empirical models have also been developed for 
orthogonal cutting of FRPs, one to calculate cutting 
forces [27], another to evaluate the effect of tool wear on 
cutting forces [28] where it was found that tool wear has 
significant effect on cutting force values. In addition, 
cutting mechanisms identification study was conducted 
in [29] by analysing frequency of measured force 
signals. The study showed that signal characteristics 
differ for different cutting mechanisms.  

2.2. Drilling  

Drilling is the most widely used cutting operation for 
composite materials because of the need for joining 
structures [30], therefore considerable amount of 
literature exists with comprehensive review papers [31-
33]. Delamination is the major concern in drilling FRPs, 
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it results mainly from thrust force pushing the last uncut 
lamina via the chisel edge causing interlaminate failure 
as seen in Figure 3. Delamination is initiated when the 
thrust force exceeds a critical value also called critical 
thrust force (CTF) and most of the modelling efforts 
were directed towards calculating this value. The earliest 
CTF model was developed by Hocheng and Dharan [34] 
then, seminal contribution was made in the work of 
Hocheng and Tsao [30, 35-39]. Based on linear elastic 
fracture mechanics approach, they developed several 
models for special drill bits such as candle stick drill, 
saw drill and core drill that are designed to reduce 
delamination by distributing the thrust force away from 
the chisel edge onto the periphery of the tool. Their other 
work includes critical thrust force models taking the 
effect of tool eccentricity, using pilot holes and drilling 
with backup plate. More recently Rahmé et al. [40] 
studied the effect of loading assumption on the critical 
thrust force model as a function of the number of 
delaminated plies. Thrust force was modelled as 
concentrated, uniformly distributed, triangular, disc and 
concentrated with uniform distribution; the latter 
assumption was found to be closest to experiments.  
 

 
 
Fig. 3. Delamination onset while drilling with twist drill [39] 
 

FEM studies of drilling were conducted to study the 
effect of cutting parameters on the thrust force, v torque 
[41] and to study delamination [42] where the numerical 
model was compared with the existing analytical 
models. It was found that both approaches do not capture 
the effect of parameters variation on delamination onset 
which necessitates further development of both 
modelling approaches.  

The only mechanistic model for drilling was 
developed by Zhang et al. [43] to predict average thrust 
force and torque in vibration drilling of FRPs. The 
model required one test to determine the shear flow 
stress as an input. The results showed acceptable 
agreement between model predictions and experiments. 
Delamination was also investigated experimentally by 
Davim and Reis [44] as a function of tool geometry and 
cutting parameters. The study showed positive 
correlation between cutting parameters and delamination 
and that cutting speed is more statistically significant. 
However, this result contradicted the findings of Tsao 

and Ho-cheng [45, 46]  who developed empirical CTF 
models for step drill and candle stick drill using Taguchi 
design and artificial neural networks. They found that 
feed rate and drill diameter were the most statistically 
significant factors. Furthermore, delamination-free step-
drilling was achieved using low feed rates and high 
spindle speeds.  

2.3. Milling  

Milling is usually used in cutting FRP as corrective 
end machining operation or to give the required 
dimensional accuracy and produce high quality surfaces 
[47]. Delamination is also a concern during milling 
operations, it was studied by Hintze and Hartmann [48] 
during contour milling of CFRP. An analytical model for 
predicting delamination at the top layer was proposed by 
taking into account the geometric and mechanical 
properties of the laminate. The cutting force was found 
to cause the fibres to bend rather than fracture causing 
delamination. Mechanistic force model was developed 
by Karpat et al. [49, 50] who started by conducting 
milling tests with constant cutting speed. Cutting speed 
was deemed less significant compared with feed rate, 
which agreed with the findings in [51, 52]. A dynamic 
force model was then developed with force coefficients 
approximated to Sine function of fibre orientation and 
was found to have reasonable agreement with results. 
Karpat et al. also investigated the quality of the 
machined surfaces and found the locations of maximum 
cutting forces coincided with locations of largest 
delamination. Mechanistic model for helical milling was 
developed by Kalla et al. [53] for predicting cutting 
forces of uni/multi-directional CFRP for fibre orientation 
between 0-180o. The cutting force coefficients required 
in such models were obtained from artificial neural 
network (ANN) database. The relationship between the 
cutting parameters with the cutting forces and surface 
roughness [51, 52] was studied empirically and found 
that cutting forces increased with feed rate and decreased 
with cutting velocity. Sreenivasulu [54] conducted 
experimental study on the effect of cutting parameters on 
the delamination and surface roughness of GFRP during 
end milling using Taguchi design and neural networks. 
The cutting speed and depth of cut were found to be 
statistically significant parameters affecting 
delamination and surface roughness. 

2.4. Turning  

Very limited work was done on modelling of turning 
composite materials with majority of the studies using 
the experimental approach. Chang [55] developed force 
model for turning GFRP using chamfered tool. The 
model was experimentally verified. Cutting forces and 



55 F. Kahwash et al.  /  Procedia CIRP   28  ( 2015 )  52 – 57 

 
temperatures were investigated as a function to cutting 
tool material and geometry. Tool material was found to 
be statistically significant factor affecting cutting forces 
(K carbide tools yielded lower cutting forces than P 
carbide tools). Palanikumar [56-58] developed empirical 
models to predict surface roughness and tool wear when 
turning GFRP. Higher surface roughness values were 
observed with increasing feed rate, fibre orientation 
angle, while it decreased with higher cutting speed and 
depth of cut. With regards to tool wear, cutting speed 
was found to be the most significant factor followed by 
the feed rate. Hanfi et al. [59] developed a fuzzy rule-
based model and response surface method-based model 
to predict cutting forces and power using control 
variables including cutting speed, feed and depth of cut. 
Gill et al. [60] also developed an empirical model to 
study the effect of cutting conditions and tool geometry 
on the cutting forces during turning of unidirectional 
GFRP lamina. Depth of cut had the most statistical 
significance on cutting forces.  

3. Cutting metal-composite stacks  

The usage of multi-layer materials is increasing in 
aerospace industry [61] especially in parts with high 
mechanical loads [62]. This is due to their high strength 
to weight ratio, superior fatigue performance and the 
wide range of functionality that every layer contribute to 
the overall properties of the stack [63, 64]. Different 
layers are joined by riveting or bolting, which 
necessitates generating holes into the different layers to 
the required dimensional tolerances. This is done mostly 
by drilling, but also by helical milling [65] and rotary 
ultrasonic machining [66]. There are three popular 
material combinations namely,  CFRP/Al [67-69], 
CFRP/Ti [65, 66, 70-73] and Ti/CFRP/Al [61, 62, 67].  

Limited theoretical modelling attempts were made 
when cutting metal-composite stacks. Roudgé et al. [74] 
introduced stacking order indicator which quantified the 
effect of stacking order on the machinability of the stack 
and quality indicator by aggregating all relevant quality 
measures with different weighting factors. Qi et al. [69] 
formulated CTF model when drilling CFRP/Al stack. 
The stacking order was changed and models developed 
for both cases.  When CFRP was drilled last, the CTF 
was function of proportional coefficient of concentrated 
force, the critical energy release rate and the material 
coefficient of the uncut laminates. When Al was drilled 
last, CTF was affected by the assumed edge conditions, 
furthermore, a critical thickness of Al plate was 
calculated after which delamination did not occur. 
Vijayaraghavan and Dornfeld [64] presented a 
framework for FEM modelling of multi-layer materials 
that can be used to develop an accurate and practical 
drilling simulation tool. Matsumura and Tamura [75] 

developed a mechanistic model to predict cutting forces 
and chip flow in drilling multi-layer stacks by assuming 
that the oblique cutting process is a series of orthogonal 
cutting processes with different tool geometries. 
Material properties coefficients were experimentally 
obtained and model was verified as shown in Fig. 4. 

 
 
 
 
 
 
 
 
 

 
 

 
Fig. 4. Predicted vs. measured torque and thrust force values [75] 

4. Conclusions   

Current practices in modelling conventional cutting 
of FRP were presented in this paper. It is noted that 
orthogonal cutting has the most coverage in the literature 
due to its relative simplicity. Analytical models for 
orthogonal cutting are simple and discard much of the 
cutting phenomena, whereas more sophisticated models 
have been constructed using numerical approach. 
Drilling is investigated extensively, with concentration 
on delamination, especially using analytical models. 
Several critical thrust force models have been developed 
for special drill bits and delamination-free assistive 
techniques such as pilot holes and drilling with backup 
plate. Cutting forces, delamination and surface 
roughness are examined as function of cutting 
parameters for contour, helical and end milling of FRPs 
using the four modelling approaches. Modelling research 
on turning was found scarce and focused on cutting 
forces and surface quality. Metal composite stacks are 
becoming popular in aerospace industry and there is a 
need for generating holes through the different layers in 
a single shot for joining purposes. This is mainly 
achieved by drilling, but also by helical milling and 
rotary ultrasonic machining. Most of the research is 
experimental with recent and few attempts in analytical 
force modelling.  

Despite the noticeable progress documented above, 
more modelling research is still needed. In analytical 
modelling, 3D models and models that include thermo-
mechanical effects are absent. In numerical modelling, 
accurate representation of multi-scale failure 
mechanisms, large deformations and discontinuities are 
still challenging tasks, in addition to the high 
computational cost. Improvements on mechanistic 
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models can be achieved by reducing the number of 
required tests to obtain the coefficients.  

Authors believe that current literature metal cutting 
modelling might give useful insights into the 
development of more accurate analytical models of 
composites cutting. Emerging applications of multi-scale 
modelling and meshfree methods into machining and 
fracture problems provide a good opportunity to improve 
the accuracy of the numerical approach.  
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